
Multiple Particle
Simulation

Parallel Functional Programming
Pavan Ravindra (UNI: phr2114)



Molecular Dynamics Simulations

Update rules (velocity Verlet): Lennard-Jones Potential:

Force Calculation:



Molecular Dynamics Simulations

Update rules (velocity Verlet):

Force Calculation:

Algorithm for N interacting point particles:

1. Generate initial conditions:
- Specify ri(0) and vi(0) for all particles
- For our purposes: O(N)

2. Iteratively update positions and velocities:
- Compute forces between every pair 

of particles: ~N2

- Need to do this for all T timesteps: 
O(N2T)



Melting a Lennard-Jones Crystal

Lennard-Jones Potential: Lennard-Jones Cubic Crystal:

Periodic Boundary Conditions!



Temperature Analysis (Sanity Check)

Self-intermediate scattering function:



Parallelizing the Calculation

- Recall: the force calculation is the 
computational bottleneck: ~O(N2)

- Involves calculating the force between 
every pair of particles

- Overall plan: implement the force 
calculation as a single map call:

- Then we can trivially parallelize the calculation of 
the force vector Fi(t) for each particle i

Empirical Runtime Scaling:



Force Calculation



Speedup Overview

- Parallel implementation helps the most for large system sizes

- Speedup isn’t quite ideal but still improves consistently!



Spark outcomes

- For large system sizes: almost all 
sparks are converted :)

- Never have any issues with spark 
pool overflowing :)

- Parallelism is less efficient for small 
system sizes (as expected)

- GC’d vs. fizzled seems strange… 
runtime system to blame?



Load Balancing

- Workload seems pretty 
balanced across all threads!

- Let’s take a closer look…



Load Balancing (cont.)



Load Balancing (cont.)



How about parListChunks instead of parList?



How about parListChunks instead of parList?

- For few threads: all chunk sizes are basically the same

- For more threads: better off with just going one-by-one (same as parList)


