
Project Report: Multiple Particle Simulation

Pavan Ravindra, phr2114@columbia.edu

December 18, 2024

1 Introduction

This report details a parallel implementation of a molecular dynamics simulation. The main task is to
simulate the motion of N interacting point particles according to the velocity Verlet update rules.

In Section 2, we provide an overview of the steps in a standard molecular dynamics simulation. We then
discuss how we parallelize such a simulation in Section 3. We provide some analysis and characterization of
our parallel implementation in Section 4, and then we close with some final thoughts and potential future
directions in Section 5.

Since the focus of this project is parallel programming, we limit our discussion to only the necessary technical
physics details, but all of the simulation choices made in this project are fairly standard [1, 2].

1.1 Overview of Changes made after Presentation

I worked on a few additional things since my presentation yesterday. I summarize them here just for clarity:

1. I managed to get a trivial speedup by increasing the nursery size with the -A32M flag, as you had
suggested. Previously, my 12 thread runtime only achieved a speedup of ∼2x, but with the increased
nursery size of 32 megabytes, I get ∼5x speedup on 12 threads.

2. I also attempted to implement a version of my code that used Data.Vector, but unfortunately I
couldn’t get it to match the performance of my existing implementation in time for the deadline. The
implementation works, it’s just much slower than my previous implementation. You can find it in
the submitted code under vector attempt.zip. The general approach was to store everything as a
Data.Vector.Unboxed collection, and then I implemented my own equivalent of parMap that does a
map over this vector.

I have updated all of the results in this report to match the results with the increased nursery size. Hence,
the runtime results here are different from those that I presented yesterday. The previous results are still in
the submitted presentationSlides.pdf file, and they can also be reproduced by omitting the -A32M flag
when running my code.

1

2 Sequential Algorithm

2.1 Overview of Molecular Dynamics

In a molecular dynamics simulation, we simulate the motion of N interacting point particles. The variables
of interest are the position and velocity vectors of each particle as they evolve in time. For a particle i at
time t, we will use ri(t) to denote its position vector and vi(t) to denote its velocity vector.

These variables are numerically integrated forward in time by a small, finite timestep ∆t according to the
velocity Verlet algorithm [2]:

ri(t+∆t) = ri(t) + ∆tvi(t) +
∆t2

2mi
Fi(t) (1)

vi(t+∆t) = vi(t) +
∆t

2mi
[Fi(t) + Fi(t+∆t)] (2)

In spirit, these update rules are analogous to integrating the equations forward in time with forward Euler,
but the above update rules are known to yield trajectories that are more numerically stable than traditional
forward Euler [2].

Once we choose our initial positions ri(0) and initial velocities vi(0) for all N particles, Eqns. 1 and 2 give
us a recipe for computing the future values of our positions ri(t) and velocities vi(t). The one remaining
thing to discuss is the calculation of the force vectors Fi(t) in these equations.

Fi(t) denotes the force acting on particle i at time t. We generally assume that our interaction potential is
pairwise additive, meaning that we can compute the force acting on a particle by just summing up all of the
forces from the other particles acting upon it:

Fi(t) =
∑
i ̸=j

Fij(t) (3)

0.5 1.0 1.5 2.0 2.5
r (distance)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

V L
J(r

)

x-axis

0.0
0.5

1.0
1.5

2.0

y-a
xis

0.0
0.5

1.0
1.5

2.0

z-
ax

is

0.0
0.5
1.0
1.5

2.0

Figure 1: (Left) The Lennard-Jones potential VLJ(r) used in this report. (Right) An example cubic lattice
used for the starting positions of our simulations. All particles are given 0 initial velocity except for one
particle in the corner, whose velocity vector is indicated by the red arrow.

2

where Fij(t) is the force that particle j exerts on particle i. For this project, I use the Lennard-Jones
interaction potential, which is a common potential used to simulate the interactions between atoms [1]:

VLJ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(4)

In the above, ϵ and σ are parameters that decide the exact shape of the potential. Fig. 1 shows a plot of
the Lennard-Jones potential with the chosen values ϵ = 1 and σ = 21/6. These are the values that we will
use for all of the simulations in this report. The x-axis is the distance r between two particles. The slope of
the line gives the magnitude of the force acting on the two particles due to their interaction with each other.
This means that if two particles are a distance of 1 unit away from each other, there is no interaction force
between the two particles. If they move away from this stable minimum in the potential, they experience a
corrective repulsion or attraction that nudges the two particles back towards a separation distance of 1 unit.

If we place these particles such that they form a cubic lattice where all the immediate particle neighbors are
separated by 1 distance unit, we will form a mechanically stable cubic crystal. This structure is shown in
the right plot of Fig. 1. We use this arrangement of particles as our initial positions ri(0) throughout all of
the numerical experiments in this report. We will discuss the choice of initial velocities vi(0) in Section 2.2.

To summarize, there are two main steps in running a molecular dynamics simulation:

1. Generate initial conditions: Generating the initial positions for a cubic lattice of N particles as de-
scribed above takes O(N) time. We’ll discuss a method for generating the initial velocities for our
simulation that also takes O(N) time.

2. Update the positions and velocities of our particles for the desired simulation length: This step involves
repeatedly applying Eqns. 1 and 2 to move the simulation forward in time. These equations require
us to compute the force Fi(t) on each particle i. Since we are to compute the force on all N of these
particles, and the calculation of each Fi(t) requires summing over all other particles j ̸= i, the overall
cost of this step is O(N2T), where T is the number of timesteps that we want to run the simulation
for.

From this analysis, it is clear that the second step should be the major computational bottleneck in running
our simulations. We verify this empirically in Fig. 2, where we run molecular dynamics simulations for 100
timesteps with varying numbers of particles. From this plot, it is clear that the simulation runtime scales
quadratically with the number of particles, just as we predicted.

0 200 400 600 800 1000
Number of Particles

0

10

20

30

Ti
m

e
(s

ec
on

ds
)

Figure 2: The scaling of the simulation runtime (single-threaded) as the number of simulated particles
increases.

3

2.2 Simulating the Melting of a Lennard-Jones Crystal

To verify that the results of our simulations are physically reasonable, we simulate the melting of the cubic
Lennard-Jones crystal that we described above. Our initial positions are that of the cubic lattice shown in
the right half of Fig. 1. We then give all of the particles an initial velocity of 0 except for one particle in
the corner of the lattice. This particle is given a velocity based on what we’ll call the “temperature” of the
simulation. The larger the “temperature” is, the faster this initial velocity will be chosen to be. As an aside:
this is a physically-motivated but incorrect definition of temperature.

We then plot (the real part of) the self-intermediate scattering function Fs(k, t):

Fs(k, t) =

N∑
i=1

eik·(ri(t)−ri(0)) (5)

If the initial velocity is too low, the neighboring atoms will cushion out this initial velocity, and the crystal
will remain intact. In such cases, Fs(k, t) will stay around 1 for all values of time. However, if the initial
velocity is large enough, the moving particle will violently push the other particles out of their stable cubic
lattice positions, causing the crystal to melt into a disordered phase. When this happens, Fs(k, t) will decay
to 0.

Fig. 3 shows this behavior for three different temperatures. At the lowest temperature, we see that Fs(k, t)
oscillates near a value of 1, meaning that the crystal remained intact. However, at the higher temperatures,
Fs(k, t) decays to 0, indicating that the crystal has melted! In fact, the higher temperature crystal melts
faster than the intermediate temperature crystal. (Note that the x-axis is on a log-scale, as is standard with
Fs(k, t) plots. This means that the difference in melting time between these higher temperature simulations
is actually more substantial than it appears at first.)

10 2 2 × 10 2 5 × 10 2 10 1

time

0.2

0.0

0.2

0.4

0.6

0.8

1.0

F s
(k

,t
)

Temperature
25
75
100

Figure 3: Demonstrating the melting of a Lennard-Jones crystal at high temperatures via the decay of the
self-intermediate scattering function Fs(k, t).

4

3 Parallelizing the Simulation

We now describe how we parallelized our implementation. We focus only on the parts of our implementation
that are relevant to understanding our parallelization-induced speedup. Our full code listing is provided in
the Appendix at the end of this report (and of course as part of the Courseworks submission).

As discussed in the previous section, the ri(t) and vi(t) vectors are what we are primarily interested in
computing. We define a MDVector datatype that stores the 3 components of these vectors:

1 data MDVector = MDVector !Double !Double !Double

The !’s enforce immediate evaluation because we want to avoid laziness at this level. Very importantly,
the simulations in this report use periodic boundary conditions. This means that a particle that leaves the
right-hand side of the box will effectively re-enter the box immediately on the left-hand side. A similar
rule applies to all 6 faces on the edge of our cubic simulation cell. This periodicity is why the boxLength

parameter has to be passed to many of the functions that act on MDVector’s.

As previously discussed, the major computational bottleneck in these simulations is the calculation of the
forces acting on each particle, since this requires O(N2) individual force calculations. By implementing this
with one map call, we can make use of strategies to easily parallelize these force calculations.

1 -- Computes list of forces on all particles given a configuration

2 forceMatrix :: [MDVector] -> Double -> [MDVector]

3 forceMatrix rs boxLength =

4 map totalForce rs `using` parList rseq

5 where

6 -- Gets force acting on particle at r1 due to particle at r2

7 forceVector r1 r2

8 | r1 == r2 = zeroVector

9 | otherwise = vectorMultiply flj (unitVector r12)

10 where r12 = displacement r2 r1 boxLength

11 d12 = vectorNorm r12

12 sor = sigma / d12

13 flj = 24.0 * epsilon * (2 * (sor ** 12.0) - (sor ** 6.0)) / d12

14 -- Computes total force on particle at r due to all other particles

15 totalForce r = foldr vectorAdd zeroVector $ map (forceVector r) rs

The rs argument is a list of the MDVector positions of our particles at the current timestep. We map over
this list with a totalForce function that acts on individual MDVector’s in this list. totalForce looks
at this individual MDVector and computes the total force acting on this particle as a result of all of the
other forceVector’s that act on this particle. This force is determined by the Lennard-Jones interaction
from Eqn. 4 and is computed on Line 13 of the above code snippet. Since our implementation of the force
calculation is written around this single map call, we can trivially parallelize this calculation using strategies,
as done on Line 4.

4 Results

4.1 Speedup Results

We’ll now move onto characterizing this simple parallelization scheme. Fig. 4 shows that the parallel imple-
mentation is certainly faster for the larger system sizes.

Fig. 5 shows that increasing the number of threads for a fixed system size consistently decreases the overall
runtime. Although we don’t achieve ideal scaling, our parallel implementation does still steadily yield improve
runtimes. The obvious exception to this is the green curve corresponding to 8 particles, for which it is clearly
more work than it’s worth to divide the force calculation across threads.

5

0 200 400 600 800 1000
Number of Particles

0

10

20

30

Ti
m

e
(s

ec
on

ds
)

Serial
Parallel

Figure 4: Comparing the runtime scaling between the serial and parallelized (12 threads) implementations.

1 4 8 12
Number of Threads

10

15

20

25

30

35

Ru
nt

im
e

(s
ec

on
ds

)

1 4 8 12
Number of Threads

0

2

4

6

8

10

12

Sp
ee

du
p

of particles
8
1000
Ideal

Figure 5: (Left) The total simulation runtime for 100 timesteps for a simulation size of 1000 particles.
(Right) The speedup scaling with respect to number of threads for selected system sizes. The dashed black
line shows ideal scaling.

6

4.2 Spark Fate Analysis

We can also take a closer look at what exactly is happening to all of the sparks at different simulation sizes.
At larger simulation sizes, most of the sparks are successfully converted. Even for the largest simulation
sizes, we never run into issues of the spark pool overflowing. Unsurprisingly, at small system sizes, the final
statuses of the sparks is more depressing, with a fair amount of them getting fizzled.

0 200 400 600 800 1000
Number of Particles

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n Spark Status
converted
overflowed
dud
GC'd
fizzled

Figure 6: The proportion of sparks that end in each category based on the number of particles in the
simulation.

4.3 Load Balancing Analysis

We conclude our analysis of this implementation by looking at the load balancing for the largest simulations
we ran: 1000 particles across 12 threads. At a first glance, our implementation seems to smoothly balance
the work load across all of the threads, as shown in Fig. 7. However, after zooming in, things don’t look quite
as pretty. The top image in Fig. 8 shows a slightly zoomed-in version of a single simulation timestep. You
can see that the spark pool for all the force calculations is created suddenly, and then it gradually declines
as the individual force calculations finish. If you look even closer at the individual thread-level activity, you
can see that within a single one of these timesteps, the threads all simultaneously stop working to do some

Figure 7: A zoomed out picture of the load balancing for 1000 particles across 12 threads.

7

Figure 8: (Top) A slightly zoomed-in version of Fig. 7. (Bottom) An even more zoomed-in version of Fig. 7.

garbage collection. Note that we only show 4 threads in these zoomed-in images to reduce the size of the
figures, but the other threads’ behaviors look similar.

4.4 Using parListChunk instead of parList

Since we parallelized our force calculation in forceMatrix using parList, a natural follow-up question would
be to try using parListChunk instead to group together certain particles’ force calculations. If we want to
do this, we also have to calibrate the size of the chunks that we split the particle coordinates into. We focus
on our largest simulation sizes, which contain 1000 particles. The results for different chunk sizes and thread
counts are in Table 1 below.

For low thread counts, all chunk sizes yielded similar runtimes, as expected. However, for the higher thread
counts, using a chunk size of 1 (which is equivalent to just using parList) yielded the best performance.
This suggests that it isn’t worth the work of splitting the work up into chunks.

Total Chunk Size -N1 -N2 -N3 -N4 -N5 -N6 -N7 -N8 -N9 -N10 -N11 -N12
1 37.5 25.3 21.8 19.5 19.0 19.6 18.2 17.9 17.4 16.7 16.3 15.3
2 41.0 29.6 25.6 24.6 23.7 23.1 23.3 20.9 20.5 21.0 19.9 18.7
4 39.8 28.8 25.4 23.6 22.3 22.1 22.2 21.9 20.7 19.6 20.4 17.8
5 43.4 30.8 26.3 23.8 22.8 22.4 21.6 21.1 21.5 20.8 21.2 19.7
10 37.4 22.6 20.8 21.0 20.0 19.2 18.4 18.2 17.9 17.7 18.2 18.2
20 37.7 25.3 23.1 21.3 20.2 19.0 19.7 19.5 20.0 19.3 19.2 21.5
50 37.9 25.8 23.3 21.5 20.4 20.2 19.7 19.9 20.7 20.9 20.1 20.1
100 40.2 27.3 26.6 24.0 21.6 22.3 22.9 23.1 23.1 20.5 22.0 21.6

Table 1: 100 timestep simulation runtimes (in seconds) for different numbers of threads and chunk sizes.
Simulations contain 1000 particles.

8

5 Conclusions

In this report, we described our efforts to parallelize molecular dynamics simulations of Lennard-Jones
particles. We parallelize the force calculation at each simulation timestep using strategies, which lowers the
overall computational cost of each simulation timestep and accordingly the overall simulation runtime. As
expected, our implementation did best with large simulation sizes of 1000 particles. Notably, simulations in
modern computational physics literature often involve running simulations with ∼1000 particles [1].

Unfortunately, the threads appeared to take synchronized garbage collection breaks, which occur during the
execution of individual molecular dynamics timesteps. As a next step, it would be useful to consider how
we can reduce the slowdown induced by these mid-timestep garbage collection pauses.

9

Appendix A Code Listings

The instructions for executing our code can be found in the submitted READMDE.md file.

Appendix A.1 src/MDVector.hs

1 module MDVector

2 (MDVector(..),

3 zeroVector,

4 vectorAdd,

5 vectorSubtract,

6 vectorMultiply,

7 dotProduct,

8 vectorNorm,

9 displacement,

10 distance,

11 unitVector,

12 matrixMultiply,

13 addMatrixList

14) where

15

16 import Data.Fixed (mod')

17

18 -- Fundamental 3-vector datatype for x, y, and z coordinates

19 data MDVector = MDVector !Double !Double !Double

20

21 instance Show MDVector where

22 show (MDVector x y z) = "[" ++ (show x) ++ " , " ++ (show y) ++ " , " ++ (show z) ++ "]"

23

24 -- Allows for some floating point error when comparing MDVectors

25 instance Eq MDVector where

26 (MDVector x1 y1 z1) == (MDVector x2 y2 z2) =

27 all closeEnough rTuple

28 where closeEnough (a,b) = (abs (a - b)) < 1e-10

29 rTuple = [(x1,x2),(y1,y2),(z1,z2)]

30

31 -- Defining a zero vector (just for convenience)

32 zeroVector :: MDVector

33 zeroVector = MDVector 0.0 0.0 0.0

34

35 -- Adds two MDVectors together

36 vectorAdd :: MDVector -> MDVector -> MDVector

37 vectorAdd (MDVector x1 y1 z1) (MDVector x2 y2 z2) =

38 MDVector (x1+x2) (y1+y2) (z1+z2)

39

40 -- Subtracts two MDVectors

41 vectorSubtract :: MDVector -> MDVector -> MDVector

42 vectorSubtract (MDVector x1 y1 z1) (MDVector x2 y2 z2) =

43 MDVector (x1-x2) (y1-y2) (z1-z2)

44

45 -- Multiplies a MDVector by a scalar

46 vectorMultiply :: Double -> MDVector -> MDVector

47 vectorMultiply c (MDVector x y z) =

48 MDVector (c*x) (c*y) (c*z)

49

50 -- Dot product between MDVectors

51 dotProduct :: MDVector -> MDVector -> Double

52 dotProduct (MDVector x1 y1 z1) (MDVector x2 y2 z2) =

53 (x1*x2) + (y1*y2) + (z1*z2)

54

55 -- Computes the norm of an MDVector

56 vectorNorm :: MDVector -> Double

57 vectorNorm v1 =

58 sqrt $ dotProduct v1 v1

59

60 -- Given MDVectors v1 and v2, computes wrapped displacement vector v_{12}

10

61 displacement :: MDVector -> MDVector -> Double -> MDVector

62 displacement v1 v2 boxLength =

63 wrapDisplacement $ vectorSubtract v2 v1

64 where wrapDisplacement (MDVector x y z) = MDVector (boxMod x) (boxMod y) (boxMod z)

65 halfBox = boxLength / 2.0

66 boxMod c = (mod' (c + halfBox) boxLength) - halfBox

67

68 -- Computes the distance between two position vectors

69 distance :: MDVector -> MDVector -> Double -> Double

70 distance vec1 vec2 boxLength =

71 vectorNorm $ displacement vec1 vec2 boxLength

72

73 -- Returns a unit vector in the direction of the provided MDVector

74 -- (or the zero vector if the provided vector is the zero vector)

75 unitVector :: MDVector -> MDVector

76 unitVector vec

77 | vec == zeroVector = zeroVector

78 | otherwise = vectorMultiply (1.0 / (vectorNorm vec)) vec

79

80 -- Multiplies a list of vectors (AKA matrix) by the provided double

81 matrixMultiply :: Double -> [MDVector] -> [MDVector]

82 matrixMultiply c m =

83 map (vectorMultiply c) m

84

85 -- Adds a list of "matrices" to the provided "matrix"

86 addMatrixList :: [MDVector] -> [[MDVector]] -> [MDVector]

87 addMatrixList m0 matrixList =

88 foldr (zipWith vectorAdd) m0 matrixList

Appendix A.2 src/MDEngine.hs

1 module MDEngine

2 (forceMatrix,

3 velocityVerlet,

4 isf,

5 mdIsf,

6 mdTraj

7) where

8

9 import Control.Parallel.Strategies (using, parList, rseq)

10

11 import MDVector

12

13 -- Simulation Parameters

14

15 epsilon :: Double

16 epsilon = 1.0

17

18 sigma :: Double

19 sigma = 2.0 ** (-1.0/6.0) -- Chosen so that r_{min} = 1

20

21 mass :: Double

22 mass = 1.0

23

24 dt :: Double

25 dt = 1e-3

26

27 -- Computes list of forces on all particles given a configuration

28 forceMatrix :: [MDVector] -> Double -> [MDVector]

29 forceMatrix rs boxLength =

30 map totalForce rs `using` parList rseq

31 where

32 -- Gets force acting on particle at r1 due to particle at r2

33 forceVector r1 r2

34 | r1 == r2 = zeroVector

35 | otherwise = vectorMultiply flj (unitVector r12)

11

36 where r12 = displacement r2 r1 boxLength

37 d12 = vectorNorm r12

38 sor = sigma / d12

39 flj = 24.0 * epsilon * (2 * (sor ** 12.0) - (sor ** 6.0)) / d12

40 -- Computes total force on particle at r due to all other particles

41 totalForce r = foldr vectorAdd zeroVector $ map (forceVector r) rs

42

43 -- Updates positions, velocities, and forces using velocity Verlet

44 velocityVerlet :: [MDVector] -> [MDVector] -> [MDVector] -> Double -> ([MDVector],[MDVector],[MDVector])

45 velocityVerlet rt1 vt1 ft1 boxLength =

46 (rt2 , vt2 , ft2)

47 where rt2 = addMatrixList rt1 [(matrixMultiply dt vt1) , (matrixMultiply c1 ft1)]

48 ft2 = forceMatrix rt2 boxLength

49 vt2 = addMatrixList vt1 [(matrixMultiply c2 ft1) , (matrixMultiply c2 ft2)]

50 c1 = (dt ** 2.0) / (2.0 * mass)

51 c2 = dt / (2.0 * mass)

52

53 -- Computes intermediate scattering function value between two configurations

54 isf :: MDVector -> [MDVector] -> [MDVector] -> Double

55 isf k r0 rt =

56 let diffMatrix = zipWith vectorSubtract rt r0 in

57 let dotMatrix = map (dotProduct k) diffMatrix in

58 let cosMatrix = map cos dotMatrix in

59 (sum cosMatrix) / (fromIntegral (length cosMatrix))

60

61 -- Given initial configuration, velocities, number of timesteps to execute

62 -- and a k-vector of interest, computes the self-ISF trajectory.

63 mdIsf :: [MDVector] -> [MDVector] -> Int -> Double -> MDVector -> [Double]

64 mdIsf r0 v0 timesteps boxLength k =

65 let mdIsfHelper rt vt ft steps

66 | steps == 0 = []

67 | otherwise = (isf k r0 rt) : (mdIsfHelper rt2 vt2 ft2 (steps - 1))

68 where (rt2,vt2,ft2) = velocityVerlet rt vt ft boxLength

69 in mdIsfHelper r0 v0 f0 timesteps

70 where f0 = forceMatrix r0 boxLength

71

72 -- Given initial configuration, velocities, and number of timesteps to execute,

73 -- computes the trajectory of the first particle.

74 mdTraj :: [MDVector] -> [MDVector] -> Int -> Double -> [MDVector]

75 mdTraj r0 v0 timesteps boxLength =

76 let mdTrajHelper rt vt ft steps

77 | steps == 0 = []

78 | otherwise = (head rt) : (mdTrajHelper rt2 vt2 ft2 (steps - 1))

79 where (rt2,vt2,ft2) = velocityVerlet rt vt ft boxLength

80 in mdTrajHelper r0 v0 f0 timesteps

81 where f0 = forceMatrix r0 boxLength

12

Appendix A.3 src/InitialConditions.hs

1 module InitialConditions

2 (cubicPositions,

3 zeroVelocity,

4 oneVelocity

5) where

6

7 import MDVector

8

9 -- Generates list with values for each coordinate in cubic lattice

10 getRange :: Double -> [Double]

11 getRange boxLength =

12 map fromIntegral [0..(numParticles-1)]

13 where numParticles = floor boxLength :: Int

14

15 -- Generates cubic initial configuration

16 cubicPositions :: Double -> [MDVector]

17 cubicPositions boxLength =

18 [MDVector x y z | x <- range , y <- range , z <- range]

19 where range = getRange boxLength

20

21 -- Generates zero initial velocities

22 zeroVelocity :: Double -> [MDVector]

23 zeroVelocity boxLength =

24 [MDVector 0 0 0 | _ <- range , _ <- range , _ <- range]

25 where range = getRange boxLength

26

27 -- Generates mostly zero initial velocities but gives particle 1 some velocity based on the provided temperature.

28 oneVelocity :: Double -> Double -> [MDVector]

29 oneVelocity boxLength temp =

30 (MDVector temp temp temp) : tail (zeroVelocity boxLength)

Appendix A.4 app/isf/Main.hs

1 module Main (main) where

2

3 import System.Exit (die)

4 import System.Environment (getArgs, getProgName)

5 import Text.Printf (printf)

6

7 import MDVector

8 import MDEngine

9 import InitialConditions

10

11 main :: IO ()

12 main =

13 do args <- getArgs

14 case args of

15 [timestepsString,boxLengthString,tempString] -> do

16 let timesteps = read timestepsString :: Int

17 boxLength = read boxLengthString :: Double

18 temp = read tempString :: Double

19 r0 = cubicPositions boxLength

20 v0 = oneVelocity boxLength temp

21 kval = 2.0 * pi * 10

22 k = MDVector kval kval kval

23 isfTraj = mdIsf r0 v0 timesteps boxLength k

24 putStr $ unlines (map (\d -> printf "%.3f" d) isfTraj)

25 _ -> do pn <- getProgName

26 die $ "Usage: " ++ pn ++ " <timesteps> <boxLength> <temperature>"

13

Appendix A.5 app/traj/Main.hs

1 module Main (main) where

2

3 import System.Exit (die)

4 import System.Environment (getArgs, getProgName)

5

6 import MDEngine

7 import InitialConditions

8

9 main :: IO ()

10 main =

11 do args <- getArgs

12 case args of

13 [timestepsString,boxLengthString,tempString] -> do

14 let timesteps = read timestepsString :: Int

15 boxLength = read boxLengthString :: Double

16 temp = read tempString :: Double

17 r0 = cubicPositions boxLength

18 v0 = oneVelocity boxLength temp

19 firstTraj = mdTraj r0 v0 timesteps boxLength

20 putStr $ unlines (map show firstTraj)

21 _ -> do pn <- getProgName

22 die $ "Usage: " ++ pn ++ " <timesteps> <boxLength> <temperature>"

Appendix A.6 test/vector/Vector.hs

1 import System.Exit (exitFailure)

2

3 import MDVector

4

5 checkEqual :: Eq a => a -> a -> IO ()

6 checkEqual val1 val2 =

7 if val1 == val2

8 then return ()

9 else exitFailure

10

11 checkDouble :: Double -> Double -> IO ()

12 checkDouble d1 d2 =

13 if abs (d1 - d2) < 1e-10

14 then return ()

15 else exitFailure

16

17 main :: IO ()

18 main = do

19 let oneVector = MDVector 1.0 1.0 1.0

20 twoVector = MDVector 2.0 2.0 2.0

21 threeVector = MDVector 3.0 3.0 3.0

22 oneFiveVector = MDVector 1.5 1.5 1.5

23 someVector = MDVector 8.0 7.0 1.0

24 checkDouble 0.0 0.0

25 checkEqual zeroVector zeroVector

26 checkEqual oneVector (vectorAdd oneVector zeroVector)

27 checkEqual twoVector (vectorAdd oneVector oneVector)

28 checkEqual oneVector (vectorSubtract twoVector oneVector)

29 checkEqual twoVector (vectorMultiply 2.0 oneVector)

30 checkDouble 12.0 (dotProduct twoVector twoVector)

31 checkDouble 3.0 (vectorNorm (MDVector 1.0 2.0 2.0))

32 checkEqual oneVector (displacement twoVector threeVector 5.0)

33 checkEqual (vectorMultiply (-1.0) oneVector) (displacement threeVector twoVector 5.0)

34 checkEqual oneFiveVector (displacement threeVector oneVector 3.5)

35 checkEqual (vectorMultiply (-1.0) oneFiveVector) (displacement oneVector threeVector 3.5)

36 checkDouble 5.0 (distance oneVector someVector 10)

37 checkDouble 1.0 (vectorNorm (unitVector someVector))

38 checkDouble (vectorNorm someVector) (dotProduct (unitVector someVector) someVector)

14

Appendix A.7 test/engine/Engine.hs

1 import System.Exit (exitFailure)

2

3 import MDVector

4 import MDEngine

5 import InitialConditions

6

7 checkEqual :: Eq a => a -> a -> IO ()

8 checkEqual val1 val2 =

9 if val1 == val2

10 then return ()

11 else exitFailure

12

13 checkListEqual :: Eq a => [a] -> [a] -> IO ()

14 checkListEqual [] [] = return ()

15 checkListEqual _ [] = exitFailure

16 checkListEqual [] _ = exitFailure

17 checkListEqual (a:as) (b:bs)

18 | a == b = checkEqual as bs

19 | otherwise = exitFailure

20

21 main :: IO ()

22 main = do

23 let boxLength = 5.0

24 cubicCrystal = cubicPositions boxLength

25 crystalForce = forceMatrix cubicCrystal boxLength

26 checkListEqual crystalForce $ map (_ -> zeroVector) crystalForce

Appendix A.8 test/init/Init.hs

1 import System.Exit (exitFailure)

2

3 import MDVector

4 import InitialConditions

5

6 checkEqual :: Eq a => a -> a -> IO ()

7 checkEqual val1 val2 =

8 if val1 == val2

9 then return ()

10 else exitFailure

11

12 checkDouble :: Double -> Double -> IO ()

13 checkDouble d1 d2 =

14 if abs (d1 - d2) < 1e-10

15 then return ()

16 else exitFailure

17

18 main :: IO ()

19 main = do

20 let initPos = cubicPositions 2.0

21 zeroVel = zeroVelocity 2.0

22 oneVel = oneVelocity 2.0 1.0

23 checkDouble 0.0 0.0

24 checkEqual zeroVector zeroVector

25 checkEqual 8 (length initPos)

26 checkEqual 8 (length zeroVel)

27 checkEqual 8 (length oneVel)

28 checkDouble (3.0 + 3.0 * (sqrt 2.0) + (sqrt 3.0)) $ sum (map vectorNorm initPos)

29 checkDouble 0.0 $ head (map vectorNorm zeroVel)

30 checkDouble 0.0 $ sum (map vectorNorm zeroVel)

31 checkDouble (sqrt 3.0) $ head (map vectorNorm oneVel)

32 checkDouble 0.0 $ sum (tail (map vectorNorm oneVel))

15

References

[1] Walter Kob and Hans C Andersen. Testing mode-coupling theory for a supercooled binary lennard-jones
mixture. ii. intermediate scattering function and dynamic susceptibility. Physical Review E, 52(4):4134,
1995.

[2] Mark E Tuckerman. Statistical mechanics: theory and molecular simulation. Oxford university press,
2023.

16

