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1 Introduction

This report discusses the implementation of an IDA* search-based Rubik’s Cube solver
in Haskell, the use of pattern databases (PDB) for heuristic estimation, and subsequent
attempts at parallelizing the solution process. We will start with the cube and move
representations in Haskell, then detail the IDA* algorithm, our experiences applying it
to different cube sizes (2x2 and 3x3), and finally discuss parallelization strategies, both
for a single cube and for multiple cubes.

2 Cube Representation in Haskell

We represent the Rubik’s Cube in a flexible yet straightforward way. Each face is a 2D
array of colors, and the cube is a record of six faces: up, down, left, right, front, and
back.

type Color = Char -- ’R’, ’G’, ’B’, ’Y’, ’O’, ’W’
type Face = [[Color]]

data Cube = Cube {
up :: Face,
down :: Face,
left :: Face,
right :: Face,
front :: Face,
back :: Face

} deriving (Eq, Show)

This structure allows easy indexing and manipulation of each cube face.

3 Move Representation in Haskell

We define a dedicated data type for moves. Each move corresponds to a face rotation
(clockwise or counterclockwise).

data Move
= F | Fi | R | Ri | U | Ui | B | Bi | L | Li | D | Di
deriving (Eq, Show)
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applyMove :: Move -> Cube -> Cube
applyMove F = moveF
-- similarly for other moves

The function moveF shows how a single move updates the cube’s faces, demonstrating
the indexing and rearrangements needed. Each move rotates one face and updates the
adjacent faces accordingly.

-- Perform a move that rotates the front face clockwise
-- 1. front: rotate the front face
-- 2. up: update the last row of the up face with reversed values

from the last column of the left face.
-- 3. left: update the last column of the left face with the first

row of the down face.
-- 4. down: update the first row of the down face with reversed

values from the first column of the right face.
-- 5. right: update the first column of the right face with the last

row of the up face.
-- 6. back: no update required

moveF :: Cube -> Cube
moveF cube = cube {

front = rotateFaceClockwise (front cube),
up = replaceRow (up cube) (n-1) (reverse (getCol (left cube) (n

-1))),
left = replaceCol (left cube) (n-1) (downFirstRow),
down = replaceRow (down cube) 0 (reverse (getCol (right cube) 0)

),
right = replaceCol (right cube) 0 (upLastRow)

}
where
n = length (front cube)
upLastRow = (up cube) !! (n-1)

4 IDA* Algorithm Using Pattern Database

IDA* (Iterative Deepening A*) is an algorithm that combines the breadth of iterative
deepening with the informed nature of A*. It repeatedly performs a depth-limited DFS,
increasing the cutoff based on the next promising threshold. This allows it to find an
optimal solution while still having the low memory footprint associated with DFS (as
opposed to BFS).

4.1 IDA*

IDA* works using a heuristic h that never overestimates the cost to achieve the goal.
We start with a threshold equal to h(start) and do a depth-first search cutting off paths
where g + h > threshold. If no solution is found, we increase the threshold.
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4.2 Algorithm Pseudocode

function IDA*(start, goal, h)
threshold := h(start)
loop

temp := search(start, 0, threshold)
if temp = FOUND then

return FOUND
if temp = inf then

return NOT_FOUND
threshold := temp

function search(node, g, threshold)
f := g + h(node)
if f > threshold then

return f
if node = goal then

return FOUND
min := inf
for each successor of node

temp := search(successor, g + cost(node, successor), threshold)
if temp = FOUND then

return FOUND
if temp < min then

min := temp
return min

4.3 Pattern Database and our implementation

A PDB stores precomputed distances for a subset of states. For smaller puzzles (like
2x2 cube), we can generate a pattern database that gives accurate or nearly accurate
estimates of the distance to the solved state. This helps IDA* prune the search space
drastically, since states that appear in the PDB give a good heuristic.

The PDB.hs module is responsible for generating and managing the pattern database
(PDB) used by our Rubik’s Cube solver. The PDB serves as a lookup table that maps
specific cube states to their minimal number of moves to reach the solved state. By
consulting this database during search, we can derive a heuristic value to guide the IDA*
algorithm.

4.3.1 State Representation and Key Conversion

In order to store and retrieve cube states efficiently, we represent each state as a Word8Vector.
A Word8Vector is essentially a vector of Word8 values, where each Word8 encodes a
single sticker’s color. This encoding step transforms a complex 3D Rubik’s Cube config-
uration into a compact, hashable key suitable as a map key:

import qualified Data.Vector.Unboxed as V

newtype Word8Vector = Word8Vector (V.Vector Word8)
deriving (Eq, Show, Ord)
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cubeToKey :: Cube -> Word8Vector
cubeToKey cube =

Word8Vector $ V.fromList $ concatMap (map colorToWord8) [
concat (up cube),
concat (down cube),
concat (left cube),
concat (right cube),
concat (front cube),
concat (back cube)

]

This linearization of the cube’s faces into a vector ensures a consistent and unique
representation of any cube state.

4.3.2 Serialization and Persistence

We use the Data.Binary library for serialization. Defining a Binary instance for
Word8Vector allows us to easily save and load the entire PDB to and from a file.

-- Define the Binary instance for the newtype
instance Bin.Binary Word8Vector where

put (Word8Vector vec) = Bin.put (V.toList vec)
get = Word8Vector . V.fromList <$> Bin.get

We rely on:

• Bin.encodeFile: Writes the entire PDB map (which is a Map Word8Vector
Int) to a file, serializing both keys and values.

• Bin.decodeFile: Reads the PDB back into memory, reconstructing the map.

This mechanism makes it possible to build the PDB once and then quickly load it in
future runs, saving computation time.

4.3.3 Building the PDB Using BFS

The PDB is constructed by performing a breadth-first search (BFS) starting from the
solved cube state. BFS explores states level by level, ensuring that when we first reach
a particular cube state, we’ve found the minimal number of moves required to get there.
This property directly ensures that the distances recorded in the PDB are minimal and
accurate.

The BFS loop:

• Starts from the solved state at depth 0.

• Expands successors by applying all moves and recording their depths.

• Uses a visited set to avoid revisiting states.

• Stops when a specified depth limit is reached or when no more states are available.

Because BFS discovers states in order of their increasing distance, the first time we
encounter a state, that depth is its minimal depth.
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4.4 Statistical Overview of Our PDB

Size Max BFS Depth Storage Size Number of Rows Generation Time
2x2 7 42.1MB 1,053,180 79.1 seconds
2x2 8 152.6MB 3,814,920 286.9 seconds
3x3 6 68.9MB 983,926 129.7 seconds
3x3 7 644.4MB 9,205,558 1209.6 seconds

Table 1: Statistical Overview of Our PDB

5 Linear IDA* + PDB on Different Cube Sizes

5.1 2x2 Cube

On a 2x2 Rubik’s Cube, the state space is much smaller. With a decent PDB, IDA*
can solve fully scrambled states extremely fast (e.g., around 0.05s on average). The PDB
covers a significant portion of reachable states, making the heuristic effective early in the
search.

5.2 3x3 Cube

For the 3x3 cube, the approach is much less successful. The state space is enormous,
and our partial PDB rarely helps during the initial layers of the search. Consequently,
without frequent heuristic guidance, the algorithm degenerates into a near-brute-force
search.

While 2x2 can be quickly solved, the 3x3 scenario demonstrates the limitation of IDA*
+ PDB: it’s simply not scalable to the complexity of a standard Rubik’s Cube. More
advanced algorithms (like the two-phase algorithm) are known to be more efficient but
were not implemented due to complexity and time constraints. There is more information
on this later in the report.

6 Parallelization with a Single Cube

6.1 Our attempt

Parallelizing the search on a single cube by splitting the search tree at the root and
assigning each subtree to a thread seemed promising initially but turned out to offer
little performance improvement for the following reasons:

1. Different threads may repeat work on overlapping states. For example, Thread
1 goes L → R, and Thread 2 goes R → L. They both reach the same state and
continue performing redundant searches from that point.

2. A shared visited structure is challenging to implement and may cause contention.
Ensuring thread-safe access to a common data structure for visited states can in-
troduce significant overhead, negating the benefits of parallelization.
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3. Without effective pruning or shared information, parallelization doesn’t yield sig-
nificant speedups. Efficient parallel algorithms often rely on mechanisms to share
partial results and prune the search space, but implementing these mechanisms
correctly and efficiently is non-trivial.

4. Load balancing is another issue. Some subtrees may be significantly larger and
more complex than others, leading to uneven distribution of work among threads.
This imbalance can result in some threads being idle while others are overwhelmed,
thus reducing overall efficiency.

In our attempts to parallelize IDA* for a Rubik’s Cube, we used a structure similar
to the following to manage visited states:

type VisitedStates = H.BasicHashTable Cube Bool

initVisitedStates :: IO (MVar VisitedStates)
initVisitedStates = do

visitedStates <- H.new :: IO VisitedStates
newMVar visitedStates

This structure, utilizing a hashtable from ‘Data.HashTable.IO‘, aimed to coordinate
access to the set of visited states across multiple threads. However, the need for thread-
safe operations introduced significant contention, further complicating the parallelization
effort.

In short, naive parallelization of a single cube’s search is not straightforward. Effective
parallelization requires careful management of state sharing, load balancing, and memory
usage, along with strategies to minimize redundant work and contention.

In short, naive parallelization of a single cube’s search is not straightforward.

6.2 Other Parallelization Strategies Not Implemented

We identified advanced parallelization strategies from similar projects, but did not im-
plement them in this section due to complexity and time constraints. These include:

• Work Distribution: Dividing the search space at upper levels into tasks and
distributing them among worker threads, potentially using a work-stealing queue
and parameters like maxParDepth to control granularity. This ensures that each
worker thread has a manageable portion of the search space, potentially improving
load balancing and reducing idle times.

• Worker Pool: Maintaining a fixed pool of worker threads:

1. Each worker pulls tasks from a shared queue.

2. Explores its assigned subtree.

3. Reports results back through a result channel.

4. Can steal work from other workers when idle.

By using a worker pool, the system can dynamically balance the load, ensuring that
all threads are utilized efficiently.
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• Bound Management: Sharing a global bound among workers and propagating
improved bounds to prune unpromising branches early. By sharing information
about the bounds, workers can avoid exploring paths that are unlikely to lead to a
solution, thus improving the efficiency of the parallel search.

These strategies aim to address the shortcomings of naive parallelization by focusing
on efficient task distribution, dynamic load balancing, and effective pruning mechanisms.
While more sophisticated and scalable, they require careful management of granularity
control, memory usage, synchronization, and advanced heuristics, making their imple-
mentation non-trivial.

These more advanced parallelization techniques represent more sophisticated and scal-
able solutions than our initial attempts, and are implemented in an attempt to parallelize
IDA* in the following sections.

7 Parallelization with Multiple Cubes

A simpler scenario is solving multiple cubes in parallel. Each cube is independent, and we
can just run multiple cube-solving tasks simultaneously. This approach doesn’t require
modifying linear IDA*, since each thread just solves a cube from start to finish.

import Control.Concurrent.Async (forConcurrently_)

main = do
-- ...
-- linesOfMoves is a list of scrambles, one per line
forConcurrently_ (zip [1..] linesOfMoves) $ \(idx, line) -> do

-- Solve each cube independently in a separate thread
let scrambleMoves = parseLineOfMoves line
let scrambledCube = applyMoves scrambleMoves solvedCube
maybeSolution <- idaStar scrambledCube (heuristic pdb)

allMoves
-- handle result

By using forConcurrently , each cube is processed by its own thread. Running
with +RTS -N4 enables multiple CPU cores, allowing true parallelism. This approach
typically shows parallel speedup if the tasks are sufficiently CPU-bound.

forConcurrently operates similarly to parMap , but is safer with IO, which
simplifies debugging. Using this method, we observed substantial speedup as we increased
the number of threads, capping at around a 6-fold improvement with 8 threads on a 10-
core machine.

See Figure 1 for the speedup graph and Figures 2-5 for core usage per run. All the
mentioned graphs are based on a set of 10,000 cubes. As expected, the initial phase of
the usage runs primarily on one core while the program reads the serialized PDB and
processes it into a map. From then on, parallelization works effectively but eventually
sees diminishing returns.

We were surprised at the speed with which the added threads stopped improving
efficiency. Undoubtedly, there is a loss due to thread overhead and context switching,
but capping our improvement at 6x was unexpected. Scaling up the number of cubes that
are solved is likely to show further improvement, since the PDB portion of the process is
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a constant-time operation. However, we tested only up to 10,000 cubes. Up to that point,
our hypothesis was true. You can see figure 6 for the extreme example of the impact of
loading in the PDB while solving a single cube.

8 Parallelization of IDA* on a 3x3 cube

8.1 Rubik’s Cube States

The solvable states of the Rubik’s cube are determined by several factors related to the
arrangement and orientation of its components:

• Corner Arrangement

– Corner Permutations: This refers to the spatial arrangement of the eight
corner pieces within their eight available slots.

– Corner Orientations: This indicates whether a corner is twisted correctly,
clockwise (CW), or counterclockwise (CCW).

• Edge Arrangement

– Edge Permutations: This pertains to the spatial arrangement of the twelve
edge pieces within their twelve available slots.

– Edge Orientations: This denotes whether an edge piece is flipped or not.

In Haskell, this can be represented as follows:

data CubeState = CubeState {
edgesPermutation :: [Int], -- Edge indices (0 to 11)
edgesOrientation :: [Bool], -- Edge flips (False = correct, True = flipped)
cornersPermutation :: [Int], -- Corner indices (0 to 7)
cornersOrientation :: [Int] -- Corner twists (0 = correct, 1 = 120 CW, 2 = 120 CCW)

} deriving (Eq, Show)

Using this framework, it is easy to calculate all the possible states of a cube, and thus
develop more accurate heuristics.

In a 2× 2 cube, we can only permute and orient the corners, yielding:

8!× 37

24
≈ 3,674,160 states

However, in a 3× 3 cube, we can also permute and orient all the edges, yielding:

8!× 37 × 12!× 211

2
≈ 4.3252× 1019 states

Ironically, a 4×4 cube – “Rubik’s Revenge” – would have approximately 1045 solvable
states.

8.2 Kociemba’s Two-Phase-Algorithm

The complexity of the Rubik’s Cube has thus necessitated the development of efficient al-
gorithms to navigate this vast state space. One such approach is the two-phase algorithm,
which leverages two iterations of the Iterative Deepening A* (IDA*) search strategy to
systematically solve the cube. This method decomposes the solution process into two
distinct phases, each targeting specific aspects of the cube’s state.
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Phase 1: Solving the Orientations In the first phase, the algorithm focuses on
solving the orientations of the cube’s pieces. This involves reaching a G1 state, defined
as any state that can be generated from the solved state through orientation-preserving
moves, specifically the set {U,D,R2, L2, F 2, B2}. The objective is to orient all edge and
corner pieces correctly, effectively reducing their orientation degrees of freedom to zero.

Mathematically, the number of possible G1 states is approximately 8!× 12!, account-
ing for the permutations of the 8 corners and 12 edges while maintaining their correct
orientations. Achieving this state simplifies the subsequent phase by ensuring that all
pieces are correctly oriented, thereby allowing the algorithm to concentrate solely on their
permutations without altering their orientations.

Phase 2: Solving the Permutations Once the cube is in a G1 state, the second
phase commences with the goal of solving the permutations of the pieces to reach the
fully solved state. This phase involves applying only the G1 moves, which preserve the
orientations established in Phase 1. By restricting the move set to orientation-preserving
operations, the algorithm ensures that the orientations remain locked, thereby focusing
exclusively on the permutation of pieces.

8.3 Implementation of a parallelized Two-Phase solver

Whilst in the previous section we have focused on parallelizing different batches of cubes,
thus keeping the actual solving algorithm at an atomic level, in this section we propose
a parallelization of the IDA* algorithm which lies at the core of the solving procedure.
In order to do so, we use an existing implementation of a cube solver (see ”twentyseven”
in the references), but modify the central IDA.hs module. Here we emphasize some key
design choices. The full implementation of the algorithm is given in the Appendix.

8.3.1 Shared Structures Amongst the Threads

Shared data structures are essential for coordination and communication between multiple
threads. The most important shared structures include the SearchCoordinator and
SearchState. These manage the state of the search, track active tasks, and handle
synchronization to ensure thread-safe operations.

data SearchCoordinator a l node = SearchCoordinator {
taskCount :: IORef Int,
solutionFound :: IORef Bool,
currentBound :: IORef a,
activeSearches :: IORef Int

}

data SearchState a l node = SearchState {
coordinator :: SearchCoordinator a l node,
resultChan :: !(Chan (SearchResult a l)),
taskQueue :: !(Chan (Maybe (SearchTask a l node))),
activeWorkers :: !(MVar Int),
stateId :: !Int,
config :: !ParConfig

}

8.3.2 Worker Threads

Each worker continuously retrieves tasks, or nodes, from the shared taskQueue, pro-
cesses them by exploring possible successors, and communicates results back through the
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resultChan. The workers monitor the solutionFound flag to terminate gracefully
once a solution is discovered or when there are no more tasks to process.

worker :: (NFData node, NFData a, NFData l, Ord a, Num a, Show a)
=> SearchState a l node
-> Search [] a l node
-> IO ()

worker state search = do
modifyMVar_ (activeWorkers state) (\n -> return (n + 1))
let loop = do

foundSolution <- readIORef (solutionFound $ coordinator state)
tasksPending <- readIORef (taskCount $ coordinator state)
if foundSolution || (tasksPending == 0)

then shutdown
else do

mtask <- readChan (taskQueue state)
case mtask of

Nothing -> shutdown
Just task -> do

processTask state search task
loop

shutdown = do
modifyMVar_ (activeWorkers state) $ \n -> do

let newCount = n - 1
when (newCount == 0) $

writeChan (resultChan state) Stop
return newCount

loop

8.3.3 The Main Loop

The main loop handles the overall search process by processing incoming results from
worker threads and managing the iterative deepening bounds. Upon receiving a Found
result, it signals all workers to terminate and returns the solution path. If a NextBound
is received, the loop updates the search bounds and reinvokes the workers to continue the
search within the new limits. This loop ensures that the algorithm incrementally explores
deeper levels of the search tree, dynamically adjusting based on the progress and findings
of the worker threads.

let mainLoop prevBound = do
result <- readChan (resultChan state)
case result of

Found path -> do
-- Solution found; stop everything
atomicWriteIORef (solutionFound coord) True
replicateM_ numWorkers $ writeChan (taskQueue state) Nothing
return (Just path)

-- process incoming candidate new bound
Next newBC@(NextBound nb) -> do

when (nb > prevBound) $ do
atomicModifyIORef’ boundState $ \curr -> (curr <> newBC, ())

active <- readMVar (activeWorkers state)
tasksPending <- readIORef (taskCount coord)
-- Workers can’t reach any tasks beyond bound
if tasksPending == 0

then do
NextBound candidate <- readIORef boundState
if candidate /= maxBound && candidate > prevBound

then do
let nextBound = candidate

-- Update global state for new iteration
atomicWriteIORef (currentBound coord) nextBound
atomicWriteIORef boundState (NextBound maxBound)
atomicWriteIORef (solutionFound coord) False
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-- 1) clean up old workers
activeCount <- readMVar (activeWorkers state)
replicateM_ activeCount $ writeChan (taskQueue state) Nothing

-- 2) Initialize tasks again
atomicModifyIORef’ (taskCount coord) (\n -> (n + 1, ()))
writeChan (taskQueue state) $ Just SearchTask {

taskNode = root,
taskDepth = 0,
taskBound = nextBound,
taskPath = [],
taskG = 0

}

-- 3) Relaunch new workers
forM_ [1..numWorkers] $ \i -> do

forkIO $ worker state s

mainLoop nextBound
else do

return Nothing
else do

-- There are still tasks pending, accumulate candidate and continue
mainLoop prevBound

Stop -> do
mainLoop prevBound

9 Conclusion

In this report, we have detailed the implementation and optimization of an IDA* search-
based Rubik’s Cube solver in Haskell, utilizing pattern databases for heuristic estimation
and examining various parallelization strategies. Our approach to representing the cube
and its moves in Haskell provides a flexible and efficient framework for state manipulation.
Through the development of a pattern database, we were able to make a reliable heuristic,
which guaranteed us an optimal solution when working on smaller cubes such as the
2x2. However, our attempts to directly apply the same methodology to the 3x3 cube
highlighted the limitations of this approach, as the state space increased exponentially.

Parallelization efforts yielded mixed results. While solving multiple cubes in paral-
lel proved effective, achieving near-linear speedup up to a point, parallelizing the search
process for a single cube presented considerable challenges. Our initial naive paralleliza-
tion attempts demonstrated limited success due to redundant work and synchronization
overhead. The core difficulty in parallelizing IDA* lies in managing redundant state
explorations across multiple threads. As each thread independently traverses different
branches of the search tree, the probability of overlapping efforts—where multiple threads
explore identical or similar states—increases dramatically. This redundancy essentially
undermines the potential performance gains from parallel execution. Our attempts to
employ a shared visited set using thread-safe data structures introduced substantial syn-
chronization overhead, which further diminished the benefits of parallelization.

Looking forward, one promising direction to mitigate redundancy is the implemen-
tation of a shared visited set with a strategic update interval. By allowing threads to
periodically synchronize their visited states rather than maintaining constant access, it
may be possible to strike a balance between reducing redundant searches and minimiz-
ing synchronization costs. This approach could enable more efficient sharing of explored
states, thereby enhancing the overall scalability and performance of the parallelized IDA*
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algorithm.
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Figure 1: Speed up of algorithm when adding cores

Figure 2: Core usage with 1 thread
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Figure 3: Core usage with 4 threads

Figure 4: Core usage with 8 threads
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Figure 5: Core usage with 10 threads
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Figure 6: Impact of loading in PDB

Figure 7: IDA* parallel: Core usage with 8 cores
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Figure 8: IDA* parallel: Spark creation with 8 cores

Figure 9: IDA* parallel: Spark conversion with 8 cores
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Figure 10: IDA* parallel: Speed-up graph for 1-8 cores
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12 Appendix

12.1 IDA.hs

Note: This code needs to run within an updated version of the ”twentyseven” repository

{-# LANGUAGE ScopedTypeVariables, MultiParamTypeClasses,
FunctionalDependencies, FlexibleInstances,
BangPatterns, RecordWildCards,
RankNTypes, UndecidableInstances,
TypeApplications, DeriveGeneric,
StandaloneDeriving #-}

module Rubik.IDA (
Search(..),
Succ(..),
SearchResult(..),
Result,
search,
selfAvoid,
selfAvoidRoot,
ParConfig(..),
DebugLevel(..),
defaultParConfig,
withBasicLogging,
withVerboseLogging,
withFullDebug

) where

import qualified Data.Set as S
import Control.Parallel.Strategies
import Control.DeepSeq
import Control.Concurrent
import Control.Monad (forM_, when, replicateM_)
import System.IO.Unsafe (unsafePerformIO)
import System.Random (randomRIO)
import Data.IORef
-- import Debug.Trace (trace)
import GHC.Generics
import System.IO (hFlush, stdout)

------------------------------------------------------------
-- Core Data Structures
------------------------------------------------------------

data Succ label length node = Succ {
eLabel :: label,
eCost :: length,
eSucc :: node

} deriving (Show, Eq)

data Search f a l node = Search {
goal :: node -> Bool,
estm :: node -> a,
edges :: node -> f (Succ l a node)

}

type Result a l = Maybe [l]

-- Represents the next bound candidate discovered during search
data BoundCandidate a = NextBound !a

deriving (Show, Eq)

instance NFData a => NFData (BoundCandidate a) where
rnf (NextBound x) = rnf x

instance (Ord a) => Semigroup (BoundCandidate a) where
(NextBound a) <> (NextBound b) = NextBound (min a b)
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data SearchResult a l =
Next !(BoundCandidate a)

| Found [l]
| Stop

deriving instance Generic (SearchResult a l)

instance (NFData a, NFData l) => NFData (SearchResult a l) where
rnf (Next a) = rnf a
rnf (Found ls) = rnf ls
rnf Stop = ()

instance Ord a => Semigroup (SearchResult a l) where
f@(Found _) <> _ = f
_ <> f@(Found _) = f
Next a <> Next b = Next (a <> b)
Stop <> x = x
x <> Stop = x

instance Ord a => Monoid (SearchResult a l) where
mempty = Stop

------------------------------------------------------------
-- Parallel Configuration and Logging
------------------------------------------------------------

data DebugLevel =
Silent

| Basic
| Verbose
| VeryVerbose
deriving (Show, Eq, Ord)

data ParConfig = ParConfig {
maxParDepth :: !Int,
numWorkers :: !Int,
chunkSize :: !Int,
boundUpdateThreshold :: !Int,
debugLevel :: !DebugLevel

} deriving Show

defaultParConfig :: ParConfig
defaultParConfig = ParConfig {

maxParDepth = 5,
numWorkers = 4,
chunkSize = 100,
boundUpdateThreshold = 1000,
debugLevel = Silent

}

withBasicLogging :: ParConfig -> ParConfig
withBasicLogging config = config { debugLevel = Basic }

withVerboseLogging :: ParConfig -> ParConfig
withVerboseLogging config = config { debugLevel = Verbose }

withFullDebug :: ParConfig -> ParConfig
withFullDebug config = config { debugLevel = VeryVerbose }

logDebug :: DebugLevel -> DebugLevel -> String -> IO ()
logDebug configLevel messageLevel msg = do

when (configLevel >= messageLevel) $ do
putStrLn $ "[ParIDA*] " ++ msg
hFlush stdout

------------------------------------------------------------
-- Search Coordinator
------------------------------------------------------------

data SearchCoordinator a l node = SearchCoordinator {
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taskCount :: IORef Int,
solutionFound :: IORef Bool,
currentBound :: IORef a,
activeSearches :: IORef Int

}

initSearchCoordinator :: (Num a) => a -> IO (SearchCoordinator a l node)
initSearchCoordinator initBound = do

tasks <- newIORef 0
solution <- newIORef False
bound <- newIORef initBound
searches <- newIORef 0
return SearchCoordinator {

taskCount = tasks,
solutionFound = solution,
currentBound = bound,
activeSearches = searches

}

------------------------------------------------------------
-- Search State and Task
------------------------------------------------------------

data SearchTask a l node = SearchTask {
taskNode :: !node,
taskDepth :: !Int,
taskBound :: !a,
taskPath :: ![l],
taskG :: !a

}

data SearchState a l node = SearchState {
coordinator :: SearchCoordinator a l node,
resultChan :: !(Chan (SearchResult a l)),
taskQueue :: !(Chan (Maybe (SearchTask a l node))),
activeWorkers :: !(MVar Int),
stateId :: !Int,
config :: !ParConfig

}

initSearchState :: (Show a, Num a) =>
SearchCoordinator a l node ->
ParConfig ->
IO (SearchState a l node)

initSearchState coord config = do
results <- newChan
tasks <- newChan
workers <- newMVar 0
sid <- randomRIO (1, 1000 :: Int)
return SearchState {

coordinator = coord,
resultChan = results,
taskQueue = tasks,
activeWorkers = workers,
stateId = sid,
config = config

}

------------------------------------------------------------
-- Core IDA* Exploration Logic
------------------------------------------------------------

exploreNode :: forall node a l.
(NFData node, NFData a, NFData l, Ord a, Num a, Show a)
=> Search [] a l node
-> ParConfig
-> Int
-> node
-> a
-> [l]
-> a
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-> [SearchResult a l]
exploreNode Search{..} config@ParConfig{..} depth n g ls bound

| g == bound && g == f && goal n = [Found (reverse ls)]
| f > bound = [Next (NextBound f)]
| depth >= maxParDepth = [mconcat $ map processSucc (edges n)]
| otherwise =

let chunks = splitIntoChunks chunkSize (edges n)
in map mconcat $ withStrategy (parTraversable rdeepseq) $

map (map processSucc) chunks
where
!f = g + estm n
processSucc (Succ l c s) =

mconcat $ exploreNode (Search goal estm edges) config (depth + 1) s (g + c) (l:ls)
bound

splitIntoChunks :: Int -> [a] -> [[a]]
splitIntoChunks n = go

where
go [] = []
go xs = let (chunk, rest) = splitAt n xs

in chunk : go rest

------------------------------------------------------------
-- Processing Tasks
------------------------------------------------------------

processTask :: forall node a l.
(NFData node, NFData a, NFData l, Ord a, Num a, Show a)
=> SearchState a l node
-> Search [] a l node
-> SearchTask a l node
-> IO ()

processTask state search task@SearchTask{..} = do
didWork <- processTaskWork
when didWork $

atomicModifyIORef’ (taskCount $ coordinator state) (\n -> (n - 1, ()))
where
processTaskWork = do

foundSolution <- readIORef (solutionFound $ coordinator state)
if foundSolution

then return False
else do

bound <- readIORef (currentBound $ coordinator state)
let currentEstimate = taskG + estm search taskNode
if taskBound > bound || currentEstimate > taskBound

then return False
else do

let results = exploreNode search (config state) taskDepth taskNode
taskG taskPath taskBound

forM_ results $ \result -> case result of
Found path -> do

shouldReport <- atomicModifyIORef’ (solutionFound $
coordinator state) $ \curr ->
if curr then (curr, False) else (True, True)

when shouldReport $
writeChan (resultChan state) (Found path)

Next newBound -> do
-- This is a candidate bound higher than current iteration
writeChan (resultChan state) (Next newBound)

Stop -> writeChan (resultChan state) Stop

when (taskDepth < maxParDepth (config state)) $ do
let successors = edges search taskNode

validSuccessors = filter (\(Succ _ c s) ->
let newG = taskG + c
in newG + estm search s <= taskBound) successors

let numNewTasks = length validSuccessors
when (numNewTasks > 0) $ do

atomicModifyIORef’ (taskCount $ coordinator state) (\n -> (n +
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numNewTasks, ()))
forM_ validSuccessors $ \(Succ l c s) -> do

let newTask = SearchTask {
taskNode = s,
taskDepth = taskDepth + 1,
taskBound = taskBound,
taskPath = l:taskPath,
taskG = taskG + c

}
writeChan (taskQueue state) (Just newTask)

return True

------------------------------------------------------------
-- Worker Threads
------------------------------------------------------------

worker :: (NFData node, NFData a, NFData l, Ord a, Num a, Show a)
=> SearchState a l node
-> Search [] a l node
-> IO ()

worker state search = do
modifyMVar_ (activeWorkers state) (\n -> return (n + 1))
let loop = do

foundSolution <- readIORef (solutionFound $ coordinator state)
tasksPending <- readIORef (taskCount $ coordinator state)
if foundSolution || (tasksPending == 0)

then shutdown
else do

mtask <- readChan (taskQueue state)
case mtask of

Nothing -> shutdown
Just task -> do

processTask state search task
loop

shutdown = do
modifyMVar_ (activeWorkers state) $ \n -> do

let newCount = n - 1
when (newCount == 0) $

writeChan (resultChan state) Stop
return newCount

loop

------------------------------------------------------------
-- Parallel IDA* Search
------------------------------------------------------------

searchParallel :: (NFData node, NFData a, NFData l, Ord a, Num a, Show a, Bounded a)
=> ParConfig
-> Search [] a l node
-> node
-> IO (Maybe [l])

searchParallel config@ParConfig{..} s root = do
let initialBound = estm s root
coord <- initSearchCoordinator initialBound
boundState <- newIORef (NextBound maxBound) -- Track minimal next bound candidate
atomicModifyIORef’ (activeSearches coord) $ \n -> (n + 1, ())

state <- initSearchState coord config

-- Launch initial workers
forM_ [1..numWorkers] $ \_ -> forkIO $ worker state s

-- Add initial task
atomicModifyIORef’ (taskCount coord) (\n -> (n + 1, ()))
writeChan (taskQueue state) $ Just SearchTask {

taskNode = root,
taskDepth = 0,
taskBound = initialBound,
taskPath = [],
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taskG = 0
}

let mainLoop prevBound = do
result <- readChan (resultChan state)
case result of

Found path -> do
-- Solution found; stop everything
atomicWriteIORef (solutionFound coord) True
replicateM_ numWorkers $ writeChan (taskQueue state) Nothing
return (Just path)

Next newBC@(NextBound nb) -> do
-- Only absorb the candidate if it’s greater than prevBound
when (nb > prevBound) $ do

atomicModifyIORef’ boundState $ \curr -> (curr <> newBC, ())

-- Received a next-bound candidate
active <- readMVar (activeWorkers state)
tasksPending <- readIORef (taskCount coord)

if tasksPending == 0
then do

-- Get new accumulated bound
NextBound candidate <- readIORef boundState

if candidate /= maxBound && candidate > prevBound
then do

let nextBound = candidate

-- Update global state for new iteration
atomicWriteIORef (currentBound coord) nextBound
atomicWriteIORef boundState (NextBound maxBound)
atomicWriteIORef (solutionFound coord) False

-- 1) clean up old workers
activeCount <- readMVar (activeWorkers state)
replicateM_ activeCount $ writeChan (taskQueue state)

Nothing

-- 2) Initialize tasks again
atomicModifyIORef’ (taskCount coord) (\n -> (n + 1, ()))
writeChan (taskQueue state) $ Just SearchTask {

taskNode = root,
taskDepth = 0,
taskBound = nextBound,
taskPath = [],
taskG = 0

}

-- 3) Relaunch new workers
forM_ [1..numWorkers] $ \i -> do

forkIO $ worker state s

mainLoop nextBound
else do

return Nothing
else do

-- There are still tasks pending, accumulate candidate and
continue

mainLoop prevBound

Stop -> do
-- If Stop is read, just continue.
mainLoop prevBound

result <- mainLoop initialBound
atomicModifyIORef’ (activeSearches coord) $ \n -> (n - 1, ())
return result
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------------------------------------------------------------
-- Sequential Fallback (if needed)
------------------------------------------------------------

seqSearch :: (Foldable f, Num a, Ord a)
=> Search f a l node
-> node
-> Maybe [l]

seqSearch s root = rootSearch (estm s root)
where
rootSearch d = case dfSearch s root 0 [] d of

Stop -> Nothing
Found ls -> Just ls
Next (NextBound d’) -> rootSearch d’

dfSearch :: (Foldable f, Num a, Ord a)
=> Search f a l node
-> node -> a -> [l] -> a -> SearchResult a l

dfSearch (Search goal estm edges) n g ls bound = dfs n g ls bound
where
dfs n g ls bound

| g == bound && g == f && goal n = Found (reverse ls)
| f > bound = Next (NextBound f)
| otherwise = foldMap searchSucc $ edges n
where

f = g + estm n
searchSucc (Succ l c s) = dfs s (g + c) (l:ls) bound

toList :: Foldable f => f a -> [a]
toList = foldr (:) []

canParallelize :: forall f n a l.
(NFData n, NFData a, NFData l, Show a, Foldable f) =>
Search f a l n ->
Bool

canParallelize _ = True

------------------------------------------------------------
-- Public Search Functions
------------------------------------------------------------

search :: forall f a l node.
(Foldable f, NFData node, NFData a, NFData l, Ord a, Num a, Show a, Bounded a, Ord node

)
=> Search f a l node
-> node
-> Maybe [l]

search s root = unsafePerformIO $ do
if canParallelize s

then do
putStrLn "\n=== Using parallel IDA* implementation ==="
let sList = Search {

goal = goal s,
estm = estm s,
edges = toList . edges s

}
searchParallel defaultParConfig (selfAvoid sList) (selfAvoidRoot root)

else do
putStrLn "\n=== Using sequential IDA* implementation ==="
let sList = Search {

goal = goal s,
estm = estm s,
edges = toList . edges s

}
return $ seqSearch (selfAvoid sList) (selfAvoidRoot root)

------------------------------------------------------------
-- Self-avoiding Search Wrapper
------------------------------------------------------------
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data SelfAvoid node = SelfAvoid (S.Set node) node
deriving (Generic)

instance NFData node => NFData (SelfAvoid node)

selfAvoid :: (Ord node) => Search [] a l node -> Search [] a l (SelfAvoid node)
selfAvoid (Search goal estm edges) = Search {

goal = goal . node,
estm = estm . node,
edges = edges’

}
where
node (SelfAvoid _ n) = n
edges’ (SelfAvoid trace n) =

[ Succ l c (SelfAvoid (S.insert s trace) s)
| Succ l c s <- edges n, S.notMember s trace ]

selfAvoidRoot :: node -> SelfAvoid node
selfAvoidRoot root = SelfAvoid (S.singleton root) root
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