
SAT Solver

Kevin, Jonathan, Max



What is a CNF expression?



Our Goal
Find a configuration for the variables that satisfy the expression.

Prove no configuration will ever solve the expression

DIMACS Format



Naive Attempt

-We developed a simple naive algorithm that generates all possible configurations and checks whether each 

satisfies the given boolean expression. Being a brute force solution, this implementation was (expectedly) not 

very efficient.



First try sequential

● We attempted to group numbers with similar binary encodings into equivalence classes, exploiting shared 
lower bits to simplify the Boolean expression using clause elimination, literal elimination, and early returns.

● This approach worked for small problems (e.g., 20 variables taking ~1 second), but became inefficient for larger 
ones (e.g., 50 variables taking >2 minutes) due to the need to check all numbers within each equivalence class.

● The method proved too slow, prompting us to pivot to a different approach.

For example: 

- 0, 4, 8 all end in 00 or False, False
- 1, 5, 9 all end in 01 or False, True
- 2, 6, 10 all end in 10 or True, False
- 3, 7, 11 all end in 11 or True, True



Second Try Sequential (Best)

Rather than naively enumerating all possibilities of assignments then conducting a linear search over the 

possibilities, we can instead rely on our intuition when attempting to determine satisfiability by hand.



Second Try Sequential (Best)

Suppose we assign true to p
1
. This leads to:

Clause C
2
, originally ¬p

1
 v p

2
, is now simply p

2
. Thus, any satisfying interpretation must assign p

2
=true. In this 

case, p
2
 is called a “unit literal”. It occurs in a clause with no other literals.



Second Try Sequential (Best)

Simplifying our formula further with p
2
=true yields:

We again have two unit literals p
3
 and ¬p

4
. Thus, we must assign p

3
=true.



Second Try Sequential (Best)

Simplifying our formula again with p
3
=true yields:

We are left with only clauses which are unit literals. This last formula, derived from the initial assignment 
p

1
=true in the original formula, is unsatisfiable. So we cannot assign p

1
=true in the original formula because 

of its implications. p
1
=false, and we can follow similar “unit propagation” / BCP logic to determine the 

original formula is ultimately satisfiable (e.g. p
1
=F, p

2
=F, p

3
=F, p

4
=T, p

5
=T/F)



Second Try Sequential (Best)

If this were implemented as a recursive algorithm, one recursive probe would reveal p
1
=false. This is much 

better than having to linearly search through 25 assignments. We found the 
Davis-Putnam-Logemann-Loveland (DPLL) Algorithm, proposed in the 1960s, does exactly this BCP.

DPLL also performs Pure Literal Elimination: if a variable occurs with only one polarity in the formula, i.e. 
occurs only as a positive literal x or only as a negative literal ¬x, it is “pure”. Pure literals can be assigned a 
value such that all clauses containing it become true. Thus, clauses containing pure literals may also be 
removed from the formula along with those removed by BCP.



Second Try Sequential (Best)
Note:

- Termination conditions
- Flexibility in branching heuristic

Implications:
- Family of algorithms
- Chronological backtracking



First Parallel Attempt
For each variable we branched on both True and False configuration, using ‘par’ and ‘parseq’, sparking once 

using par for the false assignment and using parseq to evaluate the second assignment within the same 

parallel computation



First Parallel Attempt

-This approach did not work.

-The sparks were “dud,” not 
efficiently being used for parallel 
computation

-Trying different variations of our 
code did not work so we moved 
on to a different approach.



Second Parallel Attempt (Best)

Since we branch on True and False we can use a technique 

learned in class for dealing with pairs.

We can apply this to the earlier code shown.



Second Parallel Attempt (Best)

As we can see this did much better. But 

there was still a lot of sparks being 

fizzled or GC’d. (this was for 150 

variables)

Sequential result: 54.744 secs

Parallel result (best): 29.039

Parallel result (worst): 91.518

Speedup: 1.88



Second Parallel Attempt (Best)

Too large (40 depth) Too small (10 depth)



Second Parallel Attempt (Best)
Unsatisfiable Problems (100 variables, 430 clauses, 5 random samples):



Second Parallel Attempt (Best)

Threadscope for best depth: 
5.299 speedup

Sequential: Average: 7.652, STD DEV: 3.644
Best Parallel: Average: 1.444, STD DEV: .626



Second Parallel Attempt (Best)
Too Large (20): Too Small (5):



Second Parallel Attempt (Best)
Satisfiable 5 random cnf examples 100 variables 430 clauses

Average: 3.193 STD DEV: 1.864

Best: 1.514 STD DEV: 1.038



Second Parallel Attempt (Best)



We were able to add a top-level k-split based on variable frequency. Given a command-line argument, k, 
following the input file path, 2k disjoint subproblems are created, where each subproblem represents a 
specific combination of true/false assignments for the k most frequent variables. These disjoint subproblems 
were then evaluated in parallel, each starting with a partial assignment for the k variables. Within each 
subproblem, the previous depth-limited parallel implementation explored the remaining search space by 
simultaneously assigning true/false for the current variable under consideration at a given depth, selected 
naively just as before.

Initial results were promising, but untuned, so we opted to stick with the previous depth-limited 
implementation for testing. E.g., UF150.645.100/uf150-01.cnf with depth 25 and 14 threads would be solved 
by the previous implementation in around 29 seconds, whereas the same file with depth 1024 and 14 
threads was solved by this implementation in around 3.3 seconds (roughly 8.8x improvement).

Third Parallel Attempt



Takeaways/Future

Haskell is hard.

If we were to continue on this problem we would look into finishing the parallel implementation for multiple 

assignments and sparking these using a “parlist” or possibly some other technique for condensing the 

number of sparks we generate.

We would also look into different heuristics and additional rules to improve the sequential algorithm, as well 

as different data structures to hold the boolean expressions in a more efficient manner to determine if a 

given configuration satisfies it or not.


