
Parallel CNF-SAT Solver

Kevin Durand (kpd2136), Jonathan Tavarez (jt3481), Max Hahn (meh2280)

1 Introduction

1.1 Project Overview

This project is a parallel CNF-SAT solver which implements the Davis-Putnam-Logemann-Loveland
(DPLL) recursive backtracking algorithm. It takes a DIMACS CNF file as input and returns “SAT”
along with accompanying assignments, or “UNSAT”.

1.2 The Boolean Satisfiability Problem (SAT)

The Boolean Satisfiability Problem (SAT) is the problem of determining whether a propositional
Boolean formula can be made true by assigning true or false values to its variables [1]. It is one of
the most studied problems in computer science, with both theoretical and practical significance.

SAT is theoretically significant because it is the first problem proved NP-complete, and therefore
currently known to have exponential worst case complexity (unless P = NP). It is also prac-
tically relevant in areas such as artificial intelligence, software engineering, operations research,
bioinformatics, game theory, cybersecurity, physics, and more.

Although SAT is NP-complete, many SAT instances from real world applications with thousands
of variables can be solved in minutes or even seconds. It is believed this is because these instances
contain hidden structures, “backdoors” and “backbones” to name a few. On the other hand, ran-
domly generated instances can be quite difficult for SAT solvers. They possess a “Phase Transition
Phenomenon” property: the hardness of random instances increases as the ratio of the number
of clauses to the number of variables increases, up to a maximum, then decreases thereafter. For
3-SAT, this threshold is 4.26.

Because of this significance, many types of algorithms for SAT solving have been proposed. Broadly,
they fall into the incomplete algorithm and complete algorithm categories. We concern our-
selves with the latter category, in which algorithms are guaranteed to provide a correct answer
of (un)satisfiability for a given input instance. Often, they are based on the following approaches:
existential quantification, inference rules, search, and a search with inference. Our implementation
of the DPLL algorithm falls under the search approach. However, it should be noted that most
modern solvers utilize the last approach, with DPLL at its core [4].

1.3 DIMACS CNF

SAT solvers typically accept propositional formulas in conjunctive normal form (CNF). A CNF
formula consists of a conjunction of clauses, each clause consisting of a disjunction of literals, and

1

each literal being either a variable’s positive occurrence or its negative occurrence. In other words,
an AND of ORs.

(x1 ∧ x2 ∧ x3) ∧ (¬x1 ∧ x2) ∧ (¬x2 ∧ x3)

The above example has 3 variables x1, x2, x3. ¬ means negation (logical NOT), ∧ means disjunction
(logical OR), and ∧ means conjunction (logical AND). This example is satisfiable because there
exists an assignment of values x1 = true, x2 = true, x3 = true, for example, which makes the
formula true:

(⊤ ∧⊤ ∧⊤) ∧ (¬⊤ ∧ ⊤) ∧ (¬⊤ ∧ ⊤) ↔
⊤∧⊤ ∧⊤ ↔

⊤

DIMACS CNF files are textual representations of CNF formulas. Any line that begins with the
character c is a comment line. Depending on the variation, they may be anywhere in the file, but
are most commonly found at the top. After any comment lines, there must be a problem line of the
form: p cnf <variables> <clauses>, where <variables> and <clauses> denote the number of
variables and the number of clauses in the formula, respectively. Following the problem line are
clause lines, which are space separated literals in the form of positive integers, delimited by a 0.
The example CNF formula above, ignoring the comment lines, would be represented as:

c Example DIMACS CNF input file

c Expected: SAT

p cnf 3 3

1 2 3 0

-1 2 0

-2 3 0

These DIMACS CNF files are inputs to our sequential and parallel DPLL implementations. The
majority of them belong to the SATLIB benchmark problems [3]. Having contextualized SAT and
DIMACS CNF format, an explanation of the DPLL algorithm follows.

1.4 Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Proposed in the early 1960s, this recursive backtracking algorithm forms the basis of most mod-
ern SAT solvers. Given a CNF formula, the algorithm chooses a variable according to a heuristic
and assigns a value (true or false), then simplifies the formula and recursively checks whether the
simplified formula is satisfiable – if this is the case, the original formula is satisfiable; otherwise,
the same recursive check is performed with the opposite assignment. This is known as the “split-
ting rule”, since at each recursive level the formula is simplified into two smaller sub-formulas [2].
Furthermore, because at each level a variable is chosen according to some heuristic, the chosen vari-
able is referred to as the “branching variable”. The heuristic itself is referred to as the “branching
heuristic”, and effectively renders DPLL as a family of algorithms. Efficiency heavily depends on
the choice of heuristic.

In addition to the splitting rule at each step are the Unit Propagation (also known as Boolean
Constraint Propagation, or BCP for short) and Pure Literal Elimination rules. If a clause is a

2

“unit clause”, i.e. it contains only one literal, the clause can only be satisfied by assigning the
necessary value to make this literal true. Thus, it may be removed from the formula, as well as
every clause containing its complement. Unit Propagation often results in deterministic cascades
of units, eliminating a large part of the naive search space.

If a variable occurs with only one polarity in the formula, i.e. occurs only as a positive literal x
or only as a negative literal ¬x, it is “pure”. Pure literals can be assigned a value such that all
clauses containing it become true. Thus, clauses containing pure literals may also be removed from
the formula.

Unsatisfiability given a partial assignment occurs when a clause becomes empty, i.e. all of its
variables have been assigned values such that their corresponding literals become false. Satisfiability
of the original given formula occurs when either all variables are assigned without creating an empty
clause, or, in modern implementations, all clauses are satisfied. Unsatisfiability of the original given
formula only occurs after exhaustive search.

3

2 Sequential Implementation

2.1 Zeroth Attempt: Brute Force Enumeration

x1 x2 (x1 ∧ x2)

false false false
false true false
true false false
true true true

To better understand the scope of the problem and verify that we could correctly parse a DIMACS
CNF file, we implemented a naive algorithm in which we simply generated all possible configurations
(2n, where n is the number of variables). For each configuration, we checked if it satisfied the
input formula. If none of them satisfied the formula, the formula is unsatisfiable, so we returned
“UNSAT”; otherwise, the formula is satisfiable, so we returned “SAT” and the first configuration
that satisfied the formula.

2.2 First Attempt: Sequential DPLL With Binary Encodings

A better approach to this problem would instead apply the Unit Propagation and Pure Literal
Elimination techniques described in Section 1.4. Our initial thought was to convert the numbers,
which represent variables, into a binary encoding of trues (1s) and falses (0s). With this new
representation of a formula, we would then apply DPLL on grouped encodings of the same lower
bits, since all variable encodings share the same subset. For example, setting the lower two bits of
a number to be equal generates 4 equivalence classes:

• 0, 4, 8 all end in 00 or false, false

• 1, 5, 9 all end in 01 or false, true

• 2, 6, 10 all end in 10 or true, false

• 3, 7, 11 all end in 11 or true, true

This did not work well. 20 variable problems took ∼ 1 second to be solved and 50 variable problems
took > 2 minutes. The reason for poor performance was because we had to check every config-
uration within each equivalence class to determine if the resulting encoding was (un)satisfiable,
despite simultaneously setting multiple variable assignments and implementing Unit Propagation
and Pure Literal Elimination. Further work needed to be done to optimize formula rearrangement
to some acceptable extent, which at the time seemed less desirable than simply adopting a different
representation.

2.3 Second Attempt: Haskell Optimizations

Instead of using binary representations, we represent formulas as [Clauses] and clauses as [Literals].
A Literal is simply identified by an Int parameter. This internal representation of the formula is
then kept alongside a continually updated Vector (Maybe Bool), where the value at a given index
i represents an (un)assigned value of Nothing, Just True, or Just False for variable xi+1.

4

Reading in DIMACS CNF input files then boils down to String-to-Int conversion, and formula
simplification becomes constructing smaller and smaller 2D Int arrays. Trying out different as-
signments is effectively reconstructing a Vector (Maybe Bool) which is O(n) in the number of
variables, since vectors are immutable. We intended to refactor using a mutable vector, but ran
out of time to do so. Other data structures we considered refactoring with include adjacency lists,
the Head-Tail data structure, and Watched Literals (along with any supporting auxiliary data
structures like “watches” and a “trail”). Notably, however, the performance of the sequential im-
plementation was quite impressive, solving a randomly generated 3-SAT satisfiable instance with
150 variables and 645 clauses, i.e. with near-peak hardness of 4.3, in 38 seconds, even with a naive
branching heuristic. We simply selected the first unassigned variable in the Vector (Maybe Bool).
A randomly generated 3-SAT unsatisfiable instance with 125 variables and 538 clauses, i.e. also
with near-peak hardness of 4.3, solved in 14 seconds.

5

3 Parallel Implementation

3.1 First Attempt: True/False Assignments

The first intuitive choice was to parallelize the true and false guesses for each variable. We branched
down both the true and false paths of the search space at any given depth level using par and
parseq, sparking once for the false assignment and using parseq to evaluate the second assignment
on the current spark. Using this implementation, we ran into various issues. Mainly, sparks were
becoming ”duds”, indicating they weren’t being efficiently used for parallel computations. After
trying several different par-parseq combinations, we decided to try a different approach.

3.2 Second Attempt: True/False Assignments with Depth Limiting

Our second approach incorporated depth-limiting with the parPair strategy from lecture. This
Strategy helped optimize the evaluation of both true and false assignments simultaneously, and
depth-limiting helped curtail any over-eager parallelism (“dudding”). Out of concern for time
and because preliminary results were promising, we decided to stick with this implementation for
testing.

3.3 Third Attempt: Top-Level k-Split

Our third attempt introduced top-level guided k-splitting with a frequency heuristic. 2k dis-
joint subproblems were generated, where each subproblem represented a specific combination of
true/false assignments for the k most frequent variables in the input formula. These disjoint sub-
problems were then evaluated in parallel. Within each subproblem, the previous depth-limited
parallel DPLL explored the remaining search space by simultaneously evaluating true/false for the
current variable under consideration at a specific depth, selected naively just as before.

If time allowed, the next attempt might intuitively be implementing k-splitting at each level of
recursion. Assigning multiple variables at once would reduce the depth of the search space tree
while increasing the branching factor. This would potentially better-distribute subproblems across
threads, especially for highly imbalanced instances where some branches terminate earlier than
others, in which case splitting would be effectively performing early pruning. It would also increase
the granularity of parallel tasks, lending to better utilization of threads. However, the number of
subproblems generated grow exponentially in k, leading to diminishing returns in the face of mount-
ing memory overhead from formula copies, scheduling overhead from thread saturation, increased
load balancing complexity, and potentially computationally demanding or worst-case k-splits. Ad-
ditional considerations might then be depth-limiting k-splitting, dynamic reduction in k based on
recursion depth, and selective k-splitting according to a certain condition like polarity imbalance
of remaining variables.

6

4 Testing

The following graph was constructed using 5 samples from nuf100-430/. Each instance contains
100 variables and 430 clauses. We can observe a speedup using all threads at different depths.

As we can see, the best results come from a depth of d=8.

sequential parallel, d=5 parallel, d=8 parallel, d=10 parallel, d=20

avg 7.652 1.736 1.444 1.577 1.628
std. dev. 3.644 .788 .626 .643 .648

7

8

These threadscope images show spark activity with the optimal depth for the aforementioned
problems. As we can see, many sparks fizzle but a lot of parallel work was done. This is might be
because our sequential portion consists of assigned variable tracking with a Vector, Unit Propaga-
tion, and Pure Literal Elimination. These actions alone are not very computationally expensive, so
on branches where a result is quickly found, evaluation of the opposite assignment may be called
too quickly, resulting in the spark not being able to be run in parallel and subsequently “fizzling”.
From an algorithmic standpoint, we figured not much could be done to reduce this, since quick yet
inexpensive formula reduction is the core method to find a potentially satisfiable configuration. On
the other hand, waiting for stable results led to all sparks becoming “duds”.

Our other hypothesis is that the high degree of “fizzling” is due to redundant/unnecessary traversals
of sections of the search tree. If a branch (spark) produces results or constraints that render another
branch redundant, e.g. the solution is already found, or the branch is infeasible, the other spark
may fizzle because its result is no longer needed. In other words, depth-limiting mitigated, but
did not resolve a core issue of over-sparking for both true/false assignments. One remedy would
be to implement global shared state or hashing to track visited or resolved sections of the search
space. Commonly, this is done with conflict driven clause learning (CDCL). Other more general
remedies would be to implement dynamic load balancing, smarter sparking decisions, e.g. only for
unexplored, promising branches, and coarser granularity control. To these ends, our initial attempt
at using par and parseq might be revisited.

9

These threadscope images are for our experiments using a depth of 20. A lot more sparks are
GC’d or fizzled. Both previous hypotheses can be extended to conclude this may indicate over-
sparking, where spawning and garbage collecting unused sparks negatively increased runtime.

10

These threadscope images are for our experiments using a depth of 5. As we can see, not enough
sparks were created, so a lot of work ended up being done sequentially rather than in parallel.
Although some sparks fizzled, this may be due to the fact that some branches terminate/return
faster than the creation of new sparks, resulting in a forced evaluation of the opposite branch before
the corresponding thread starts or completes this work in parallel.

11

These graphs are the results of testing using the uf100-430/ files. On average, a depth of 9
caused the most incremental speedup, but for the first instance this was achieved with a depth of 3,
followed by a depth of 8. The speedup for different instances were not consistent with one another,
which might explained by the manner in which our branching system works. Over-sparking may
be occurring at different points for structurally different instances.

12

These are threadscope images for cnf 1. We can observe that the optimal depth of 3 led to more
efficient spark management, whereas the less optimal depth of 8 resulted in a lot of sparking and
fizzling, unnecessary work which subsequently penalized runtime.

13

Here are speedup results on UUF100.430.1000/uuf100-01.cnf with depth-limiting only. DPLL was
run with a depth of 8 and threads 1-14 ten times. Speedups were then averaged across each run
for each thread count:

As you can see, our depth-limiting parallel implementation almost achieves theoretical maximum
speedup assuming 95% of the work can be parallelized. The tapering at the end of the graph may
be due to nonoptimal synchronization, workload balancing, and/or data granularity. Out of the
three, workload balancing is the most likely culprit.

14

Here are speedup results on UF150.645.100/uf150-01.cnf with depth-limiting only. DPLL was run
with a depth of 25 and threads 1-14 ten times. Speedups were then averaged across each run for
each thread count:

As you can see, our depth-limiting parallel implementation struggles to achieve even near theoretical
maximum speedup. This may be due to nonoptimal synchronization, workload balancing, and data
granularity. Out of the three, workload balancing and data granularity might be the most culpable.
Visualization of this instance’s search space may reveal imbalance.

15

Here are speedup results on UF150.645.100/uf150-01.cnf with top-level k-splitting and depth-
limiting. DPLL was run with a depth of 1024 and threads 1-14 ten times. Speedups were then
averaged across each run for each thread count:

As you can see, our k-splitting implementation is close to achieving theoretical maximum speedup
assuming 95% of the work can be parallelized. The tapering may be due to nonoptimal synchro-
nization, workload balancing, and/or data granularity. Out of the three, data granularity may be
the most likely culprit, since parameters k and depth were not tuned.

16

Here are speedup results on UUF150.645.100/uf150-01.cnf with top-level k-splitting and depth-
limiting. DPLL was run with a depth of 1024 and threads 1-14 ten times. Speedups were then
averaged across each run for each thread count:

As you can see, our k-splitting implementation is close to achieving theoretical maximum speedup
assuming 95% of the work can be parallelized, although slightly worse compared to UF150.645.100/
uf150-01.cnf. The tapering may be due to nonoptimal synchronization, workload balancing,
and/or data granularity. Out of the three, workload balancing and data granularity may be the
most culpable, since parameters k and depth were not tuned and, assuming similar structure, this
unsatisfiable instance would require exhaustive search over a similar search space compared to the
satisfiable instance, exposing our implementation’s deficiencies even more.

17

5 Conclusion

5.1 Takeaways

Using Strategies appears to be the way to go when parallelizing an algorithm in Haskell. Gener-
ally, NP-complete problems are well suited. In our case, it was able to be applied to a wide range
of CNF-SAT problems with decent speedup. However, we found that parallelizing branching is
nontrivial. The optimal depth at which parallel branching should be limited must balance under-
and over-sparking. Optimizing the underlying sequential implementation of DPLL was also crucial
to making improvements in speedup.

5.2 Future Sequential Implementation Work

Implementing branching heuristics is one obvious way we could improve our sequential implemen-
tation. Currently, we branch on the first unassigned variable. Other heuristics include greedy
algorithms – like selecting the most frequently occurring variable, Bohm’s Heuristic, Maximum
Occurrences on Minimum sized clauses (MOM), and Jeroslow-Wang’s Heuristic – as well as oth-
ers like Dynamic Largest Combined Sum (DLCS) and Variable State Independent Decaying Sum
(VSIDS) which take a more balanced approach. And, as mentioned in Section 2.3, underlying data
structures could be optimized as well.

Perhaps even more critical would be the incorporation of conflict driven clause learning. When
attempting to backtrack, instead of moving up a single decision level, CDCL-DPLL would perform
a defined conflict analysis procedure, (1) deriving a learned clause that prevents the same conflict
from occurring in the future and (2) enabling a non-chronological “backjump” to the earliest decision
level (not necessarily the most recent) where the conflict could have been avoided. Reducing both
the size of the search tree and the time spent backtracking would outweigh additional memory
overhead, which could be subsequently mitigated with clause deletion strategies.

5.3 Future Parallel Implementation Work

As mentioned in Section 3.3, further parallel implementation work would involve properly tuning
and optimizing k-splitting on a per-level basis. However, other general strategies of this type
might be explored. As k-splitting divides the search space into disjoint subspaces to be explored in
parallel, more advanced heuristics which determine the split could be implemented, like scattering
functions, XOR constraints, or most notably, guiding paths [5]. Guiding paths would require the
addition of Boolean flags, indicating whether both true/false assignments of a given variable have
been tried, to the existing data structure that tracks assignments.

The critical weakness of guiding paths is that they cannot predict the hardness of the gener-
ated subspaces, which then requires dynamic load balancing (as already suggested in Section 4).
Commonly, this would be done via dynamic work stealing. As found via our third parallel imple-
mentation and by the weakness of guiding paths, the effectiveness of search space splitting relies
on effective selection and application of splitting heuristics, as well as load balancing. But what
about non-randomly generated input instances? Input instances from the real world often have
huge numbers of variables with often highly imbalanced search spaces. Formula decomposition,
portfolio, or hierarchical collaboration external parallelization strategies might be tried next. Even

18

more ambitious would be to employ an internal parallelization strategy, taking a manager-worker
or task-queues approach to distribute work among threads, or to employ a hybrid external-internal
strategy [6].

19

6 Code Listing

6.1 app/Main.hs

module Main (main) where

import System.Exit(die)

import System.Environment(getArgs, getProgName)

import DIMACSParser

import Lib(constructTree, satisfyParDPLL)

import qualified Data.Vector as V

main :: IO ()

main = do

args <- getArgs

case args of

[filename] -> do

content <- readFile filename

case parseDIMACS content of

Left err -> die $ "Error parsing DIMACS input file: " ++ err

Right (numVars, clauses) -> do

let cnf = constructTree clauses

let initialAssignment = V.replicate numVars Nothing

(dpllResult, assignment) = satisfyParDPLL 40 cnf initialAssignment

putStrLn $ "DPLL Solver result: "

++ if dpllResult then "SAT: " ++ (show assignment) else "UNSAT"

_ -> do

progName <- getProgName

die $ "Usage: " ++ progName ++ " <filename>"

20

6.2 src/DIMACSParser.hs

module DIMACSParser (parseDIMACS) where

import Lib(Clauses(..), Literal(..))

import qualified Data.List as L

import Data.Char (isDigit)

-- Parse given DIMACS input file into `(numVars, [Clause])`

parseDIMACS :: String -> Either String (Int, [Clauses])

parseDIMACS content = do

let (_, remainingLines) = span (L.isPrefixOf "c") (lines content)

case remainingLines of

(problemLine:clauseLines) -> do

(numVars, numClauses) <- parseProblemLine problemLine

clauses <- parseClauses numVars numClauses clauseLines

return (numVars, clauses)

_ -> Left "Error: missing problem line and clauses"

-- Parse expected problem line

parseProblemLine :: String -> Either String (Int, Int)

parseProblemLine line =

case words line of

["p", "cnf", vars, clauses] | all (all isDigit) [vars, clauses] ->

Right (read vars, read clauses)

_ -> Left "Error: invalid or missing problem line"

-- Parse and validate clause lines

parseClauses :: Int -> Int -> [String] -> Either String [Clauses]

parseClauses numVars numClauses clauseLines

| length clauseLines /= numClauses = Left $ "Error: expected "

++ show numClauses

++ " clauses, found "

++ show (length clauseLines)

| otherwise = mapM (parseClause numVars) clauseLines

-- Parse a single clause

parseClause :: Int -> String -> Either String Clauses

parseClause numVars line = do

let literalStrings = init $ words line -- Drop trailing '0'

literals <- mapM parseLiteral literalStrings

return $ Clause literals

where

-- Parse a single literal within a clause

parseLiteral :: String -> Either String Literal

parseLiteral lString

21

| head lString == '-' && (all isDigit) (tail lString) =

validateBounds ((read (tail lString) :: Int)) LiteralNeg

| (all isDigit) lString =

validateBounds ((read lString :: Int)) LiteralPos

| otherwise =

Left $ "Error: invalid literal " ++ lString

-- Ensure a clause doesn't contain more variables than declared in problem line

validateBounds :: Int -> (Int -> Literal) -> Either String Literal

validateBounds lInt constructor

| lInt < 1 || lInt > numVars = Left $ "Error: invalid literal "

++ show lInt ++ " for "

++ show numVars ++ " variables"

| otherwise = Right $ constructor (lInt-1)

22

6.3 src/Lib.hs

module Lib

(ExpressionTree(..)

, Clauses(..)

, Literal(..)

, parDpll

, satisfyParDPLL

, constructTree

) where

import qualified Data.Vector as V

import Control.Parallel.Strategies(Strategy, using, rpar)

import Control.DeepSeq(NFData)

-- Data Types: CNF Representation

data ExpressionTree = Expr [Clauses]

deriving (Show, Read, Eq)

data Clauses = Clause [Literal]

deriving (Show, Read, Eq)

data Literal = LiteralPos Int | LiteralNeg Int

deriving (Show, Read, Eq)

-- Helper function: construct CNF tree representation from clauses

constructTree :: [Clauses] -> ExpressionTree

constructTree clauses = Expr clauses

-- Helper functions

-- Check if formula is empty (contains no clauses) i.e. SAT with current assignment

isFormulaEmpty :: ExpressionTree -> Bool

isFormulaEmpty (Expr clauses) = null clauses

-- Check if formula contains an empty clauses i.e. UNSAT with current assignment

containsEmptyClause :: ExpressionTree -> Bool

containsEmptyClause (Expr clauses) = any (\(Clause lits) -> null lits) clauses

-- Apply a single variable assignment to the formula

applyAssignment :: ExpressionTree -> (Int, Bool) -> ExpressionTree

applyAssignment (Expr clauses) (var, val) =

Expr $ map (removeContradictions var val) $ filter (not . satisfiedBy var val) clauses

23

where

satisfiedBy v b (Clause lits) = any (literalMatches v b) lits

literalMatches v b (LiteralPos x) = x == v && b == True

literalMatches v b (LiteralNeg x) = x == v && b == False

removeContradictions v b (Clause lits) =

Clause (filter (\l -> not $ literalContradicts v b l) lits)

literalContradicts v b (LiteralPos x) = x == v && b == False

literalContradicts v b (LiteralNeg x) = x == v && b == True

-- Find a unit clause

findUnitClause :: ExpressionTree -> Maybe Literal

findUnitClause (Expr clauses) =

case [lits | Clause lits <- clauses, length lits == 1] of

((lit:_):_) -> Just lit

_ -> Nothing

-- Find a pure literal

findPureLiteral :: ExpressionTree -> Maybe (Int, Bool)

findPureLiteral (Expr clauses) =

let allLits = concatMap (\(Clause ls) -> ls) clauses

(posVars, negVars) = foldr countPolarity ([],[]) allLits

countPolarity (LiteralPos v) (ps,ns) = (v:ps, ns)

countPolarity (LiteralNeg v) (ps,ns) = (ps, v:ns)

uniquePos = filter (`notElem` negVars) posVars

uniqueNeg = filter (`notElem` posVars) negVars

in case uniquePos of

(v:_) -> Just (v,True)

[] -> case uniqueNeg of

(v:_) -> Just (v,False)

[] -> Nothing

-- Set a variable in the assignment vector

setAssignment :: V.Vector (Maybe Bool) -> Int -> Bool -> V.Vector (Maybe Bool)

setAssignment asg var val = asg V.// [(var, Just val)]

pairParStrat :: (NFData a) => Strategy [a]

pairParStrat [a,b] = do

a' <- rpar a

b' <- rpar b

return [a', b']

pairParStrat _ = undefined

satisfyParDPLL :: Int

-> ExpressionTree

24

-> V.Vector (Maybe Bool)

-> (Bool, V.Vector (Maybe Bool))

satisfyParDPLL = parDpll pairParStrat

specialOr :: [(Bool,V.Vector (Maybe Bool))] -> (Bool, V.Vector (Maybe Bool))

specialOr ((b,vec):bs) = if b then (True, vec) else specialOr bs

specialOr [] = (False,V.empty)

-- Parallel DPLL Solver

parDpll :: Strategy[(Bool, V.Vector (Maybe Bool))]

-> Int

-> ExpressionTree

-> V.Vector (Maybe Bool)

-> (Bool, V.Vector (Maybe Bool))

parDpll _ 0 formula assignment = dpll formula assignment

parDpll strat d formula assignment

| isFormulaEmpty formula = (True, assignment) -- Base case: SAT

| containsEmptyClause formula = (False, V.empty) -- Base case: UNSAT

| Just unit <- findUnitClause formula = -- Unit Propagation

let (var, val) = case unit of

LiteralPos v -> (v, True)

LiteralNeg v -> (v, False)

newAsg =

setAssignment assignment var val

newFormula =

applyAssignment formula (var, val) in parDpll strat d newFormula newAsg

| Just (v,b) <- findPureLiteral formula = -- Pure Literal Elimination

let newAsg = setAssignment assignment v b

newFormula = applyAssignment formula (v, b) in parDpll strat d newFormula newAsg

| otherwise = case formula of -- Branch

Expr (Clause c:_) ->

let pickLiteral = head c -- Branching Heuristic: naive

varToAssign = case pickLiteral of

LiteralPos v -> v

LiteralNeg v -> v

tryTrueAsg = setAssignment assignment varToAssign True

tryTrueForm = applyAssignment formula (varToAssign, True)

tryFalseAsg = setAssignment assignment varToAssign False

tryFalseForm = applyAssignment formula (varToAssign, False)

satFalse = parDpll strat (d-1) tryFalseForm tryFalseAsg

satTrue = parDpll strat (d-1) tryTrueForm tryTrueAsg

in specialOr ([satTrue, satFalse] `using` strat)

Expr [] -> (False, V.empty)

25

-- Sequential DPLL Solver

dpll :: ExpressionTree -> V.Vector (Maybe Bool) -> (Bool, V.Vector (Maybe Bool))

dpll formula assignment

| isFormulaEmpty formula = (True, assignment) -- Base case: SAT

| containsEmptyClause formula = (False, V.empty) -- Base case: UNSAT

| Just unit <- findUnitClause formula = -- Unit Propagation

let (var, val) = case unit of

LiteralPos v -> (v, True)

LiteralNeg v -> (v, False)

newAsg = setAssignment assignment var val

newFormula = applyAssignment formula (var, val) in dpll newFormula newAsg

| Just (v,b) <- findPureLiteral formula = -- Pure Literal Elimination

let newAsg = setAssignment assignment v b

newFormula = applyAssignment formula (v, b) in dpll newFormula newAsg

| otherwise = case formula of -- Branch

Expr (Clause c:_) ->

let pickLiteral = head c -- Branching Heuristic: naive

varToAssign = case pickLiteral of

LiteralPos v -> v

LiteralNeg v -> v

tryTrueAsg = setAssignment assignment varToAssign True

tryTrueForm = applyAssignment formula (varToAssign, True)

(satTrue, trueAsgt) = dpll tryTrueForm tryTrueAsg

in if satTrue

then (True, trueAsgt)

else

let tryFalseAsg =

setAssignment assignment varToAssign False

tryFalseForm =

applyAssignment formula (varToAssign, False)

(satFalse, falseAsgt) =

dpll tryFalseForm tryFalseAsg in

if not satFalse then (False, V.empty)

else (True, falseAsgt)

Expr [] -> (False, V.empty)

26

References

[1] https://en.wikipedia.org/wiki/Boolean satisfiability problem

[2] https://en.wikipedia.org/wiki/DPLL algorithm

[3] https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

[4] https://cca.informatik.uni-freiburg.de/papers/BiereFallerFazekasFleuryFroleyksPollitt-
SAT-Competition-2024-solvers.pdf

[5] G. Chu, P.J. Stuckey, and A. Harwood. Pminisat - A parallelization of MiniSat 2.0. SAT race,
2008.

[6] S Li. Boolean Satisfiability: Parallelization and Exploration. UDSpace, 2015.

27

