
Haskell Parallel Chess
Engine

Nikolaus Holzer

Introduction

Minimax based chess engine

Bitboards

Parallelization

Live demo

Bitboards

- Each square corresponds to a bit in
a 64 bit word.

- We can easily map bits to squares
- Each piece can be shown as a 64

bit word

Bitboards

Bitboards

Minimax Algorithm with optimizations

- Each turn the maximizing and min
player switch roles and choose the
most optimal branch

- Assumes each player plays
optimally

- Space complexity 2^n

Minimax Algorithm with optimizations

Caching

- Avoid recomputing expensive
bitboard operations and
comparisons

- Significant speedup at higher
depths

Minimax Algorithm with optimizations

Pruning

- Avoid computing branches that we
know the algorithm will never reach
to save computational resources

- Has much more overhead than just
caching but it takes runtime down
even more aggressively

Parallelization

- Parallelize each top level minimax
operation

- Leaves enough single threaded
work, and breaks down the big
work into sizeable chunks to take
advantage of overhead

- Danger of exhausting system
memory (24gb M3)

Preliminary Results

Preliminary Results - potential issues

- Exhausting resources
- Timing may not be fully accurate

