
Generalized Tic Tac Toe 
Solver

Instructor: Prof Stephen A Edwards
Student Name: Milin Saini
Student UNI: mks2249

COMS W4995 003
Parallel Functional Programming
Fall 2024



Problem Definition

● Implement a generalized Tic Tac Toe solver

● Find the best moves for Tic Tac Toe in a N X N grid

● NP-complete problem

● Objective is to use parallelization to improve the performance over sequential implementation



Tic Tac Toe

Game Rules:

Board Configuration: The game is played on an N×N grid, where N ≥ 3.

Players: Two players take turns placing their respective symbols on empty cells.

Win Condition: A player wins by placing K consecutive symbols in a horizontal, vertical, or

diagonal line, where K ≤ N.

Draw Condition: If all cells are filled without any player achieving the win condition, the game

ends in a draw



Implementation

- Sequential Minimax Algorithm

* Depth-first game tree search

* Complete state space exploration

* No alpha-beta pruning initially, but added later



Implementation

Parallel Implementation

* Haskell's par/rdeepseq constructs

* Concurrent move evaluation

* Parallelized game tree exploration



Implementation

Performance Evaluation

*Added timing functions in the code for performance evaluation

*Built the project to enable profiling by Threadscope

Environment: GHC 6.9.9, Stack 3.1.1



Processor Specs

https://www.intel.com/content/www/us/en/products/sku/149088/intel-core-i58265u-processor-6m-cache-up-to-3-90-ghz/specifications.html

IntelBrand 

i5-8265UModel 

4Cores 

8Hardware Threads 



Code Structure



Code Structure

stack.yaml: Stack configuration file with necessary resolver and extra-deps.

package.yaml: Package configuration listing dependencies, executables, test suites, etc.

src/Main.hs: Entry point of the program, sets up benchmarking scenarios, runs sequential and parallel solvers.

src/Board.hs: Defines board types, players, moves, and related functions.

src/SolverSequential.hs: Implements the sequential minimax solver.

src/SolverParallel.hs: Implements the parallel minimax solver using Haskell’s parallel strategies.

test/Spec.hs: Basic test cases for correctness on small boards.

src/Benchmark.hs: Code for running timing tests and reporting performance metrics.



Results - Execution times (3x3 Grid)
Parallel (ms)Sequential(ms)

3140.63156.25

1500.0031.25

2187.5093.75

1671.8878.13

3562.50125.00

6906.2593.75

7421.8893.75

4562.50109.38



Results – Speed up (3x3 Grid)







Results - Execution Time

- 4x4, 5x5 variants computations in the orders of trillions and more (16! moves)
- Current implementation with just minimax would take several days
- Optimized with Alpha Beta pruning
- But CPU parallel runtime still estimated to be 2-3 days
- Presenting challenge in profiling higher grid size
- Proceed with 3x3 grid for now



Challenges and Areas of Improvement 

Scope of improving Parallel Solver performance

- Remove excessive Parallelization In SolverParallel.hs
- First level in bestMoveParallel with parList
- Again in maximizeAB and minimizeAB with nested parList calls
- Evaluation on small grid size
- Overheads in parallelization outweigh the processing gain in small grid size



Thank you



References

- https://wiki.haskell.org/index.php?title=ThreadScope_Tour

- https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning

- https://en.wikipedia.org/wiki/Minimax

- https://www.haskell.org/ghcup/

- https://hackage.haskell.org/


