Statistical Methods for NLP

Text Categorization, Support Vector
Machines

Sameer Maskey

Announcement

- Reading Assignments
- Will be posted online tonight
- Homework 1
\square Assigned and available from the course website
- Due in 2 Weeks (Feb 16, 4pm)
- 2 programming assignments

Project Proposals

- Reminder to think about projects
- Proposals due in 3 weeks (Feb 23)

Topics for Today

- Naïve Bayes Classifier for Text
- Smoothing
- Support Vector Machines
- Paper review session

Naïve Bayes Classifier for Text

$$
P\left(y_{k}, X_{1}, X_{2}, \ldots, X_{N}\right)=P\left(y_{k}\right) \Pi_{i} P\left(X_{i} \mid y_{k}\right)
$$

Conditional Probability of feature given the Class
Here N is the number of words, not to confuse with the total vocabulary size

Naïve Bayes Classifier for Text

$$
\begin{aligned}
P\left(y=y_{k} \mid X_{1}, X_{2}, \ldots, X_{N}\right) & =\frac{P\left(y=y_{k}\right) P\left(X_{1}, X_{2}, ., X_{N} \mid y=y_{k}\right)}{\sum_{j} P\left(y=y_{j}\right) P\left(X_{1}, X_{2}, . ., X_{N} \mid y=y_{j}\right)} \\
& =\frac{P\left(y=y_{k}\right) \Pi_{i} P\left(X_{i} \mid y=y_{k}\right)}{\sum_{j} P\left(y=y_{j}\right) \Pi_{i} P\left(X_{i} \mid y=y_{j}\right)}
\end{aligned}
$$

$$
y \leftarrow \operatorname{argmax}_{y_{k}} P\left(y=y_{k}\right) \Pi_{i} P\left(X_{i} \mid y=y_{k}\right)
$$

Naïve Bayes Classifier for Text

- Given the training data what are the parameters to be estimated?

$$
P(y) \quad P\left(X \mid y_{1}\right) \quad P\left(X \mid y_{2}\right)
$$

Diabetes: 0.8
Hepatitis : 0.2

the: 0.001
diabetic $: 0.02$
blood $: 0.0015$
sugar $: 0.02$
weight $: 0.018$
\ldots

$$
\begin{aligned}
& \text { the: } 0.001 \\
& \text { diabetic }: 0.0001 \\
& \text { water : } 0.0118 \\
& \text { fever : } 0.01 \\
& \text { weight : } 0.008
\end{aligned}
$$

$$
y \leftarrow \operatorname{argmax}_{y_{k}} P\left(y=y_{k}\right) \Pi_{i} P\left(X_{i} \mid y=y_{k}\right)
$$

Estimating Parameters

- Maximum Likelihood Estimates
- Relative Frequency Counts
- For a new document
- Find which one gives higher posterior probability
- Log ratio
- Thresholding
- Classify accordingly

Smoothing

- MLE for Naïve Bayes (relative frequency counts) may not generalize well
- Zero counts
- Smoothing
- With less evidence, believe in prior more
- With more evidence, believe in data more

Laplace Smoothing

- Assume we have one more count for each element
- Zero counts become 1

$$
P_{\text {smooth }}(w)=\frac{c_{w}+1}{\sum_{w}\{c(w)+1\}}
$$

$$
P_{\text {smooth }}(w)=\frac{c_{w}+1}{N+Y}
$$

Back to Discriminative Classification

$$
f(x)=\mathbf{w}^{T} x+b
$$

Linear Classification

- If we have linearly separable data we can find w such that

$$
y_{i}\left(\mathbf{w}^{T} x_{i}+b\right)>0 \forall i
$$

Margin

- Let us have hyperplanes such that

Maximizing Margin

- Distance between H and $\mathrm{H}+$ is $\frac{1}{\|w\|}$
- Distance between $\mathrm{H}+$ and H - is $\frac{2}{\|w\|}$
- In order to maximize the margin need to minimize the denominator $\quad \frac{1}{2}\|w\|^{2}$

Maximizing Margin with Constraints

- We can combine the two inequalities to get

$$
y_{i}\left(\mathbf{w}^{T} x_{i}+b\right)-1 \geq 0 \forall i
$$

- Problem formulation
- Minimize $\frac{\|w\|^{2}}{2}$
- Subject to $y_{i}\left(\mathbf{w}^{T} x_{i}+b\right)-1 \geq 0 \forall i$

Solving with Lagrange Multipliers

- Solve by introducing Lagrange Multipliers for the constraints
- Minimize
$J(\mathbf{w}, b, \alpha)=\frac{\|w\|^{2}}{2}-\sum_{i=1}^{n} \alpha_{i}\left\{y_{i}\left(\mathbf{w}^{T} x_{i}+b\right)-1\right\}$
For given α_{i}

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{w}} J(\mathbf{w}, b, \alpha) & =\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \\
\frac{\partial}{\partial b} J(\mathbf{w}, b, \alpha) & =-\sum_{i=1}^{n} \alpha_{i} y_{i}
\end{aligned}
$$

Dual Problem

- Solve dual problem instead
- Maximize

$$
J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} . x_{j}\right)
$$

- subject to constraints of

$$
\begin{aligned}
& \alpha_{i} \geq 0 \forall i \\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

Quadratic Programming Problem

- Minimize $f(x)$ such that $g(x)=k$
- Where $f(x)$ is quadratic and $g(x)$ are linear constraints
- Constrained optimization problem
- Saw the example before

SVM Solution

$$
\hat{\mathbf{w}}=\sum_{i=1}^{n} \hat{\alpha_{i}} y_{i} x_{i}
$$

- Linear combination of weighted training example
- Sparse Solution, why?
- Weights zero for non-support vectors

$$
\sum_{i \in S V} \widehat{\alpha_{i}} y_{i}\left(x_{i} \cdot x\right)+\widehat{b}
$$

Sequential Minimal Optimization (SMO)

Algorithm

- The weights are just linear combinations of training vectors weighted with alphas
- We still have not answered how do we get alphas
- Coordinate ascent

```
Do until converged
    select pair of alpha(i) and alpha(j)
    reoptimize W(alpha) with respect to alpha(i) and alpha(j)
    holding all other alphas constant
done
```


Not Linearly Separable

Transformation

Transformation $\mathrm{h}(\mathrm{O})=0$

Non Linear SVMs

- Map data to a higher dimension where linear separation is possible
- We can get a longer feature vector by adding dimensions

Kernels

$$
\begin{aligned}
& \text { Given feature mapping } \phi(x) \text { define } \\
& K(x, z)=\phi(x)^{T} \phi(z) \\
& \phi(x)^{T} \phi(z) \\
= & x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2}+2 x_{1} z_{1}+2 x_{2} z_{2}+1 \\
= & (x . z+1)^{2}
\end{aligned}
$$

May not need to explicitly transform

Example of Kernel Functions

$$
\begin{array}{ll}
K(x, z)=x \cdot z & \text { Linear Kernel } \\
K(x, z)=(x \cdot z+1)^{p} & \text { Polynomial Kernel } \\
K(x, z)=\exp \left(-\frac{\|x-z\|^{2}}{2 \sigma^{2}}\right) & \text { Gaussian Kernel }
\end{array}
$$

Non-separable case

- Some data sets may not be linearly separable
- Introduce slack variable
- Also helps regularization
- Less sensitive to outliers
- Minimize $\frac{\|w\|^{2}}{2}+C \sum_{i=1}^{n} \xi_{i}$
- Subject to

$$
\begin{aligned}
& y_{i}\left(\mathbf{w}^{T} x_{i}+b\right) \geq 1-\xi_{i} \forall i \\
& \xi_{i} \geq 0 \forall i
\end{aligned}
$$

Summary

- Linear Classification Methods
- Fisher's Linear Discriminant
- Perceptron
- Support Vector Machines

References

- Tutorials on www.svms.org/tutorial

