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Announcement

� Reading Assignments

� Will be posted online tonight

� Homework 1 

� Assigned and available from the course website

� Due in 2 Weeks (Feb 16, 4pm)

� 2 programming assignments



Project Proposals

� Reminder to think about projects

� Proposals due in 3 weeks (Feb 23)



Topics for Today

� Naïve Bayes Classifier for Text

� Smoothing

� Support Vector Machines

� Paper review session



Naïve Bayes Classifier for Text

Prior Probability 

of the Class

Conditional Probability 

of feature given the 

Class

Here N is the number of words, not to 

confuse with the total vocabulary size

P (yk,X1,X2, ..., XN ) = P (yk)ΠiP (Xi|yk)



Naïve Bayes Classifier for Text

P (y = yk|X1,X2, ..., XN ) = P (y =yk)P (X1,X2,..,XN |y =yk)∑
j
P (y =yj )P (X1,X2,..,XN |y =yj)

= P (y =yk)ΠiP (Xi|y =yk)∑
j
P (y =yj)ΠiP (Xi|y =yj)

y ← argmaxykP (y = yk)ΠiP (Xi|y = yk)



Naïve Bayes Classifier for Text

� Given the training data what are the 

parameters to be estimated?

P (X|y2)P (X|y1)P (y )

Diabetes : 0.8

Hepatitis : 0.2

the: 0.001

diabetic : 0.02

blood : 0.0015

sugar : 0.02

weight : 0.018

…

the: 0.001

diabetic : 0.0001

water : 0.0118

fever : 0.01

weight : 0.008

…

y ← argmaxykP (y = yk)ΠiP (Xi|y = yk)



Estimating Parameters

� Maximum Likelihood Estimates

� Relative Frequency Counts

� For a new document

� Find which one gives higher posterior probability

� Log ratio

� Thresholding

� Classify accordingly



Smoothing

� MLE for Naïve Bayes (relative frequency 

counts) may not generalize well

� Zero counts

� Smoothing

� With less evidence, believe in prior more

� With more evidence, believe in data more



Laplace Smoothing

� Assume we have one more count for each 

element

� Zero counts become 1

Psmooth(w) =
cw+1∑

w
{c(w)+1}

Psmooth(w) =
cw+1
N+V

Vocab Size



Back to Discriminative Classification

w
b

f(x) = wTx+ b



Linear Classification

� If we have linearly separable data we can find 

w such that

yi(w
Txi + b) > 0 ∀i



Margin

� Let us have hyperplanes such that

d+

d-

Total margin is sum of d+ and d-

w
Txi + b ≥ +1 if yi = +1

w
Txi + b ≤ −1 if yi = −1

yi(w
Txi + b)− 1 ≥ 0 ∀i



Maximizing Margin

� Distance between H and H+ is

� Distance between H+ and H- is

� In order to maximize the margin need to minimize 

the denominator

2
‖w‖

1
‖w‖

1
2‖w‖2



Maximizing Margin with Constraints

� We can combine the two inequalities to get

� Problem formulation

� Minimize

� Subject to 

‖w‖2

2

yi(w
Txi + b)− 1 ≥ 0 ∀i

yi(w
Txi + b)− 1 ≥ 0 ∀i



Solving with Lagrange Multipliers

� Solve by introducing Lagrange Multipliers for 

the constraints

� Minimize

∂
∂w
J(w, b, α) = w−∑n

i=1 αiyixi

∂
∂b
J(w, b, α) = −∑n

i=1 αiyi

For given αi

J(w, b, α) = ‖w‖2

2 −∑n

i=1 αi{yi(wTxi + b)− 1}



� Solve dual problem instead

� Maximize

� subject to constraints of 

Dual Problem

J(α) =
∑n

i=1 αi − 1
2

∑n

i,j=1 αiαjyiyj(xi.xj)

αi ≥ 0 ∀i
∑n

i=1 αiyi = 0



Quadratic Programming Problem

� Minimize f(x) such that g(x) = k 

� Where f(x) is quadratic and g(x) are linear constraints

� Constrained optimization problem

� Saw the example before



SVM Solution

� Linear combination of weighted training example

� Sparse Solution, why?

� Weights zero for non-support vectors

∑
i∈SV α̂iyi(xi.x) + b̂

ŵ=
∑n
i=1 α̂iyixi



Sequential Minimal Optimization (SMO) 

Algorithm

� The weights are just linear combinations of training 

vectors weighted with alphas

� We still have not answered how do we get alphas

� Coordinate ascent

Do until converged

select pair of alpha(i) and alpha(j)

reoptimize W(alpha) with respect to alpha(i) and alpha(j)

holding all other alphas constant

done



Not Linearly Separable



Transformation

Transformation h(    )  = 



Non Linear SVMs

� Map data to a higher dimension where linear 

separation is possible

� We can get a longer feature vector by adding 

dimensions

x→ (x2, x)

φ(x) = (x21, x
2
2,
√
2x1x2,

√
2x1,

√
2x2, 1)



Kernels

Given feature mapping φ(x) define
K(x, z) = φ(x)Tφ(z)

φ(x)Tφ(z)

= x21z
2
1 + x

2
2z
2
2 + 2x1x2z1z2 + 2x1z1 + 2x2z2 + 1

May not need to 

explicitly transform

= (x.z + 1)2



Example of Kernel Functions

K(x, z) = x.z

K(x, z) = (x.z + 1)p

K(x, z) = exp(−‖x−z‖2

2σ2 )

Linear Kernel

Polynomial Kernel

Gaussian Kernel



Non-separable case

� Some data sets may not be linearly separable

� Introduce slack variable

� Also helps regularization

� Less sensitive to outliers

� Minimize

� Subject to 

‖w‖2

2
+ C

∑n

i=1 ξi

yi(w
Txi + b) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i



Summary
CLASS1

Features X PREDICT

CLASS2

� Linear Classification Methods

� Fisher’s Linear Discriminant

� Perceptron

� Support Vector Machines



References

� Tutorials on www.svms.org/tutorial


