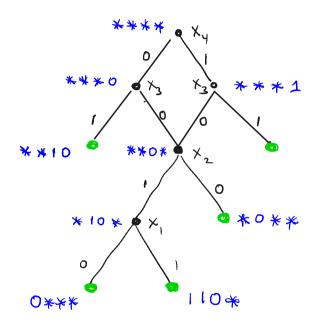
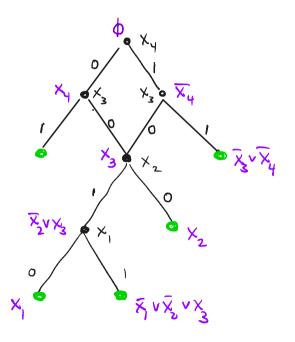
Last time ne saw

- RES IS SOUND + COMPLETE
- tree-RES ~ Decisión tree refutation for solving search TI for f
- (DAg)-RES ~ Prover/Delayer DAgs (or RES-DAgs)
 refutation for solving securch
 The for f

$$f = \chi \wedge \chi_2 \wedge (\bar{\chi}_2 \vee \chi_3) \wedge (\bar{\chi}_3 \vee \chi_4) \wedge (\bar{\chi}_3 \vee \bar{\chi}_4)$$





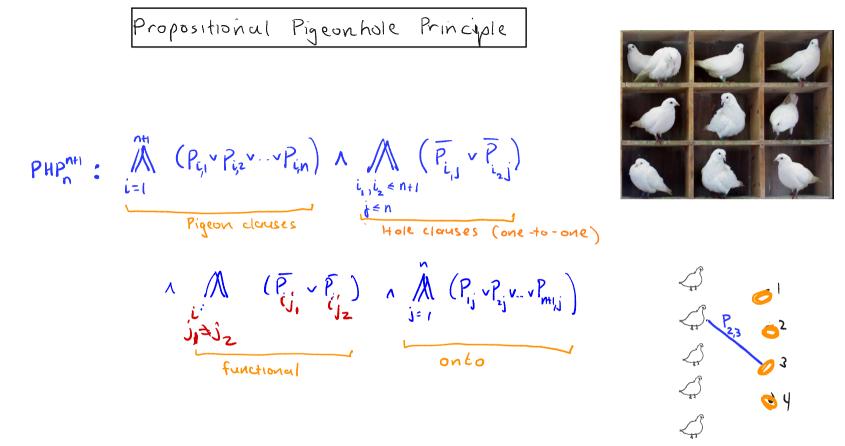
Res Refutation

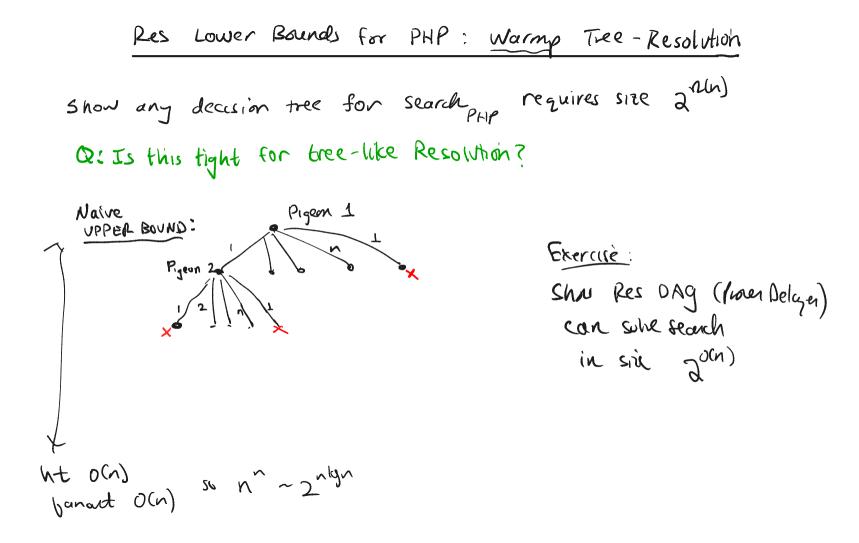
Today:

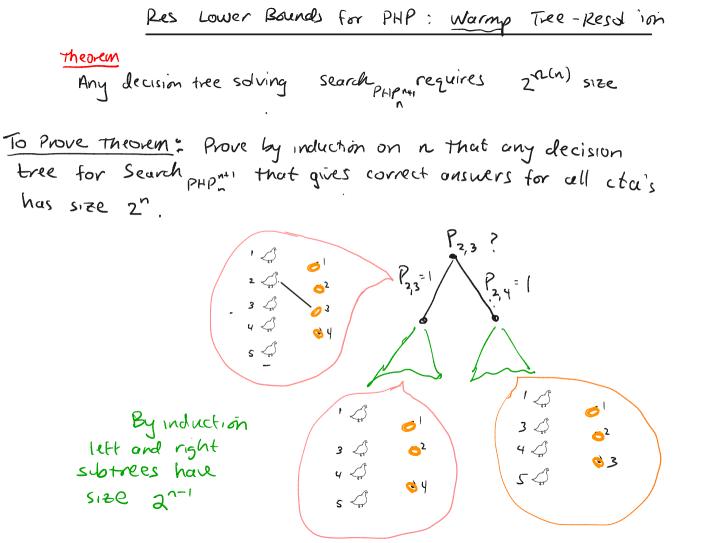
() Resolution Lower Bounds

2 Freqe systems

Resolution Lower Bounds via Width







:

First we will transform RES refutations of PHP into a nice combinatorial form.



Lemma Any size-s RES refutation of PHPm can be transformed into a monotone refutation of size O(s), and vice-versa

Monotone Transformation of PHP

+ + + + pick a hole (row) +Monotone + + + + Rule: A C B Convert each clause to monotone clause (2) Show any RES step in TT can be simulated by monotone rules in TT monotone Example. an 1 an 1 + 3 + + L + + + + + + + + + ++++++ + + + + + \Rightarrow + t +

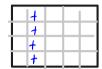
. Suffices to prove LB for monotone refutations

subreetangles on hales 1 .- 1-2

2. Remove have not: generate all (n-2)×2

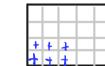
٠

1

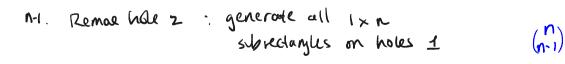


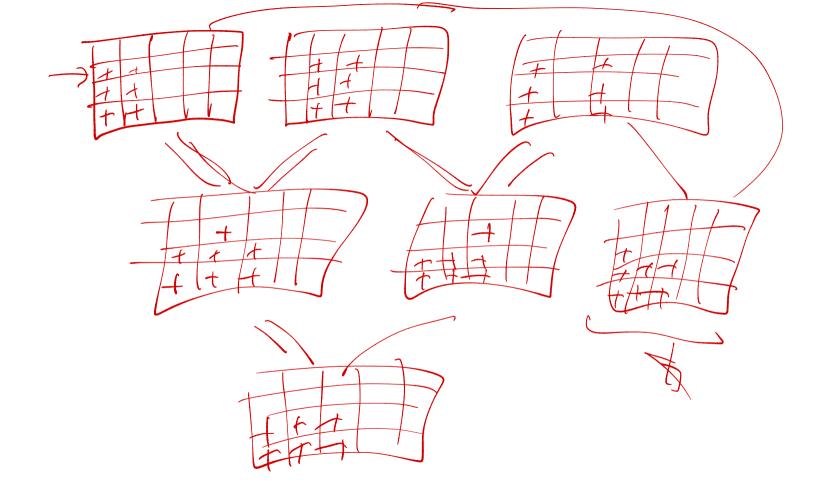
(<mark>1</mark> ()

Cloub



. .

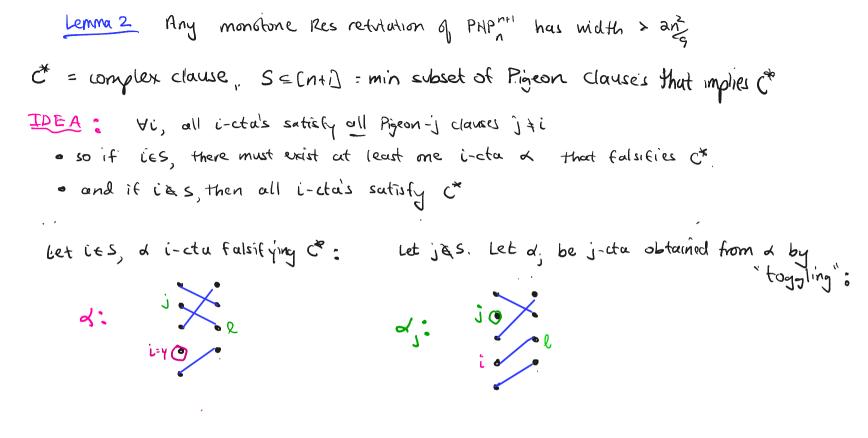


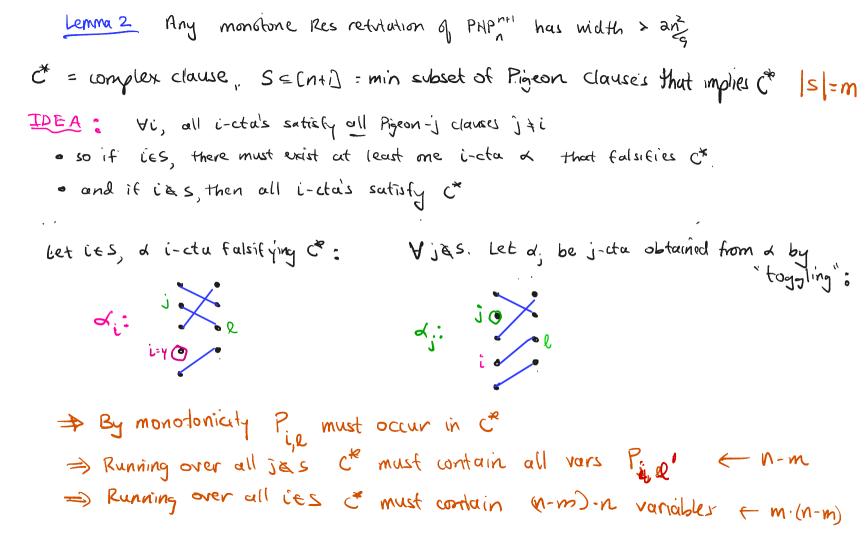


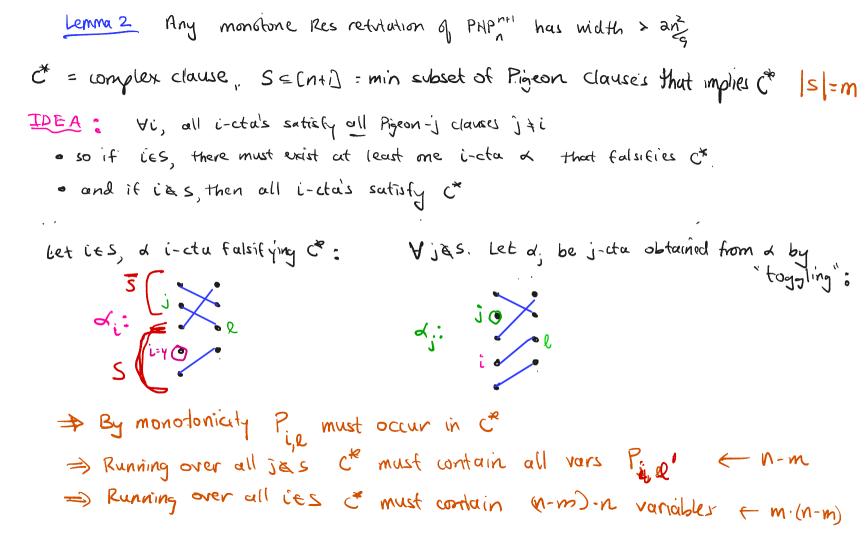
PHP LOWER BOUND FOR MONOTONE REFUTATIONS

Lemma 2 (wide clause Lemma for PHP)
Any monotione Res returbation of PHPⁿ⁺¹ has width > and
Pf Let the complexity of a (monotione) clause C be the
minimum number of clauses in PHPⁿ⁺¹ that implies C on all cta's
Complexity (pigeon-clause) = 1
Complexity (final empty clause) = n+1
By saindness, 'if C₁, C₂
$$\rightarrow$$
 C₃ then
Complexity (C₃) \leq complexity (C₁) + complexity (C₃)

 $\therefore \exists c^* \text{ in } \mathcal{V}(\pi) \text{ such that } \frac{n}{3} \leq \text{ complexity } (c^*) \leq \frac{2n}{3}$ we will show: width $(c^*) \neq \frac{2n^2}{9}$





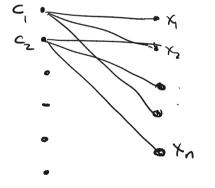


Resolution Lower Bounds

Theorem [BWOI] Let F be UNSat KONF on n Vars. Then
I. Tree-Res-Size(F) = Res-width(F)-K
2. Res-Size(F) =
$$n(\text{Res-width}(F)-K)^2/n$$
Qives exponential
Lower Bounds for many
UNSAT formulas
Simply by expansion

Resolution Lower Bounds for random KSAT

<u>Theorem</u> [BW01] Let F be UNSat KONF on n Vars. Then I. Tree-Res-Size(F) = $R^{\text{Res-WidH}(F) - K}$ 2. Res-Size(F) = $n(\text{Res-WidH}(F) - K)^2/n$

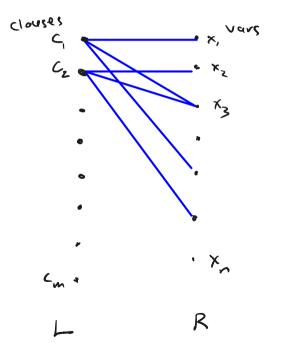


Vnlogs

2. Ben-sassan, Wigderson: Small size => small width

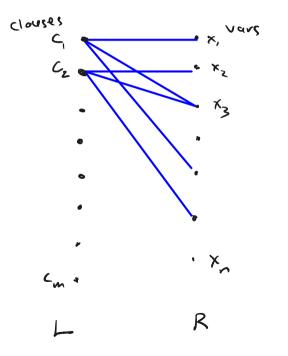
5

Proving Lower Bounds from Expansion Let $F = C_1 - C_2 - C_m$ Clause-Variable graph g_F : T = V S = L, |S| = En, $|N(S)| \ge 5 \cdot |S|$



Defn
$$g_{F}$$
 has (ε, s) -boundary expansion
if $\forall s \in L$, $|s| \in \varepsilon n$,
 $| \#unique \ nbrs in \ N(s) (\ge s \cdot |s|$

Proving Lower Bounds from Expansion Let F=C, n C, n cm Clause-Variable graph g_F: TFVSEL, ISIEEN, IN(S)= 5.151



Defn
$$g_{F}$$
 has (ε, s) - boundary expansion
if $\forall s \in L$, $|s| \in \varepsilon_{n}$
 $| \#unique Nbrs in N(s) | \ge 5.|s|$

Claim Let G have degree d, expansion e
then
$$b = boundary expansion \ge ae-d$$

 $e \cdot |s| \le b \cdot |s| + d |s(-b) s|$
 $b \ge ae-d$

Proving Lower Bounds from Expansion Let F= C, ~ C, ~ Cm Clause-Voriable graph 9 : clouses Vars • X3 · ×, Cm =

Claim let $\sigma \epsilon \epsilon_1$ IF g_F has $(\epsilon, O(1))$ - boundary expansion, then RES-WIDTH(F) = $\Lambda(n)$

Pf Let & be first clause in refutations derived from = $\frac{n}{8}$ initial clauses. is C' derived from s & " Let SE[m], resister be clauser minimally implying Ct All boundary var of EG (ies) must occur in c* · By boundary expansion, undth (6)= A(n)

Resolution	Lower	Bounds
------------	-------	--------

Methods

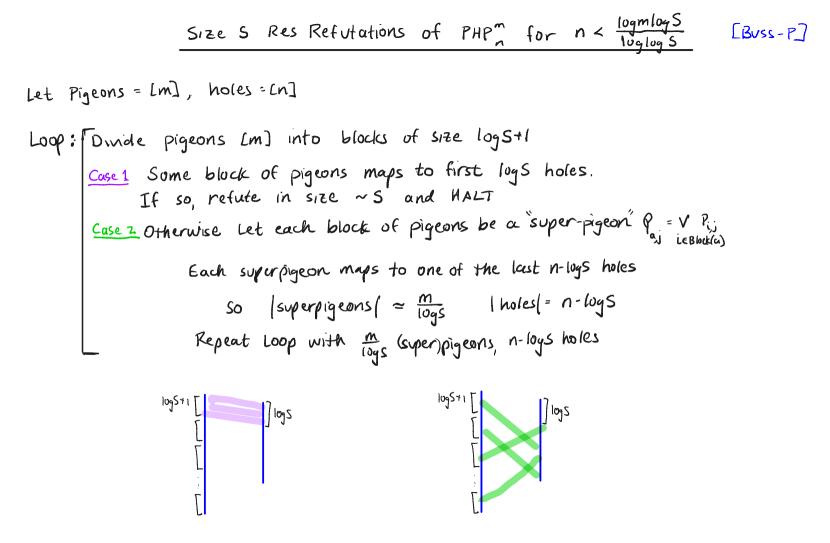
RES UPPER BOUNDS FOR PHP

0.
$$PAP_{n}^{M1}$$
: tree-like Res; $2^{\Theta(n^2)}$
Res: $2^{\Theta(n)}$

1. The previous Lower bound still gives similar Lower bound for the weak PHP, PHPm, m=n²

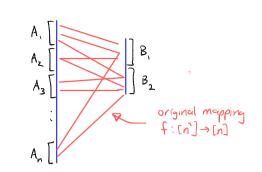
2. (Buss-P) show polysize Res refutations of PHPM, m~2^{fn} [Raz] proves Near matching Res cower bound

Extra Slides (Not Covered)



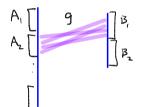
$$Size S Res Refutations of PHP_n^m for n < \frac{\log m \log S}{\log \log S}$$
Let Pigeons = Lm], holes : (n]
$$Loop: \begin{bmatrix} D_{1vide} & pigeons Lm] & into blocks of size logS+1 \\ Cose 1 & Some block of pigeons maps to first logS holes. If so, refute in size ~ S and HALT
$$Case 2 & Otherwise Let each block of pigeons be a "super-pigeon" P_{ij} = V P_{ij} \\ Case 2 & Otherwise Let each block of pigeons be a "super-pigeon" P_{ij} isoBodius)
Each superpigeon maps to one of the last n-logS holes
So [superpigeons] = $\frac{m}{\log S}$ [holes] = n-logS
Repeat Loop with $\frac{m}{\log S}$ (super)pigeons, n-logS holes
$$\frac{m}{(\log S+1)^{\frac{m}{\log S}}} \simeq \frac{\log m}{(\log s)^{\frac{m}{\log S}}} = \frac{\log m}{\log m} \frac{\log m}{\log S + \log m} = \log m \log S \\ \log m \log m \log m = \log m \log M = 0 \\ \log m \log S + \log m = 1 \\ \log m \log m \log S + \log m = \log m \log S \\ \log m \log S = \log m = 1 \\ \log m \log S + \log m = 1 \\ \log m \log m = \log M = 2 \\ \log m \log S = \log m = 1 \\ \log m \log M = \log M = 2 \\ \log m \log M = \log M = 2 \\ \log m \log M = \log M = 2 \\ \log m \log M = \log M = 2 \\ \log m \log M = \log M = 2 \\ \log m \log M = \log M = 2 \\ \log m \log M = \log M = 2 \\ \log M = 2 \\$$$$$$

Quasi-poly Size Res(polylogn) Refutations of PHP^{n²} <u>Step 1</u> (Reduce range) Let A = [n²], B = [n] Partition A into n blocks A₁,..., A_n each size n Partition B into a blocks B₁, B₂ each size ⁿ/₂



Case 1: Some A, maps all pigeons in A, to B,
Then we have injective map
$$g: A: \rightarrow \frac{B_1}{2}$$

 $n = \frac{B_1}{2}$



<u>Case 2</u>: Vi some pigeon in A_i maps to B₂ Then we have an injective map g from [n] to B₂ [n] = "superpigeons" Superpigeon B_{ris} = V P_{i,gts} pigeons i in A_r

Quasi-poly Size Res(polylugn) Refutations of PHP^{n²}
Step 1 (Reduce range) Let
$$A = [n^2]$$
, $B = [n]$
Partition A into n blocks $A_1, ..., A_n$ each size n
Partition B into a blocks B_1, B_2 each size $\frac{4}{2}$
Case 1: Some A₁ maps all pigeons in A₁ to B₁: $g: A_1 \rightarrow B_1$
Case 2: $\forall i$ some pigeon in A₁ maps to B₂: $g: [n]$
Step 2 (Amplify priors $n \rightarrow n^2$)
Define $h: (n^2] \rightarrow [\frac{4}{2}]$ by : $h(i) = K$ iff $\exists j \in [n]$ set $f(i)=j$ and $g(j)=K$
(h is injective, assuming both fig are injective $f: (n^2] \rightarrow (n)$ to injective $h: (n^2] \rightarrow [\frac{4}{2}]$
Repeat Steps $\bigcirc + \bigcirc$ to obtain sequence of injective functions
 $f_1: (n^2] \rightarrow (\frac{4}{2}]$, $f_2: (n^2] \rightarrow [\frac{4}{2}]$, ..., $f_{ingn}: (n^2) \rightarrow [1]$

Quasi-poly Size Res(polylogn) Refutations of PHP^{n²}
Step 1 (Reduce range) Let
$$A = [n^{1}], B = Ln]$$

Partition A into n blocks $A_{1, \dots, n} A_{n}$ each size n
Partition B into a blocks $B_{1, B_{n}}$ each size n_{2}
Case 1: Some A_{1} maps all pigeons in A_{1} to B_{1} : $q: A_{n} \rightarrow B_{2}$
Case 2: Vi some Pigeon in A_{1} maps to B_{2} : $q: [n]$
Step 2 (Amplify pytons $n \rightarrow n^{2}$)
Define $h: [n^{2}] \rightarrow [n^{2}]$ by : $h(i) = K$ liff $\exists j \in [n]$ st. $f(i) = j$ and $g(j) = K$
(h is injective, assuming both f, g are injective)
Complekity of Refutation
* At each iteration, each "super-pig con" is a polylogn-width DNF, size quasipdy(n)
So pool starks with axioms PHPⁿ (f)
Step 1: Denice axioms PHPⁿ (h) (where vars $Q_{1,j} \in polyon-DNF$
Step 2: Denice axioms PHPⁿ (h) (where vars $Q_{1,j} \in polyon-DNF$