
CS 2429 - Propositional Proof Complexity Lecture #11: 28 November 2002

CS 2429 - Propositional Proof Complexity

Lecture #11: 28 November 2002

Lecturer: Toniann Pitassi

Scribe Notes by: Matei David

1 Lower bound for bounded-depth Frege proofs of PHP n+1
n

In this lecture we will continue the proof of the following theorem.

Theorem 1 Any bounded-depth Frege proof of PHPn+1
n requires exponential size.

We have seen in the previous lectures the definitions of matching restrictions, matching dis-
junctions, matching decision trees.

1.1 Overview

We will prove the theorem by contradiction. Assuming there is a short proof P of PHPn+1
n in

which all formulas have depth at most d, we will apply mathcing restrictions in order to turn the
formulas into matching decision trees. The assignment of matching decision trees to formulas is
a k-evaluation. We consider the formulas in P in order of increasing depth (recall that depth is
defined as the maximum number of alternations of quantifiers).

If S = ¬A is a formula in our proof, assume we have assigned a matching decision tree T (A)
to formula A. We assign it a decision tree T (S) by turning all leaf labels in T (A) from 0 to 1 and
from 1 to 0.

If S = A1 ∨ · · · ∨Ak is a disjunction in P, we construct T (S) by taking the OR path of 1 leaves
in all T (Ai), applying a nice restriction to that DNF formula, and building a canonical matching
decision tree for that formula. A switching Lemma will guarantee that nice restrictions exist.

The contradiction will come in the following manner.

1. Axioms of the Frege system will be turned into 1-trees (ie, trees which have only leaves
labelled by 1).

2. The rules of the Frege system preserve 1-trees.

3. However, any formula in PHPn+1
n is transformed into a 0-tree.

1



CS 2429 - Propositional Proof Complexity Lecture #11: 28 November 2002

1.2 Analogy

The assignment of trees to formulas creates an analogy with the proof that bounded-depth circuit
computing Parity requires super-polynomial size. However, the analogy is broken in the sense that
the trees in there compute the exact function, while the matching decision trees in the k-evaluations
used for the proof of Theorem 1 do not, not even on restrictions compatible with that tree. That
is, assuming ρ = ρ1 . . . ρk is a “good” restriction, compare f only on assignments which extend ρ
to T .

The tree is equivalent to the formula for only one level. However, when S = A1 ∨ · · ·Ak,
rewriting the matching decision trees as matching disjunctions will not preserve the equivalence.
Consider σ a partial matching. Even if there exists one path in all trees T (Ai) consistent with
σ, the trees might have nothing in common. Each one is querying only some pigeons and we are
trying to build something about all pigeons. Eg, in a tree which starts by quering P1,1 and σ sends
pigeon 2 to hole 5, there might be many paths consistent wth σ.
TONI: I didn’t quite get the argument above.

1.3 PHP n+1
n consists of 0-trees

PHP is the disjunction of the following formulas:

1. ¬(¬Pi,k ∨ ¬Pj,k),∀i 6= j ≤ n+ 1,∀k ≤ n

2. ¬(Pi,1 ∨ · · · ∨ Pi,n), ∀i ≤ n+ 1

Restrictions reduce PHP to fewer pigeons and holes. After the second block of ∨, the tree is
no longer equivalent to the formula.

Consider formulas of the first type. In order to show that T (¬(¬Pi,k ∨ ¬Pj,k)) is a 0-tree, it’s
enough to show that T (¬Pi,k ∨ ¬Pj,k) is a 1-tree. By definition

T (¬Pi,k ∨ ¬Pj,k) = T (Disj(T c(Pi,k)) ∨Disj(T c(Pj,k)))

T c(Pi,k) is a tree of size 2 which has 1’s for all assignments where i and k are mapped to
something, and only one 0 corresponding to mapping pigeon i to hole k [picture?].

The DNF Disj(T c(Pi,k)) ∨Disj(T c(Pj,k)) will contain all terms where i, j and k are mapped
to something, because, eg, mapping k to i is always a leaf labelled with 1 in T c(Pj,k). [picture?]

For formulas of the second kind, it is enough to show that T (Pi,1 ∨ · · · ∨ Pi, n) is a 1-tree. By
definition,

T (Pi,1 ∨ · · · ∨ Pi, n) = T (∨nj=1Disj(T (Pi,j)))

But each Disj(T (Pi,j)) contains only one term, namely Pi,j . Then the DNF is Pi,1 ∨ · · · ∨Pi, n
and its associated tree starts by querying pigeon i and will have all leaves labelled with 1 at one
level below root, as the formula is true no matter where this pigeon is mapped.

2



CS 2429 - Propositional Proof Complexity Lecture #11: 28 November 2002

1.4 All formulas in a bounded-depth Frege proofs get assigned 1-trees

This is Lemma 5.1 in the paper. The Frege system we are considering has axiom A∨¬A, and rules

A

A ∨B
,
A ∨A
A

,
A ∨ (B ∨ C)

(A ∨B) ∨ C
,
A ∨B,¬A ∨ C

B ∨ C
The proof is in the paper, using as parameter the maximum number of subformulas in each

rule.

Theorem 2 (Lemma 5.1) Let f be the maximum number of subformulas appearing in a rule
(this is a constant, 7?). Let P be a proof of PHPn+1

n , T a k-evaluation for all subformulas in P
and k < n/f , then any formula occuring as a line in P gets converted to a 1-tree.

The proof is by induction on the number of lines, if we start with axioms and keep applying
sound rules (as the ones above), all formulas convert to 1-trees.

After applying a restriction the number of variables we are left is n′ = nε. Since we might be
applying d restrictions (the bound on the depth of formulas), we want k << nε

d
.

TONI: Here you argued that the proof works for two of the rules, the axiom and A
A∨B but I didn’t

understand the argument for either.
TONI: Next you quickly considered how the parameters look like. What I have is very vague.

The entire argument also works for onto-PHP or func-PHP because they also convert to
0-trees.

3


