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Introduction

In this master thesis we provide a geometric construction of rational elliptic
surfaces of Mordell-Weil rank four. Most of the techniques we use are similar to
those in [ ] and | | for the construction of rational elliptic surfaces with
higher Mordell-Weil rank.

Elliptic Curves. Elliptic curves are an important object of study in algebraic
geometry, number theory, cryptography, as well as in many other scientific subjects.
In this thesis we always deal with elliptic curves defined over an algebraically closed
field k of characteristic 0 or over a function field over k with finite transcendence
degree over k. An elliptic curve is a pair (E,O), where F is a curve of genus 1 and
O is a point on E such that F has a group structure with O as the zero element.
The simplest way to think of an elliptic curve is in the Weierstrass form: we can
define an elliptic curve as the set of solutions in the projective plane over a given
field k of the equation

y? = 2%+ Az + B,
where A and B are two parameters in k such that 4 - A3 + 27 - B? # 0. In this
shape every elliptic curve has a group structure given by the geometric rule “three
collinear points add up to zero”, and the zero element is given by the point at
infinity.

Even if it is true that all the elliptic curves can be seen in this form, we will
not use this representation, since our approach needs a more general point of view
that fits some different requests.

Rational Elliptic Surfaces: one Object, two Points of View. We work
over an algebraically closed field k with characteristic zero.
An elliptic surface over k is an algebraic surface & over k, equipped with a flat
morphism 7 : & — B, where B is a projective curve and the following requirements
are satisfied:

e the morphism 7 is an elliptic fibration: 7=1(t) is a curve of genus 1, for
almost all ¢ € B(k);
e there is a zero section, that is a morphism o¢ : B — & such that moogg =
idpg.
Moreover, we suppose that there is at least a t € B(k) such that 7=1(¢) is singular.

Elliptic surfaces constitute an important class of algebraic surfaces, since they
can be seen as elliptic curves over a function field or as families of elliptic curves
over the ground field. This two folded description makes these objects interesting
and simpler to study.

We will deal just with a subclass of elliptic surfaces, focusing our attention on
the rational ones, i.e. elliptic surfaces that are birational to the projective plane.
This restriction implies that the curve B is the projective line. Thus, in terms of
the above description, a rational elliptic surface over k can be seen as an elliptic
surface over the function field k(t) = k(P!) or as a linear pencil of plane cubic
curves.
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From the former point of view we use the theory of elliptic curves over function
fields to describe the invariants of an elliptic surface; the latter gives a natural
geometric construction. Consider a smooth cubic F' and a different cubic G. The
map

7:P2 -5 P!

(@,y,2) — (F(2,y,2),G(,y,2))
is not well-defined at the intersection points of those curves, i.e. the base locus of
the linear pencil of cubics generated by F' and G. In order to obtain a morphism,
we blow-up the base points of the pencil. In this way we obtain a rational surface
endowed with a flat morphism such that each fiber is a genus 1 curve, i.e. a rational
elliptic surface.

Every possible rational elliptic surface is isomorphic to the blow-up of P? at
the base points of a linear pencil of cubics, as shown in [

This construction was already used in order to study ratlonal elliptic surfaces:
Shioda gave the construction of rational elliptic surfaces with rank eight in | I,
Fusi gave the construction of those with rank seven and six in | ] and Salgado
gave the construction of those with rank five in | ]. We use the same techniques
to construct rational elliptic surfaces with rank four. In order to determine which
pencils of cubics induce a rational elliptic surface with given rank, we use the
Shioda-Tate formula, which gives a criterion to determine the rank of an elliptic
surface by the number of components of the reducible fibers (these correspond to
the blow-up of singular cubics in the pencil).

Since the Néron-Severi rank is fixed (and equal to ten), the lower the rank the
wider the range of possible fiber types that can occur. In our case there are six
possible fiber-types for rational elliptic surfaces of rank four without torsion and
one for rational elliptic surfaces of rank four with torsion.

Our construction is case-by-case: we focus on a certain fiber type that leads
to a rational elliptic surface with rank four and we find a linear pencil of cubics
inducing that fiber type, via its singular members.

As in the papers that studied higher rank rational elliptic surfaces, we want to
go further with our construction; namely, we want to check whether the exceptional
curves over the base points of the pencil generate the Mordell-Weil group of the
induced surface. The tool to perform this action can be found in | ]: for
every rational elliptic surfaces, its Mordell-Weil group, modulo torsion, has a lattice
structure, together with a bilinear symmetric pairing (, ). For any set of independent
elements { Py, ..., P.} in the Mordell-Weil group of a rational elliptic surface of rank
r, we can build a symmetric matrix A whose elements are given by a; ; = (P;, P;).
The determinant of this matrix measures how the considered elements P, ..., P,
are far to generate the Mordell-Weil lattice: the determinant of A is equal to a?
times the determinant of the Mordell-Weil lattice, for some integer a. This integer
a is exactly the index of the sublattice generated by the considered elements if it
is different from zero (if @ = 0, the chosen elements are dependent). In this thesis
we always had @ = 1, that is, we were always able to generate the full Mordell-Weil
lattice. This implies that in all the non-torsion cases we were able to generate
the Mordell-Weil group; in the torsion case this is true again, since the exceptional
curves above the base points generate the Mordell-Weil lattice (which is a subgroup
of index 2 of the Mordell-Weil group) and they also generate the torsion component
of the Mordell-Weil group.



CHAPTER 1

Preliminaries

In this chapter we list a series of basic results needed for the construction of
rational elliptic surfaces.

1.1. Basic Background and Notation

Let k be an algebraically closed field of characteristic zero. A projective
algebraic set is a subset X of P™ such that there exists a set S of homogeneous
polynomials in n 4 1 variables giving the following equality:

X={zeP"| f(z)=0forall feS}

A projective algebraic set X is said to be irreducible if X cannot be written as the
disjoint union of two proper Zariski-closed subsets.

A projective variety is an irreducible algebraic subset of P", with the in-
duced topology. A quasi-projective variety is an open subset of a projective
variety. The dimension of a projective or quasi-projective variety is its dimension
as topological space.

We will mainly focus on varieties of dimension less than or equal to 2, that is:
points, curves and surfaces.

Let X C P™ be a projective variety. An irreducible algebraic subset of X with
the induced topology is called subvariety of X.

If : X — Y is a map, for every U C Y we will denote by »~1(U) the subset
of X consisting of the elements z € X such that p(z) € U. If U = {P}, we will
write p~1(P) instead of p~1({P}).

A map f: X --» k is regular at a point P € X if there is an open neighbor-
hood U of P in X and homogeneous polynomials g, h € k[zo,...,z,] of the same
degree, such that h does not vanish on U and f = g/h on U. We say that f is a
regular function if it is regular at all P € X.

Let X and Y be two varieties. Let ¢ : X — Y be a continuous function. We say
that ¢ is a morphism if for every open set V C Y and for every regular function
f:V — k, the function f o : o~ %(V) — k is regular.

Let ¢ : X — Y be a morphism. If there exists a morphism % : ¥ — X such
that ¥ o ¢ =idx and ¢ o9 = idy, we say that ¢ is an isomorphism.

1.2. Divisors

Let X be a projective variety of dimension n. An irreducible subvariety Y of
X of dimension n — 1 is called a prime divisor on X. The free abelian group
generated by prime divisors is called the divisor group of X. We will denote this
group by Div(X). An element D € Div(X) is called a divisor on X.

For every D € Div(X) one can write

DZZTLY}/,
Y

where the sum ranges over prime divisors and ny is an integer, which is equal to
zero for almost all Y.
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If ny > 0 for all prime divisors Y, we say that D is effective.

Let f be a non-zero function on X. For each prime divisor Y of X, we will
denote the valuation of f at Y by vy (f). This number is zero for almost all Y (See
[ |, page 131). The map

div : k(X)* — Div(X)
f—> vy

is well defined and, indeed, it is a group morphism whose image defines a subgroup
of Div(X), called the (sub)group of the Principal Divisors on X, denoted by
PDiv(X).
To improve the readability, we will write (f) instead of div(f).

Let D and D’ be two divisors. If

D' =D+ (f), for some f € k(X)*,

we say that D and D’ are linearly equivalent and we write D ~ D’.

The quotient Div(X)/PDiv(X) is called the Picard Group of X and is de-
noted by Pic(X).

This group fits into an exact sequence

1 — Pic’(X) — Pic(X) — NS(X) — 0,

where Pic’(X) is the the group of divisors which are algebraically equivalent to 0
and Pio( X
NS(x) = D)
Pic”(X)
This is a finitely generated abelian group, called the Néron-Severi group of X.

1.3. Surfaces

Let X be an algebraic variety. For all open sets U C X, we denote by &(U)
the ring of regular functions on U. If V is an open subset of U we can define the
map py,y : O(U) — O(V) as the usual restriction. It is easy to check that & is
indeed a sheaf, called sheaf of regular functions on X.

If P is a point on X, we define the local ring of P on X, Op x to be the ring of
germs of regular functions on X near P, (i.e. the stalk of & at P).

The theorems below are central in intersection theory on a surface. Let X be
a non-singular projective surface over an algebraically closed field k, C' and D be
two curves on X. If P is a point in both C' and D, we say that C' and D meet
transversally at P if the local equations f of C' and g of D generate the maximal
ideal of P in ﬁp’X.

THEOREM 1.3.1. Let X be a mon-singular projective surface over an alge-
braically closed field k. There is a unique pairing
Div(X) x Div(X) — Z
(C,D)— (C- D),
such that

(1) 4f C and D are non-singular curves meeting transversally, then (C - D) =
#(CND),

(2) it is symmetric: (C- D)= (D-C),

(3) it is additive: ((C1+ C2)-D) = (Ci-D)+(Cy- D),

(4) 4t depends only on the linear equivalence classes: if Cy ~ Cy then (Cj -
D)= (Cy- D).

PROOF. See | ], page 358. O
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Let X be a non-singular projective surface over an algebraically closed field
k. Let C and D be two curves in X with no common irreducible component and
P € CND. We define the intersection multiplicity (C-D)p of C and D at P as
the dimension of €p x/(f,g) as a k-vector space. We have the following equality:

(©-D)= Y (C D).

pPeCnD

Again, see | ] for a complete proof.
We now consider C'N D as a scheme. The ideal sheaf defining C' (resp D) is
the invertible sheaf €x (—C) (resp Ox(—D)); now define

Ocnp = Ox
“OP T ok (=C) + Ox(=D)’

For every P € CND we have (Ocnp)p = Op/(f,g). This leads us to the following
equality, using also the equation above:

(C- D) = dim(H*(X, Ocrp)).

Now, for every sheaf .# on X, define the Euler-Poincaré characteristic of .
as:
o0

X(F) = (—1)! dim(H' (X, F)).
i=0
The following theorem is crucial in intersection theory: it enables us to extend the

intersection form to any two divisors on a surface, by letting us replace any of the
two divisors with a linear equivalent one.

THEOREM 1.3.2. Let X be a mon-singular projective surface over an alge-
braically closed field k. For every &#,9 € Pic(X) (seen as the group of isomorphism
classes of invertible sheaves on X ) define

(F 9 =x(0x)—x(FH=x(@ ")+ x(F '@y

Then (.) is a bilinear form on Pic(X) such that if C and D are two irreducible
curves on X meeting transversally, then

(0x(C)- Ox(D)) = (C- D).
PROOF. See | |, page 4. O

This theorem allows us to extend the previous definition of intersection between
transversal divisors to all divisors. We can write (C-D) in place of (0x (C)-Ox (D)),
since those two quantities are equal where (C - D) is defined.

COROLLARY 1.3.3. Let X be a non-singular projective surface over an alge-
braically closed field k. Let C' be a smooth curve over k. Let f : X — C be a
surjective morphism. Then for every fiber F = f=Y(P) of f we have F? = 0.

PROOF. See | |, page 4. O
A divisor D on a surface X is numerically equivalent to zero if
(D-E)=0, for all divisors E.

In this case we write D = 0. We say that D and E are numerically equivalent
if D—FE=0.
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1.4. Blowing Up

We will follow Hartshorne’s construction (see | ). We will first define the
blow-up of A™ at the origin O. Consider the quasi-projective variety given by the
product A x P*~1. We will denote by z1,...,z, the affine coordinates of A™ and
by 91, ..,Yn the homogeneous coordinates of P*1,

The blow-up of A" at O is the closed subset X of A™ x P"~!, given by the
equations:

T1Y2 = X2U1
T1Ys = X3Y1
TiYy; = TjY;

1.4.1. Properties.
(1) The projection A" x P~ — A™ induces a natural morphism ¢ : X — A™.
(2) For every point P € A™ there is a unique element in ¢~ (P), except for
P = 0. Indeed, ¢ induces an isomorphism

¢: X\ ¢ (0) — A"\ O.
(3) ¢ H(O) =Pt
Now, we can define the blow-up for every closed subvariety Y of A™ at P € Y.

First of all, we can assume that P = O: if this is not the case, we can translate P
to the origin. The blow-up of Y at O is defined as

Y = (Y 0).

In the case n = 2, the curve E = ¢~ 1(0) is called the exceptional curve
above the origin. For each curve C in A? passing through the origin, we define two
other curves: the total inverse image of C is called proper transform of C' and
consists of E and another curve C’, called the strict transform of C. All the
other curves in A? are isomorphic to their pre-image under the blow-up.
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FIGURE 1.1. A node Y2 = X3+ X2 on the left and its blow-up at
(0,0) on the right. The red line is the exceptional curve above the
origin.

1.5. Elliptic Curves

1.5.1. Assumptions. An elliptic curve over the field k is a pair (E,O),
where E is a curve of genus 1 defined over k£ and O is a point on E(k). We
generally omit the point O, if understood, and write F/k meaning that E is an
elliptic curve defined over k.

Using the Riemann-Roch theorem it is possible to describe any elliptic curve
as the locus in P? of a cubic equation with only one point on the line at co; see
[ ] for more details. After a scaling of the coordinates the equation of E is of
the following form:

sz +a1xyz + a3y22 =23+ CLQ.Z‘QZ + a4x22 + a623

and O is the point (0,1,0).
We will use the following notation:

k a local field, complete with respect to a discrete valuation v.

R = {z € k| v(z) > 0}, the ring of integers of k.

R* ={z € k | v(z) = 0}, the unit group of R.

M = {z € k| v(z) > 0}, the maximal ideal of R.

7 a uniformizer for R, i.e. M =nR.

K the residue field of R.
Let E be an elliptic curve defined over k. We can assume that all the coefficients in
the equation of F lie in a complete discrete valuation ring with perfect residue field
and maximal ideal generated by a prime 7. Under these hypotheses, E is given by
an equation of the following type:

y2 +aixy +asy = 2> + a2x2 + a4x + ag.
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We define the following quantities:
b2:a§+4~a2, by = aras + 2 - ay, b6:a§+4~a6,
bg = a%ag —ajaszayg + 4 - asag + agag — ai,
ey = b3 —24-by, c6 = —bi + 36 - boby — 216 - b,
Qim = a; /7™, A= —bibg—8 b3 —27-b3 +9-bobsbs,  j=ci/A.

1.5.2. The Group Law. Let (E,O) be an elliptic curve defined over k by a
Weierstrass equation. Thus E consists of the point O at infinity and of the points
(x,y) satisfying the Weierstrass equation. We can define a composition law on E.
Let P, @ be two points on F, let [ be the line through P and @ (if P = @Q, let [ be
the tangent to E at P) and let R be the third point of intersection of [ with E. Let
" be the line through R and O. The third point of intersection between E with I’
is denoted by P + Q.

The composition law has the following properties:

(1) if a line [ intersects E at P, @, R, then
(P+Q)+R=0.

(2) P+O=Pforall PeE.

(3) P+Q=Q+Pforal PQe€E.

(4) For every point P € FE there exists a point —P such that

P+ (—P)=0.
(5) For every P,Q, R € E the following holds
(P+Q)+R=P+(Q+R).

In other words, (F,+) is an abelian group having O as the zero element.

Notice that if F is an elliptic curve defined over k where O is not an inflection
point, then it is no longer true that three points on a line add up to O. In this case
we have that if P, @, R are three points of intersection between E and a line then

P+Q+R=yq,
where ¢ is the third point of intersection between E and the tangent to E at O.

1.5.3. Good and Bad Reduction. Let E/k be an elliptic curve. The re-
duced curve F is the image of E via the natural reduction map R — R/mR. We
can classify E with respect to the type of curve E is. There are the following cases:

(1) if E is non-singular, then E has good reduction;

(2) if F has a node, then E has multiplicative reduction;

(3) if E has a cusp, then F has additive reduction.
In the latter cases we say that F has bad reduction. If F has multiplicative
reduction, then we say that the reduction is split if the tangents to the node are
in K = R/mR; otherwise we say that the reduction is non-split. We now state a
lemma that helps us to understand the reduction type using the valuation of the
discriminant A.

LEMMA 1.5.4. Let E/k be an elliptic curve given by a minimal Weierstrass
model
E: y2 + a1xy + asy = 2+ agr® + agx + ag,
then
(1) the curve E has good reduction if and only if v(A) = 0.
(2) the curve E has multiplicative reduction if and only if v(A) > 0 and
v(cq) = 0. In this case the non-singular K points of E form the multi-

plicative group K .
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(3) the curve E has additive reduction if and only if v(A) > 0 and v(cq) > 0.

In this case the non-singular K points of E form the additive group (K,4).
O

PROOF. See | ]

Now, we can consider an equation defining F as defining a scheme E over
Spec(R). The resulting scheme may not be non-singular, since if F has bad reduc-
tion at v, the singular point on the special fiber Eof E may be a singular point of
the scheme. By resolving the singularity, we obtain a scheme over Spec(R) whose
generic fiber is E/k and whose special fiber is a union of curves over K.

The list of all the possible special fibers is given in Appendix A.

1.6. Tate’s Algorithm

Tate’s algorithm takes as input an integral model of an elliptic curve over k. The
output is the exponent f, of the conductor, the type of reduction of E with respect
to v, given by the Kodaira symbol (see Appendix A), and the index [E(k) : E°(k)],
where E°(k) denotes the group of k points on E whose reduction is non-singular.
Moreover, we can determine whether the integral model is minimal.

1.6.1. The Algorithm. We will describe the algorithm in steps

(1) If 7 does not divide A, we have that f, = 0, the type is Iy and ¢ = 1.

(2) We make a change of coordinates such that 7 divides a3, a4 and ag.

(3) If m does not divide bo, then f, =1, the type is I,a),

(4) else, if 72 does not divide ag, then f, = v(A), the type is IT and ¢ = 1,

(5) else, if 7 does not divide bg, then f, = v(A) — 1, the type is 11 and
c=2,

(6) else, if m does not divide bg, then f, = v(A) — 2, the type is IV and
c=3,

(7) else, make a change of coordinates such that 7 divides a; and as, 2

divides a3 and a4 and 73 divides ag. Let g be the polynomial defined as
q(t) = 3+ a2’1t2 + a2t + ap 3.

(8) If ¢ has three distinct roots, then f, = v(A) — 4, the type is I} and c is
14 the number of roots of ¢ in k.
(9) If ¢ has a single and a double root, then f, = v(A)—4—n for some n > 0,
the type is I and ¢ =2 or ¢ = 4.
(10) The polynomial ¢ has a triple root. We change the coordinates such that
the triple root is zero, so that 72 divides a1, 7> divides a4 and 7* divides
ag- Let 7 be the polynomial defined as

r(u) = u® + as U — a6 4

(11) If r has two distinct roots then f, = v(A) — 6, the type is IV* and ¢ =3
if the roots are in k and ¢ = 1 otherwise.

(12) The polynomial r has a double root. We change the coordinates so that
it becomes zero. Then 72 divides a3 and 7° divides ag.

(13) If 7* does not divide a4, then f, = v(A) — 7, the type id I11* and ¢ = 2,

(14) else, if 8 does not divide ag, then f, = v(A) — 8, the type is IT* and
c=1,

(15) else the equation is not minimal. We divide all the a;’s by 7* and start
again with the new equation.
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1.7. Elliptic Surfaces

Let B be a non-singular projective curve defined over an algebraically closed
field k of characteristic zero. An elliptic surface (defined over k) is an algebraic
projective surface & defined over k, endowed with a fibration « : & — B such that

e (elliptic fibration) for almost all t € B(k), m~1(¢) is a genus-1 curve;
e (section) there exists a k-morphism og : B — & such that 7 o oy = idp.

We also assume that there exists at least one singular fiber.

An elliptic surface 7 : & — B is a rational elliptic surface if & is birational
to P2. In this setting B = P'.

For every elliptic surface 7 : & — B, the section oy determines a point O; on
each fiber E; = 7~ 1(t). The couple (E;, O;) is an elliptic curve defined over k for
almost all t € B(k).

Moreover, there is another elliptic curve induced by any elliptic surface 7 : & —
B. Let K be the function field k(B). The algebraic surface & can be seen as an
elliptic curve over K. We denote this object by &, and call it the generic fiber of
the elliptic surface.

Notice that in case of a rational elliptic surface we have B = P!, so k(B) = k(t).

The following theorem holds:

THEOREM 1.7.1 (Mordell-Weil Theorem for Function Fields). Let 7 : & — B
be an elliptic surface defined over an algebraically closed field k of characteristic
zero. Let K be the function field k(B). If 7 : & — B does not split, then the group
6,(K) is finitely generated.

PROOF. See | ], IIL. O

In particular, the following equality holds:
gH(K) = ZTH @ Ta

where T is a torsion group and r,, is the called the rank of the elliptic curve &, /K.
We can relate the group of &),(K) with the group of sections on the corresponding
elliptic surface:

THEOREM 1.7.2. Let w : & — B be an elliptic surface defined over an alge-
braically closed field k of characteristic zero. Let K be the function field k(B). The
set &(B/k), defined as

&(B/k) = {sections o : B — & such that o is defined over k},
s an abelian group. Moreover there is a group isomorphism:
Eu(K) = &(BJE).
PROOF. See | ], IIL. O

From now on the group &(B/k) will be called Mordell-Weil group of & and
will be denoted with MW (&). Moreover, we will refer to the rank of the generic
fiber of 7 : & — B as the (Mordell-Weil) rank of &.

1.7.3. Comnstruction. We will briefly explain a method to obtain a rational
elliptic surface.

Let F and G be two homogeneous cubic polynomials in k[xg, z1, z2], describ-
ing two distinct projective plane cubics, with at least one of them being smooth.
Consider the rational map

P? --» P!
(@,y,2) — (F(z,y,2),G(x,y,2)).
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This rational map is not defined exactly at the points where both F' and G vanish;
by Bézout’s theorem this set consists of nine points, counted with multiplicities.
These nine points are the base points of a pencil of cubic curves, namely the one
generated by F' and G. By blowing up these nine points we obtain a rational
surface &, together with a morphism 7 : & — P! whose fibers are genus-1 curves
(see | ], I.5.1 for more details).

&

P2 > P!

Every exceptional curve of this blow up is a section of 7. We have then constructed
a rational elliptic surface.
This construction is general; we have the following theorem by Miranda:

THEOREM 1.7.4. Let 7 : & — B be a rational elliptic surface defined over an
algebraically closed field k of characteristic zero. There exists a linear pencil A of
plane cubics such that the blow-up of P? at the base points of A is isomorphic to &.

Notice that the fiber type of the obtained surface depends on the configuration
of the base points, thus on the presence of particular members in the pencil of
cubics. For example, if the base points of the pencil are three collinear points and
three other collinear points counted with multiplicity two, then there is a reducible
member in the pencil that splits into a double line and a different line. The induced
rational elliptic surface has a fiber of type I (See | D.

1.8. The Shioda-Tate Formula

This section is devoted to find a relation between the Mordell-Weil group and
the Néron-Severi group of an elliptic surface.

Let m : & — B be an elliptic surface. The points in B such that their pre-
image is a non-smooth curve are called bad places. The set of all the bad places
is denoted with R. The pre-image of a bad place is called a bad fiber. If a bad
fiber is a reducible curve, it will be called reducible fiber.

Let m: & — B be an elliptic surface with zero-section oy. For each v € R, the
following equality holds:

m,—1

7T_1(U) = 91)70 + Z ﬂv,i®v,i7
i=1

where ©,; (0 < i < m, — 1) are the irreducible components of F, and m,, is the
number of components of the fiber. We also define ©, ¢ as the unique component of
F, meeting the zero section; we call ©, ¢ the zero component of the fiber 771(v).

THEOREM 1.8.1 (Shioda-Tate Formula). Let T be the subgroup of NS(&) gen-
erated by the zero section oy and all the irreducible components of fibers. We have
the following natural isomorphism

NS(&)
<

For a complete description of this isomorphism we refer to | ].

MW (&) =

1.9. Lattices

We list here some definitions and properties of lattices. For more details, see
[ ]. A lattice L is a free Z-module of finite rank, given with a symmetric
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non-degenerate pairing
(,):LxL—Q.

When the pairing takes values in Z, we say that L is an integral lattice.

If the rank of Lis r and (z1, . .., x,) is a Z-basis of L we define the determinant
of L as

det(L) = | det((x;, z;))]|.

This number does not depend on the choice of the basis.

We say that a lattice L is even if (x,x) € 2Z for all x € L and unimodular if
det(L) = 1.

The dual lattice L* of a lattice L is defined by

L"={zeL®Q]|{(x,y) € Zforall y € L}.

Moreover, the following equality holds:
1
det(L*) = .
L) = @
A sublattice T of L is a submodule of L such that the restriction of the pairing

to T x T is non-degenerate. The orthogonal complement 7 of T in L is defined
by

T+ ={zeL|(z,y)=0foralyeT}
For every sublattice T of L of finite index we have the following equality:
det(T) =det(L) - [L : T].

This formula will help us to check if a given set of elements of a lattice is actually
a set of generators.

1.9.1. The Néron-Severi Lattice. By | ], thm 3.1 the Néron-Severi
group of an elliptic surface becomes an integral lattice with respect to the intersec-
tion pairing, called the Néron-Severi lattice.

Moreover we have that its rank p is given by

pzr+2—|—2(mv—1),
vER
where 7 denotes the rank of the Mordell-Weil group of the elliptic surface.

Let m : & — B be an elliptic surface. Consider T, the subgroup of NS(&)
generated by the zero section and the irreducible components of the fibers of .
By | ], Proposition 2.3, we deduce that T is a sublattice of N.S(&), called the
trivial sublattice of NS(&).

1.9.2. The Mordell-Weil Lattices. By the Shioda-Tate formula (section
1.8), the Mordell-Weil group MW (&) of an elliptic surface 7 : & — B is isomorphic
to the quotient N.S(&)/T. We want to define a good pairing on MW (&). The first
thing we do is to embed MW (&) into NS(&) ® Q. From | |, Lemma 8.1, for
every P € MW (&), there exists a unique element ¢(P) of NS(&) ® Q such that

e o(P)=(P)mod (T®Q) and

e o(P)LT.
Moreover, the map ¢ is a group homomorphism and ker(p) = MW(&)tor. For
every P, € MW (&) we can define (P, Q) as

(P,Q) = —(¢(P) - 0(Q))-
In this way (, ) is a symmetric bilinear pairing on MW (&), inducing the structure
of a positive definite lattice on MW (&)/MW (&)tor. This pairing will be called
the height pairing and the lattice (MW (&)/ MW (& )tor, {, }) will be called the
Mordell-Weil lattice of the elliptic surface.
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We have the following explicit formulas to compute the height pairing of any
P,Q € MW (&):

(P,Q)=x+(P-0)+(Q-0)—(P-Q)— > contrycr(P,Q),
vER

where x is the Euler characteristic of the surface, (P - Q) is the intersection number
of P and @ and contr,(P, Q) gives the local contribution on v. This number can
be expressed explicitly, but we first need a rule to label the irreducible components
of a reducible fiber.

Let ©, be a fiber with m, simple components. We will denote by ©, o the
component intersecting o¢(B). This component is called the zero component.

All the other components of ©, are denoted by O, ; (i < m,), according to the
following rule.

L,

@1 @n—l @
2

O3

@0 I I

FIGURE 1.2. Enumeration of the components of a fiber, according
to the fiber type (from [ -

Now we can write contr, (P, Q) explicitly as
_ [ Ay ifi >0
contry (P, () = { 0 otherwise;
where A, is the negative definite matrix given by
AU = ((@v,i'ev,j)) 1 SZ,] va—l.

We now give a table listing the possible contribution numbers of P (meeting 0, ;)
and @ (meeting O, ;), according to the type of F,.

Kodaira  Dynkin

Symbol Diagram 1= 1<J
L, IILIV A, in =) in = Jj)
n n
1
1 =1 3 1=1
Iy Diya n .
1+—- 1=2,3 n
, - -9
4 5 + 1 ]
I B, 3 -
2
4 2
A% E - -
¢ 3 3
TABLE 1.1. The contribution terms for any fiber type (from | -

We now define a subgroup of MW (&) denoted by MW (&)°:
MW (&) ={P € MW(&) | P meets O, for all v € R}.
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This subgroup is torsion-free (see | ]) and can be viewed as a lattice with
respect to the height pairing. This lattice is a positive definite even lattice, called
the narrow Mordell-Weil lattice.

Moreover we have the following equality:

_ det(NS(&)) - [MW (&) : MW (£)°)?

B det(T) '

1.9.3. Results on Rational Elliptic Surfaces. Let 7 : & — B be a rational
elliptic surface. In this case the Néron-Severi lattice N'S(&) is unimodular of rank 10
and the Mordell-Weil lattice MW (&) /MW (& )1or is the dual of the narrow Mordell-
Weil lattice MW (&)°.

The relation between the narrow Mordell-Weil lattice, the trivial lattice and
the Mordell-Weil group becomes the following:

. . 012
det(MW (&£)°) = ! [MW((‘;Z&;\)JW(‘?) ) .

These conditions give a criterion to decide whether a set of elements in the Mordell-
WEeil group is a basis for the Mordell-Weil lattice as soon as we know the structure
of the trivial lattice and the narrow Mordell-Weil lattice.

det(MW (&£)°)




CHAPTER 2

Construction of Rational Elliptic Surfaces with
Rank 4

2.1. Reducible Fibers on Rational Elliptic Surfaces with Rank 4

Let 7 : & — P! be a rational elliptic surface with Mordell-Weil rank 4. Since
the rank of the Néron-Severi group N.S(&) is 10 (see | ]) and the rank of the
Mordell-Weil group is 4, we can use the Shioda-Tate formula (section 1.8) together
with the results on the Néron-Severi lattice

rank(NS(&)) = rank(MW (&) + 2+ > (my, — 1)
vER
to deduce the contribution given by the bad fibers. We have that

Z(mv —-1)=4.

veER
So, only the following cases can occur:
(1) m, = 5: there is a unique bad fiber, with 5 components;
(2) my, =4, my, = 2: there are two bad fibers, one with 4 components and
the other with 2 components;
(3) my, =3, my, = 3: there are two bad fibers, both with 3 components;
(4) my, =3, my, = My, = 2: there are three bad fibers, one with 3 com-
ponents and the others with 2 components;
(5) my, = -+ =m,, = 2: there are four bad fibers, all with 2 components.
We will now state a crucial theorem, that helps us to understand each case
listed above:

THEOREM 2.1.1 (Oguiso-Shioda). The following table summarizes the possible
lattice structures for the Mordell-Weil group of a rational elliptic surface of rank 4.
We denote by T’ the lattice associated with the reducible fibers.

T’ det(T") MW (&)° MW (&)
Ay 5 Ay A
D, 4 D, D;
As @ Ay 8 As @ Ay A5 @ Af
A$? 9 A$? A;®?
1 0 1 2 1 0 -1
Ao AP 12 —21 }1 —01 é (1) g 2 é
0 -1 2 -1 1 3 5
AP* 16 AP Aro
APt 16 Dy D;eZ/2Z

13
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PROOF. See | ] O

A rational elliptic surface & is isomorphic to the blow-up of a linear pencil A
of cubics (theorem 1.7.4). In particular for any bad fiber F, of &, A contains the
image of F, in P2, which is a curve of degree 3 (since A is a pencil of cubics). The
configuration of the base points of A must be compatible with the presence of this
member.

For a complete list of all the possible images in P? of every fiber that can appear
in a rational elliptic surface of rank 4 see Appendix B.

2.2. Technique

For each possible lattice structure of a rational elliptic surface with rank four,
we first find nine points on the plane that are the base points of a linear pencil of
cubics that induce a rational elliptic surface with the given lattice structure.

If the pencil does not obviously have a smooth member, we show that it actually
has a smooth member.

We then find all the non-smooth members of the pencil, in order to be sure
that we are constructing the correct rational elliptic surface.

Later we find the configuration of the exceptional curves above the base points
with respect to each reducible fiber; in other words, we look at the component of
the fiber the exceptional curve is meeting. This is done in order to compute the
height matrix of the exceptional curves above the base points.

Finally, we check that the determinant of the obtained matrix is equal to the
determinant of the Mordell-Weil group of the induced rational elliptic surface. This
implies that the chosen exceptional curves generate the Mordell-Weil group of the
surface.

2.3. A Unique Reducible Bad Fiber

Since the unique bad fiber has 5 components, it must be either a fiber of type
I5 or of type I (See Appendix A). We will analyze these two cases separately.

2.3.1. A Fiber of Type I5. From section B.2, we know that in order to have
a fiber of type I5 the pencil of cubics must contain a member of one of the following
forms:

(1) A nodal cubic such that the singular point is a base point with multiplicity
5.
(2) A reducible cubic, split into a line and an irreducible conic, such that
either
(a) the intersection points are base points with multiplicity 3 and 2 re-
spectively, or
(b) only one intersection point is a base point and has multiplicity 4.
(3) A reducible cubic, split into 3 non-concurrent lines, such that
(a) one of the three intersection points between the lines is not a base
point, while the others are base points with multiplicity 2.
(b) one intersection point is a base point with multiplicity 3 and the
remaining intersection points are not base points.

2.3.1.1. Construction. We will construct an elliptic surface of rank 4 from a
linear pencil of cubics as in (3)(a).

Let E be a non-singular plane cubic. Take a line [; on the plane such that it
intersects the curve E at three distinct points pg, p1, p2. Take a line ls, passing
through py and such that it intersects FE in two other different points p3 and py.
Suppose that the lines passing through ps and p; and the one through ps and ps
are not tangent to E at py. Now, let I3 be a line passing through p4, and two other
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different points ps and pg such that ps, pg are each non-collinear with any other
two base points and such that the lines through py and one of them are not tangent
to E at pg.

F1GURE 2.1. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with a fiber of type Is.

Consider the linear pencil of cubics A, generated by F and R = [;l3l3. This
pencil can be described as the pencil of cubics passing through po,...,ps with
prescribed tangent at py and ps (the tangent of E at pg and the tangent of E at
p4, respectively). We now describe all the singular members in A.

The base points with multiplicity 2 cannot be singular points of any irreducible
member in A, by Bézout’s theorem. Moreover, the unique reducible member is R.
We will show this last statement in detail. If a cubic C' in A is reducible, it contains
a conic @, possibly reducible, and a line [.

Suppose by contradiction that the conic @ is irreducible and it is not tangent to
FE at pg nor at py4; then the line [ needs to pass through both pg and py4, so I = Is.
Since [, is not tangent to F, then @) should pass through all base points, except ps.
This contradicts the fact that @ was irreducible. So @ is reducible or it is tangent
to E at pg or p4.

Suppose by contradiction that it is irreducible and tangent to E at py or ps. If @
is tangent to only p;, ¢ € {0,4}, then the line ! should pass through ps—,;. This
implies that ps is on @, otherwise [ is ls and @ would split. Given that ps is on
@, then [ must be tangent to F at py_;. By the hypotheses on the tangents to F
at py_; we have that [ does not pass through any other base point. So @ should
pass through p;, p1, p2, P3, Ps, Pé- This is impossible, since three of them are on a
line and @ was supposed to be irreducible. Then @ is tangent to E at both py and
p4. Since @ is irreducible, then it cannot pass through ps. For the same reason it
cannot pass through both p; and ps; and through both ps and pg. So three points
among ps, P1, P2, P5, P must be on [. This is again impossible, since we supposed
that they are not collinear. This implies that @ is reducible.

Thus, C splits into the product of three lines and by the hypotheses on the collinear-
ity on the base points, C' must be R.

Notice that R corresponds to an I5 fiber in the rational elliptic surface given
by the blow-up of P? at the base points of A.
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We denote by P, ..., Ps the (—1)-curves above py, ..., ps.
Let P, @ be two elements in the Mordell-Weil group of the rational elliptic surface
given by the blow-up of P? at the base points of A. Using the Contribution Table
in section 1.9.2, we find that, if P meets the component ©;, the contribution of the
I5 fiber to (P, P) is given by:

i(5b—1)

-
If P meets the component ©; and () meets the component ©; with ¢ < j, the
contribution of the I fiber to (P, Q) is given by:

contr(P) =

contr(P, Q) = @

We set P, as the zero section. We now check the intersections between the compo-
nents of the fiber of type I5 and the curves Py, ..., Ps, using the technique described
in section B.1. Since pg is on Iy, the line where p; and ps lie, the curves P; and Ps
must intersect either ©; or O4, say ©;. Since pg is also on [, the point P; must
intersect either ©1 or ©4, but not the same as the one intersecting P; and P,. So,
P; must intersect ©4. Since py is blown up twice, the associated (—1)-curve Py does
not intersect the same component that P; intersects, and must intersect ©3. With
a similar argument Ps; and Py intersect ©5. The configuration of the exceptional
curves in the I5 fiber is the following:

Py

FicURE 2.2. Configuration of the exceptional curves above the
base points of a pencil of cubics as in figure 2.1, inducing a rational
elliptic surface with a fiber of type Is.

Using the above formulas we have:

4/5 4/5 1/5 2/5 3/5 3/5
4/5 4/5 1/5 2/5 3/5 3/5
| 1/5 1/5 4/5 3/5 2/5 2/5
wi | 2/5 2/5 3/5 6/5 4/5 4/5
3/5 3/5 2/5 4/5 6/5 6/5
3/5 3/5 2/5 4/5 6/5 6/5
We consider the matrix given by the heights of Py, P3, Py and Ps. The height
matrix is the following:

(contr(P;, F}))

6/5 4/5 3/5 2/5
A _ | 45 6/5 2/5 3/5
57 3/5 2/5 4/5 1/5
2/5 3/5 1/5 4/5
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According to theorem 2.1.1, the Mordell-Weil lattice of the induced surface is iso-
morphic to A}, in particular it has determinant equal to 1/5. Since the determinant
of the matrix Ay, is equal to 1/5, the elements P;, P5, Py and Ps generate the full
Mordell-Weil group of the rational elliptic surface.

2.3.1.2. Construction. We will construct an elliptic surface of rank 4 from a
linear pencil of cubic as in (2)(a).

Let E be a non-singular plane cubic curve. Take a point pg in E such that
the tangent ¢ to F at pg meets E in a point g # pg and let [ be a line passing
through pg, non-tangent to E. Then there exist two distinct points ps and ps such
that F and [ meet at pg,ps and ps. Now, take a conic @) passing through ps and
Po, not passing through ¢, tangent to F at py and not tangent to FE in any other
point of intersection. Then, there exist p;, p2 and p3 such that E and () meet at
Do, P1, P2, P3, P4 and share the tangent at py. We choose the conic such that ps is
not collinear with any other couple of points p;, p; except pg, p4 and the tangent to
FE at ps does not meet any other p;.

FI1GURE 2.3. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with a fiber of type I5.

Consider the pencil of cubics A generated by E and R = QI. We now describe
all the singular members in A.

The base points py and p4 cannot be singular points of any irreducible member
in A, by Bézout theorem. We now want to show that R is the only reducible
member. Since the points pg, ps, ps are the only base points in a line, all the
reducible members in A split into a line and an irreducible conic. Since ¢ was not
a base point, the line cannot be tangent to FE at pg. This means that the conic
is tangent to E at pg, thus the intersection multiplicity at pg between E and the
conic is at least 2. In fact, it is exactly 2. If, by contradiction, the intersection
multiplicity between E and the conic at py was greater or equal to 3, then the
conic would meet E at three other points at most; then the remaining points of
intersection with F would not be collinear, contradicting the assumption they were
on a line. This means that the intersection multiplicity between E and the conic
is exactly 2 and the line passes through pg. The only line and conic fitting these
hypotheses are @) and [.
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As in the previous construction, we denote by P; the (—1)-curve above p; and
set Py as the zero section. The configuration of the exceptional curves on the I;
fiber is the following (notice that all the cubics are tangent to @ at pg):

FI1GURE 2.4. Configuration of the exceptional curves above the
base points of a pencil of cubics inducing a rational elliptic surface
with a fiber of type I5.

2.3.1.3. Equivalence between the Constructions. We will show that there are
birational maps that change the linear pencil of cubics described in (3)(a) into the
one described in (2)(a) and vice versa.

First we set & as the rational elliptic surface described in construction (2)(a).
We will use the same notation as in that section. Since pg is a base point of A of
multiplicity 3, there are three curves above it in &: the (—1)-curve Py, a (—2)-curve
P} and another curve. After contracting Py, we get a new surface where the image
of the curve PJ is a (—1)-curve and can be contracted itself. We will denote by &’
the surface obtained contracting first Py and then the image of Pj. Since py4 is a
base point of A of multiplicity 2, there are two curves above it in &: the (—1)-curve
P, and a (—2)-curve P;. Their images in & are isomorphic to the original curves,
so we will denote them with the same letters. After contracting Py € &', we have
that the image of P; can be contracted. We will denote by & the surface obtained
from &' contracting Py and subsequently the image of P;. The image in &” of
the each other exceptional curve P; is still isomorphic to P;, so we will denote it
with the same letter. Now, let E; be the strict transform on &” of the line passing
through py and p1, let Fy be the strict transform on &” of the line passing through
po and ps and let F3 be the strict transform on &” of the line passing through p;
and ps. The (—1)-curves P3, Ps, B, E> and E3 do not intersect each other in &”
and contracting them we find a linear pencil of cubics as in (3)(a).

On the other hand, let & be the rational elliptic surface described in (3)(a).
We will use the same notation as in that section. Since pg is a base point of A of
multiplicity 2, there are two curves above it in &: the (—1)-curve Py and a (—2)-
curve PJ. After contracting Py, we get a new surface where the image of the curve
P} is a (—1)-curve and can be contracted itself. We will denote by &’ the surface
obtained contracting first Py and then the image of PJ. Since p4 is a base point of
A of multiplicity 2, there are two curves above it in &: the (—1)-curve P; and a
(—2)-curve P;. Their images in &’ are isomorphic to the original curves, so we will
denote them with the same letters. After contracting Py € &', we have that the
image of P; can be contracted. We will denote by & the surface obtained from
&' contracting P, and subsequently the image of P;. The image in &” of the each
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other exceptional curve P; is still isomorphic to P;, so we will denote it with the
same letter. Now, let E; be the strict transform on &” of the line passing through
ps and p1, let Es be the strict transform on & of the line passing through ps and po
and let L be the strict transform on &” of ly. The (—1)-curves P3, Py, P, E1, F»
and L; do not intersect each other in &” and contracting them we find a linear
pencil of cubics as in (3)(a).

THEOREM 2.3.2. Let & be a rational elliptic surface with Mordell-Weil rank
four and MW (&) = A;. Then & arises from a linear pencil of cubic curves as in
construction (3)(a).

PROOF. We must show that all the possible constructions of a rational elliptic
surface of rank four with a fiber of type I5 are equivalent to (3)(a). We know from
section B.2 that there are five constructions and we just showed that (3)(a) and
(2)(a) are equivalent. With similar arguments one can show that all the construc-
tions are equivalent.

We now show that (3)(a) and (3)(b) are equivalent.

Suppose we are working in the settings of (3)(a). Let & be the induced rational
elliptic surface. We will use the same notation as in the construction we already
made. Let [;; be the line passing through p; and p;. We can obtain a pencil
as in (3)(b) by contracting both the exceptional curves above pg, one of the two
exceptional curves above py, the strict transforms of the lines {1 3, of I; 4 and of I3 4
and the curves P, Ps and Fs.

Conversely, suppose we are working in the settings of (3)(b). Let & be the
induced rational elliptic surface. Let pg,...,ps be the base points of the pencil.
Let pg be the point of multiplicity three, I3 the line of the reducible member not
passing through pg, 1 the line tangent to the smooth members at py and Iy the
last line composing the reducible member. Let p; be a base point in s and ps a
base point in l3. Let [; ; be the line passing through p; and p;. We can obtain a
pencil as in (3)(a) by contracting two of the three exceptional curves above pg, the
strict transforms of Iy, of lp2 and of I; » and every exceptional curve above p;,
1#0,1,2.

We now show that (2)(b) and (3)(b) are equivalent.

Suppose we are working in the settings of (2)(b). Let & be the induced rational
elliptic surface. Let pg,...,ps be the base points of the pencil. Let pg be the point
of multiplicity four, p; and ps two base points on the conic belonging to the cubic
inducing the fiber of type Is and [; ; the line passing through p; and p;. We can
obtain a pencil as in (3)(b) by contracting three of the four exceptional curves above
po, the strict transforms of the lines ly 1, lp,2 and I; 2 and every exceptional curve
above p;, i £ 0,1, 2.

Conversely, suppose we are working in the settings of (3)(b). Let & be the
induced rational elliptic surface. Let pg,...,ps be the base points of the pencil.
Let pg be the point of multiplicity three, I3 the line of the reducible member not
passing through pg, /1 the line tangent to the smooth members at py and 5 the last
line composing the reducible member. Let p; and ps be base points in Iy and ps3
a base point in /3. Let [; ; be the line passing through p; and p;. We can obtain
a pencil as in (2)(b) by contracting all the exceptional curves above pg (three in
total), the strict transforms of the lines l; 3, l2,3 and [y and every exceptional curve
above p;, 1 #0,1,2,3.

We now show that (1) and (2)(b) are equivalent.

Suppose we are working in the settings of (1). Let & be the induced rational
elliptic surface. Let pg,...,ps be the base points of the pencil. Let pg be the point
of multiplicity five, p; and p, two base points and [; ; the line passing through
pi and p;. We can obtain a pencil as in (2)(b) by contracting four of the five
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exceptional curves above py, the strict transforms of the lines lg 1, lp,2 and I 2 and
every exceptional curve above p;, i £ 0,1,2.

Conversely, suppose we are working in the settings of (2)(b). Let & be the
induced rational elliptic surface. Let po,...,ps be the base points of the pencil.
Let py be the point of multiplicity four, p; and ps two base points on the line, p3 a
base point on the conic and /; ; the line passing through p; and p;. We can obtain
a pencil as in (1) by contracting all the exceptional curves above pg (four in total),
the strict transforms of the lines l; 2, {1 3 and l> 3 and every exceptional curve above
Di, i 7é 07 17233'

This concludes the proof. O

2.3.3. A Fiber of Type I;j. From section B.2, in order to obtain a fiber of
type I the pencil of cubics must contain a member of the following forms:

(1) A cuspidal cubic, such that the cusp is a base point with multiplicity 5

(2) A reducible cubic, given by the product of an irreducible conic and a line
tangent to that conic, such that the intersection point between them is a
base point with multiplicity 4

(3) A reducible cubic, given by the product of three concurrent lines, such that
the intersection point between those lines is a base point with multiplicity
3

(4) A reducible cubic, given by the product of a double line and a different
line, such that the intersection point is not a base point.

2.3.3.1. Construction. We will construct an elliptic surface with rank 4 as in

(3).

Let E be a smooth cubic curve. Consider a point py on it and let I3 be a line
passing through pg intersecting F at two other distinct points p; and p,. Take
now a different line [5 passing through py and two other distinct points p3 and py.
Let I3 be a line passing through py and two other distinct points ps; and pg, not
collinear with any other two different base points (except po, ps, ps), and such that
the points p1,...,ps do not lie on a conic.

FI1GURE 2.5. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with a fiber of type I§.
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Consider the pencil of cubics A generated by F and R = [;l3l3. The point pg
cannot be the singular point of any irreducible member of A, by Bézout’s theorem.
We will now show that the cubic R is the only reducible member. Suppose that
there is another reducible member in the pencil. It cannot split into a line and
an irreducible conic: by the assumption that pq,...,pg do not lie in a conic, the
conic should pass through pg and at least two other collinear points, but this is not
possible for an irreducible conic. Then the cubic must split into 3 lines. Since the
points {pak—1,Pak }k=1,2,3 are collinear with py and no other combination of three
points is on a line, the reducible member is R.

Notice that the unique reducible member R in A corresponds to an I fiber in
£.

We denote with Py, ..., Ps the (—1)-curves above py, ..., pe.

Let P, @ be two elements in the Mordell-Weil group of the rational elliptic surface
given by the blow-up of P? at the base points of A. Using the Contribution Table in
section 1.9.2, we find that, if P meets the component ©; and ) meets the component
©, with ¢ < j, the contribution of the I§ fiber to (P, Q) is given by:
coms(P.@) = { o it 127
We set Py as the zero section. Using the technique described in section B.1, we
can deduce that P, and P;, (i < j), intersect the same component if and only if
1=1,3,5 and j = i + 1 because the blowing-up of py separates points on different
lines. So, we get the following matrix:
1 1 1/2 1/2 1/2 1/2
1 1 1/2 1/2 1/2 1/2
| 12 172 1 1 1/2 1/2
wi | 1/2 1/2 1 1 1/2 1/2
1/2 1/2 1/2 1/2 1 1
1/2 1/2 1/2 1/2 1 1
This allows us to compute the height pairing of the points P, ..., Ps, since the
sections above the base points do not intersect each other. We will consider the
matrix given by the height pairing of Py, P,, P3 and Ps. The height matrix is then
the following:

(COHtI‘(Pi, PJ))

1 0 1/2 1/2

0 1 1/2 1/2
1/2 1/2 1 1/2
/2 1/2 1/2 1
According to theorem 2.1.1, the Mordell-Weil lattice of the induced surface is iso-
morphic to D}, in particular it has determinant equal to 1/4. Since the determinant
of the matrix Azx is equal to 1/4, the elements P, P, P; and P5 generate the full
Mordell-Weil group of the rational elliptic surface.

A =
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2.3.3.2. Construction. We will construct an elliptic surface with rank 4 as in
(4).
Let E be a smooth cubic plane curve. Let I3 be a line intersecting E at three
distinct points pg, p1, p2. Let t; be the tangent line to £ at p; ¢ = 0,1,2. Let I be
another line, not passing through any p; (i = 0,1,2), meeting F at three distinct
points p3, p4, p5, such that at least one of them does not lie in any ¢;.

Ps

Do P1 P2

L

ly

FI1GURE 2.6. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with a fiber of type I§.

Consider the pencil of cubics A generated by E and [2l,. The points pg and py
cannot be the singular point of any irreducible member of A, by Bézout’s theorem.
The only reducible member is 215 if a cubic in A splits into a conic and a line, the
line must be either I; or ls, for the collinearity properties we required; hence the
conic must also split and the reducible cubic is I315.

2.3.3.3. Equivalence between the Constructions. We want to show that the con-
structions above lead to the same rational elliptic surface; that is, there exist bira-
tional maps that change the rational elliptic surface given in one construction into
the rational elliptic surface given by the other construction.

First, let & be the rational elliptic surface described in construction (4). We
will use the same notation as in that section. Since pgy is a base point of A of
multiplicity 2, there are two curves above it: the (—1)-curve Py and a (—2)-curve
Pyj. After contracting Py, we get a new surface where the image of the curve Py is a
(—1)-curve and can be contracted itself. We will denote by &’ the surface obtained
contracting first Py and then the image of Pj. Each image in &” of the exceptional
curve P; is isomorphic to P; itself, so it will be called P; again. Let E; be the strict
transform on &’ of the line passing through p; and ps, F2 be the strict transform
on &’ of the line passing through ps and ps and L; be the strict transform on &”
of ly. The (—1)-curves Li, P, Ps, Ps, Py, E1, E> do not intersect each other and
contracting them we find a linear pencil of cubics as in (3).

On the other hand, let & be the rational elliptic surface described in construc-
tion (3). We will use the same notation as in that section. Since pg is a base
point of A of multiplicity 3, there are three curves above it: the (—1)-curve Py, a
(—2)-curve P} and another curve we are not interested in. After contracting Py,
we get a new surface where the image of the curve Pj is a (—1)-curve and can be
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contracted itself. We will denote by & the surface obtained contracting first Py and
then the image of PJ. Each image in &’ of the exceptional curve P; is isomorphic
to P; itself, so it will be called P; again. Let E; be the strict transform on &’ of
the line passing through ps and p3. Let Ly be the strict transform of [; and let Lo
be the strict transform of ly. The (—1)-curves Py, Ps, Ps, Ps, L1, Ls and E; do not
intersect each other and contracting them we get a linear pencil of cubics as in (4).

THEOREM 2.3.4. Let & be a rational elliptic surface with Mordell-Weil rank
four and MW (&) = D}. Then & arises from a linear pencil of cubic curves on as
in construction (3).

PrOOF. We must show that all the possible constructions of a rational elliptic
surface of rank four with a fiber of type I are equivalent to (3). We know from
section B.2 that there are four constructions; we just showed that (3) and (4) are
equivalent. With similar arguments one can show that all the possible constructions
are equivalent.

We now show that (2) and (3) are equivalent.

Suppose we are working in the settings of (2). Let & be the induced rational elliptic
surface. Let po, ..., ps be the base points of the pencil. Let pg be the base point of
multiplicity four, p; and py two base points on the conic belonging to the reducible
member inducing the fiber of type I and I; ; the line passing through p; and p;.
We can obtain a pencil as in (3) by contracting three of the four exceptional curves
above py, the strict transforms of the lines ly 1, lp.2 and {1 2 and every exceptional
curve above p;, i # 0,1, 2.

Conversely, suppose we are working in the settings of (3). Let & be the induced
rational elliptic surface. Let pg,...,ps be the base points of the pencil. Let py be
the base point of multiplicity three, p; and ps two base points on the same line
I, p3 a base point not in [ and [; ; the line passing through p; and p;. We can
obtain a pencil as in (2) by contracting all the tree exceptional curves above po,
the strict transforms of the lines [y 3, l2 3 and [ and every exceptional curve above
pi, @ #0,1,2,3.

We now show that (1) and (2) are equivalent.

Suppose we are working in the settings of (1). Let & be the induced rational
elliptic surface. Let po,...,ps be the base points of the pencil. Let py be the base
point of multiplicity five, p; and py two other base points and /; ; the line passing
through p; and p;. We can obtain a pencil as in (2) by contracting four of the five
exceptional curves above py, the strict transforms of the lines lg 1, lp,2 and I; 2 and
every exceptional curve above p;, i # 0,1, 2.

Conversely, suppose we are working in the settings of (2). Let & be the induced
rational elliptic surface. Let pg,...,ps be the base points of the pencil. Let pg be
the base point of multiplicity four, p; the base point on the line [, tangent to the
conic at pg and let [; ; the line passing through p; and p;. We can obtain the pencil
as in (1) by contracting four exceptional curves above pg, the strict transform of [,
and the strict transforms of all {; ; with ¢ > 1.

This concludes the proof.

O

2.4. Two Reducible Fibers
According to section 2.1, there are two cases:

(1) one bad fiber has 4 components and the other has 2 components;
(2) both bad fibers have 3 components.



24 2. CONSTRUCTION OF RATIONAL ELLIPTIC SURFACES WITH RANK 4

We will start with the first case: from Appendix A we know that the fiber with
4 components can only be of type 14, while the fiber with two components can be
either of type I or of type I11.

2.4.1. A Fiber of type I and a Fiber with two Components. From
section B.3, in order to have a fiber of type I, the pencil of cubics must have a
member of one of the following forms:

(1) A nodal cubic such that the singular point is a base point with multiplicity
4.

(2) A reducible cubic, split into a line and an irreducible conic, such that
either
(a) the intersection points are base points with multiplicity 2 and 2 re-

spectively, or

(b) only one intersection point is a base point and has multiplicity 3.

(3) A reducible cubic, split into 3 non-concurrent lines, such that one inter-
section point between the lines is base point with multiplicity 2 and the
other intersection points are not base points.

From section B.5, in order to have a fiber with two components, the pencil of cubics
must have a member of one of the following forms: and a member of one of the
following forms:

(1) A rational irreducible cubic such that the singular point is a base point
with multiplicity 2,

(2") A reducible cubic, split into an irreducible conic and a line, such that the
intersection points between them are not base points.

2.4.1.1. Construction. We will construct an elliptic surface of rank 4 from a
linear pencil of cubics as in (3) + (2').

Let @ be an irreducible conic and let [ be a line. Let ¢; and g5 be the intersection
points between @ and | (¢ = ¢ can happen). Let l; be a line such that the
intersection points with @ are py and p; # pg and the intersection point with [ is
p2 # qi, © = 1,2. Let [y be a line passing through py such that the intersection
points with @ are py and p3 # pg and the intersection point with [ is py # ¢,
i =1,2. Let I3 be a line such that the intersection points with @ are ps, ps and the
intersection point with [ is p; # ¢;, © = 1,2. We will choose I3 such that ps, pg, p7
are not equal to any other point p; and they are not collinear to any couple of other
points p;. Let t be the tangent to Q at pg.

Consider the pencil of cubics A passing through pg, p1, p2, p3, pa, Ps, Ps, P7, with
prescribed tangent ¢ at pg. This pencil contains a smooth member, as shown in
section C.2. The point py cannot be a singular point of any irreducible member
of A, by Bézout theorem. We now analyze the presence of reducible members in
A. Any reducible member that splits into the product of three lines must be the
product l1l2l3, for the collinearity relation we stated. Any reducible member that
splits into the product of an irreducible conic and a line is @I, since the line should
pass through three distinct points and any choice of three collinear points different
from ps, ps, p7 determines a cubic split into three lines.

We denote by P,..., Ps the (—1)-curves above po, ..., pg.

We will analyze the two reducible fibers separately. Let P, @ be two elements in
the Mordell-Weil group of the rational elliptic surface given by the blow-up of P2
at the base points of A. Using the Contribution Table in section 1.9.2, we find
that, if P meets the component ©; and ) meets the component ©; with ¢ < j, the
contribution of the I fiber to (P, Q) is given by:

contr(P, Q) = Z({fj)
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Pe

FI1GURE 2.7. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with a fiber of type I, and a
fiber with two components.

We set P, as the zero section. Using the technique described in section B.1 we find
that, since pg, p1 and po lie in the same line, then P; and P, intersect either ©1 or
©3. Suppose they intersect ©1. Then, for the same reason, P; and P, must intersect
the component O3 and all the other P;’s intersect the fiber at the component Os.
We get the following matrix:

3/4 3/4 1/4 1/4 1/2 1/2 1/2
3/4 3/4 1/4 1/4 1/2 1/2 1/2
1/4 1/4 3/4 3/4 1/2 1/2 1/2
(contrs(Ps, P)), ;= | 1/4 1/4 3/4 3/4 1/2 1/2 1/2
12 1/2 1/2 12 1 1 1
/2 1/2 12 1/2 1 1 1
/2 1/2 12 1/2 1 1 1

For the fiber with two components we will proceed similarly. Using the Con-
tribution Table in section 1.9.2, we find that, if P meets the component ©; and Q
meets the component ©; with ¢ < j, the contribution of the fiber to (P, Q) is given
by:

contr(P,Q):i(?_j):{ 0 if i=0

2 1/2 if i=j=1.

Using the technique described in section B.1, since po, ps and p7 are in the same
line, and they are not in the conic where pg is, then P>, Py and P; must intersect
the component ©1. All the other P;’s intersect the zero component. We have the
following matrix:

00 0 0 00 0
0 1/2 0 1/2 0 0 1/2
00 0 0 00 0
(contra(P;, P)), ;= | 0 1/2 0 1/2 0 0 1/2
00 0 0 00 0
00 0 0 00 0
0 1/2 0 1/2 0 0 1/2
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This allows us to compute the height pairing of the points Py, ..., FPs.
We will consider the matrix given by the height pairing of Py, P5, Ps and P;. The
height matrix is then the following:
3/4 1/2 1/2 0
/2 1 0 0
1/2 0 1 0
0 0 0 1/2

According to theorem 2.1.1, the Mordell-Weil lattice of the induced surface is iso-
morphic to A§ @ Aj; in particular it has determinant equal to 1/8. Since the
determinant of the matrix A4o is equal to 1/8, the elements Py, Ps, Ps and P
generate the full Mordell-Weil group of the rational elliptic surface.

Ao =

THEOREM 2.4.2. Let & be a rational elliptic surface with Mordell-Weil rank
four and MW (&) = A5 @ Aj. Then & arises from a linear pencil of cubic curves
on as in construction (3) + (2).

PROOF. We must show that all the possible constructions of a rational elliptic
surface of rank four with a fiber of type I; and a fiber with two components are
equivalent to (3) + (2).

For all the constructions where the fiber with two components is induced by
an irreducible fiber, we can reduce to [ |, theorem 3.2, using the procedure
described in section B.6. In fact, the configurations of the base points we have to
deal with are similar to the ones treated in that theorem: the only difference is that
in our cases there is a base point p with an infinitely near point, where p corresponds
to the singular point of the member inducing the fiber with two components. This
point p lies smoothly on the cubic inducing the I, fiber. Moreover, the equivalences
we are looking for are given applying the Cremona transformations mentioned in
that paper, being careful that the point p is not involved in the choices of the lines
to contract.

All the equivalences will be proven as summarized in the following diagram (as
we said, the first column of equivalences is granted):

(2)() + (1) (2)(b) +(2)

ﬁ()\
@@+ 1) @@+@) e

/4

(3) + (1) == (3) + (2)

We now prove implication (i). Suppose we are working in the settings of con-
struction (1) + (1’). Let po,...,ps be the base points of A and let [; ; be the line
passing through p; and p;. Let py be the base point of A with multiplicity 4 and let
p1 be the base point of A with multiplicity 2. Let ps, p3 be two other base points.
Let & be the rational elliptic surface induced from A. Let P; be the (—1)-curve
above p; in &. It is possible to obtain a linear pencil of cubics as in (1) + (2/)
contracting all the exceptional curves above pg (4 in total), the strict transforms of
l12, 13 and I3 3, and the (—1)-curves P;, with i # 2, 3.

We now prove implication (i7). Suppose we are working in the settings of
construction (1) + (2’). Let po,...,ps be the base points of A and let [; ; be the
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line passing through p; and p;. Let py be the base point of A with multiplicity 4
and let p1,ps be two base points on the conic belonging to the reducible member
of A inducing the fiber with 2 components. Let & be the rational elliptic surface
induced from A. Let P; be the (—1)-curve above p; in &. It is possible to obtain
a linear pencil of cubics as in (2) + (2’) contracting three of the four exceptional
curves above pg, the strict transforms of ly; and of ly > and each exceptional curve
P; with ¢ # 1, 2.

We now prove the equivalence (#i7). Suppose we are working in the settings of
construction (2)(b) + (2'). Let po,...,ps be the base points of A and let I; ; be the
line passing through p; and p;. Let py be the base point of A with multiplicity 3.
We suppose that the conics belonging to the reducible members of A are tangent to
each other at pg. Let p; be the base point of A realized as the intersection point of
the line composing the cubic inducing the fiber of type I4 and the conic composing
the cubic inducing the fiber with two components. Let ps be a base point belonging
to both those conics. Let & be the rational elliptic surface induced from A. Let P;
be the (—1)-curve above p; in &. It is possible to obtain a linear pencil of cubics as
in (2)(a) + (2') contracting two of the three exceptional curves above pg, the strict
transforms of lp.o and of I, » and each exceptional curve P; with i # 1, 2.

Vice versa, suppose we are working in the settings of construction (2)(a) + (2).
Let po,...,ps be the base points of A and let [; ; be the line passing through p;
and p;. Let po and p; be the base points of A with multiplicity 2 and let ps be
the base point of A collinear with py and ps. Let p3 and ps be two base points
belonging to both the conics composing the reducible members of A. Let & be the
rational elliptic surface induced from A. Let P; be the (—1)-curve above p; in &. It
is possible to obtain a linear pencil of cubics as in (2)(b) + (2') contracting all the
exceptional curves above py (2 in total), the strict transforms of I o, of I3 3, of Iy 4,
of I3 3, and of Iz 4 and the (two) remaining exceptional curves above p; with i > 4.

We now prove implication (iv). Suppose we are working in the settings of
construction (2)(b) + (2'). Let po,...,ps be the base points of A and let ; ; be the
line passing through p; and p;. Let py be the base point of A with multiplicity 3. We
suppose that the conics belonging to the reducible members of A have a common
tangent at pg. Let p; be a base point belonging to both the conics composing the
reducible members of A. Let ps be one of the two points of intersection between
the line composing the cubic inducing the fiber with two components and the conic
composing the cubic inducing the fiber of type I;. Let & be the rational elliptic
surface induced from A. Let P; be the (—1)-curve above p; in &. It is possible
to obtain a linear pencil of cubics as in (3) + (2') contracting two of the three
exceptional curves above pg, the strict transforms of Iy 1, of ly 2, and of I; 2 and all
the exceptional curves P; with 7 > 2.

We now prove implication (v). Suppose we are working in the settings of
construction (3) + (2'). We use exactly the same notation as the one used in that
construction. Let [; ; be the line passing through p; and p;. Let & be the rational
elliptic surface induced from A. Let P; be the (—1)-curve above p; in &. It is possible
to obtain a linear pencil of cubics as in (3) + (1') contracting all the exceptional
curves above py (2 in total), all the curves Py, P3, Ps, Py and the strict transforms
of 1274, of 1276, and of l476. O

2.4.3. Two Fibers with three Components. According to section B.4, in
order to have two fibers with three components, the pencil of cubics must have two
members of one of the following forms:

(1) A rational irreducible cubic such that the singular point is a base point
with multiplicity 3,
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(2) A reducible cubic, split into a line and an irreducible conic, such that
only one of the intersection points between them is a base point and has
multiplicity 2,

(3) A reducible cubic, split into 3 lines, such that no intersection points are
base points.

2.4.3.1. Construction. We will construct an elliptic surface of rank 4 from a
linear pencil of cubics as in (3) + (3).

Let E be a smooth cubic curve. Let l; be a line meeting E at three distinct
points pg, p1,p2. Let lo be another line intersecting Iy at a point different from any
pi. We require also that

e the line ls meets F at three distinct points ps, pg, p5 (all different from the
previous p;’s),

e any line m; = p;_1pir2 (1 = 1,2, 3) is not tangent to F,

e the intersection points between m; and m; (i # j = 1,2,3) are three
distinct points not on F, and

e the new points p;45’s given by the intersection between any m; and E
(different from the previous p;’s) are not collinear to any non-trivial com-
bination of the p;’s j < 6.

There exists a line [3 passing through pg, p7, Ps.

mq 1
L

FiGURE 2.8. Configuration of the base points of a pencil of cu-
bics inducing a rational elliptic surface with two fibers with three
components each.

This holds if and only if pg + p7 + ps = ¢q in the group law of E, where ¢ is the
third point of intersection between E and the tangent line to E at O. Using the
collinearity relations:

Po+p1+p2=gq, D3+ P4+ DPs =¢q
and
Po +P3s +ps = q, p1+ps+p7r =g, p2 +ps +ps =q,
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we have

Pe +pr+ps=q—po—p3+q—p1—Ps+qg—pP2—Ds
=q+q—po—p1—pP2+q—pP3—ps—ps
=¢+0+0=q.

This choice grants that the pencil of cubics A, generated by [1l2l3 and E contains
mimeomg. We will show that l1l3l3 and mymomg are the only reducible members
in A. In fact, from the assumptions on the (non) collinearity of the p;’s the only
lines passing through three of them are the one mentioned before. This shows that
the only reducible members are ll3l3 and mymoms. Moreover the base points of
A cannot be the singular points of any irreducible cubic, by Bézout’s theorem.

Notice that the reducible members of A correspond to fibers with three compo-
nents in the rational elliptic surface given by the blow-up of P? at the base points
of A.

We denote by Py, ..., Ps the (—1)-curves above po,...,ps.

We denote by F; the fiber induced by [l1lol3 and by Fj, the fiber induced by
mimomg. We will analyze the two reducible fibers separately. Let P,Q be two
elements in the Mordell-Weil group of the rational elliptic surface given by the
blow-up of P? at the base points of A. Using the contribution table in section 1.9.2,
we find that, if P meets the component ©; (of any of the two reducible fibers) and
@ meets the component ©; with ¢ < j, the contribution of the fiber to (P, Q) is
given by:

_i(3—J)

= T

We set Py as the zero section. We are analyze the fiber F;. Using the technique
described in section B.1, since the points pg, p1 and ps lie in the same line, then
P and P, meet the zero component of the fiber, ©g; the points ps, ps and ps lie in
the same line, so P3, P, and P5; meet the same component, which can be either ©4
or Og; without loss of generality, we fix it to be ©1; the points pg, p; and pg lie in
the same line, then Py, P; and Ps meet ©2. We get the following matrix:

contr(P, Q)

00 0 0 0 0 0 0
00 0 0 0 0 0 0
0 0 2/3 2/3 2/3 1/3 1/3 1/3
0 0 2/3 2/3 2/3 1/3 1/3 1/3
(contrr (P Fi))i = | g 0 273 2/3 2/3 1/3 1/3 1/3
0 0 1/3 1/3 1/3 2/3 2/3 2/3
0 0 1/3 1/3 1/3 2/3 2/3 2/3
0 0 1/3 1/3 1/3 2/3 2/3 2/3

Now, we are analyzing the fiber F,,. The structure is similar to the previous
one. We get the following matrix:

2/3 1/3 0 2/3 1/3 0 2/3 1/3
13 2/3 0 1/3 2/3 0 1/3 2/3
0o 0 0 0 0 0 0 0
2/3 1/3 0 2/3 1/3 0 2/3 1/3
(contrre, (P Pi))is = | 13 973 0 1/3 2/3 0 1/3 2/3
0o 0 0 0 0 0 0 0
2/3 1/3 0 2/3 1/3 0 2/3 1/3
13 2/3 0 1/3 2/3 0 1/3 2/3
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We consider the matrix given by the height pairing of Py, P3, Ps and Ps;. The
height matrix is the following:

4/3 1 2/3 1
Aea | 143 13 2/3
2371 02/3 1/3 2/3 2/3
1/3 2/3 2/3 4/3

According to theorem 2.1.1, the Mordell-Weil lattice of the induced surface is iso-
morphic to A§®2; in particular it has determinant equal to 1/9. Since the deter-
minant of the matrix As 3 is equal to 1/9, the elements Py, Ps, Ps and Ps generate
the full Mordell-Weil group of the rational elliptic surface.

THEOREM 2.4.4. Let & be a rational elliptic surface with Mordell-Weil rank
four and MW (&) = A3%2. Then & arises from a linear pencil of cubic curves as
in construction (3).

PRrROOF. We have to show that all the constructions are equivalent. Using the
procedure described in section B.6, as for theorem 2.4.2, we can use an argument
similar to the one used in | ] to prove the equalities between the pencils having
an irreducible member inducing a fiber with three components. All the equivalences
will be proven as summarized in the following diagram:

1)+ (1)

We now show equivalence (7). Suppose we are in the setting of (1) 4 (2). We

denote by po, . .., ps the base points of the pencil and by /; ; the line passing through
p; and p;. Let & be the induced rational elliptic surface. We denote by P; the (—1)-
curve above p;. Let pg be the base point of multiplicity 3. We suppose that the
conic belonging to the cubic inducing one of the reducible fibers passes through pg.
Let p; be the base point with multiplicity 2. Let ps be a base point on the conic
belonging to the cubic inducing one of the reducible fibers and let p3 be a base point
on the line belonging to the cubic inducing one of the reducible fibers. We obtain a
linear pencil of cubics as in (2) + (2) contracting two of the three exceptional curves
above pg, both the exceptional curves above p;, the strict transforms of lg 1, of I 2
and of [y 2 and all the curves P; with 7 > 2.
Vice versa, suppose we are working in the setting of (2) 4+ (2). We denote by
Do, - - -,Pe the base points of the pencil and by /; ; the line passing through p; and
pj. Let & be the induced rational elliptic surface. We denote by P; the (—1)-
curve above p;. Both the reducible members of the pencil are split into a line and
an irreducible conic. Let pg, p1,p2 be the base points on one of the two lines, let
D2,D3, P4 be the three base points on the other line (py is the intersection point
between those lines) and let ps, pg be the remaining base points (base points which
are intersection points between the two conics different from pg and p1). We suppose
that pg and ps are the base points with multiplicity 2. We obtain a linear pencil of
cubics as in (1) 4+ (2) contracting all the exceptional curves above py and p; (4 in
total), the strict transforms of [; 4, of I3 5, of l4 5 and of Iy ; and Ps.

We now prove equivalence (ii). Suppose we are in the setting of (1) + (3).
We denote by po,...,ps the base points of the pencil and by [; ; the line passing
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through p; and p;. Let & be the induced rational elliptic surface. We denote by P;
the (—1)-curve above p;. Let py be the base point of multiplicity 3. Let p1, ps, ps
three collinear base points and let p4, ps, ps be three other collinear base points.
We can obtain a linear pencil of cubics as in (2) + (3) contracting two of the three
exceptional curves above py, the strict transforms of ly 1, of lp.4 and of [; 4 and the
curves Ps, Ps, P5, Ps.

Vice versa, suppose we are in the setting of (2) + (3). We denote by py, ..., pr the
base points of the pencil and by [; ; the line passing through p; and p;. Let & be
the induced rational elliptic surface. We denote by P; the (—1)-curve above p;. Let
po be the base point of multiplicity 2. Let p; be the base point on the tangent at pg
to the irreducible cubics of the pencil and let py, p3 be the two base points collinear
to pg. We can obtain a linear pencil of cubics as in (1) + (3) contracting both the
exceptional curves above pg, the strict transforms of [; 2, of [; 3 and of l3 3 and all
the curves P; with 7 > 2.

We now show equivalence (#i7). Suppose we are in the setting of (2) + (3).
We denote by po, ..., pr the base points of the pencil and by [; ; the line passing
through p; and p;. Let & be the induced rational elliptic surface. We denote by
P; the (—1)-curve above p;. Let pg be the base point of multiplicity 2. Let p; be
the base point on the tangent at py to the irreducible cubics of the pencil and let
p2,p3 be the two base points collinear to pg. Let ps, p4, ps be three collinear base
points and let po, pg, p7 be three collinear base points. We obtain a linear pencil of
cubics as in (3) 4 (3) contracting one of the two exceptional curves above pg, the
strict transforms of Iy 5, of ly 7 and of I5 7 and the curves Py, P», Ps, Py, Fs.

Vice versa, suppose we are working in the setting of (3) + (3). We use the same
notation used in that construction. We denote by [; ; the line passing through p;
and p;. Let & be the induced rational elliptic surface. We denote by P; the (—1)-
curve above p;. We can obtain a linear pencil of cubics as in (2)4(3) contracting Py,
the strict transforms of [5 3, of I3 ¢ and of I3 ¢ and the curves Py, Py, Ps, P7, Ps. U

2.5. Three Reducible Fibers

According to section 2.1 one reducible fiber has three components and the other
two have two components. Appendix A tells us that the former fiber can be a of
type IV or I3 and latter ones of type Iy or I11.

2.5.1. A Fiber with three Components and two Fibers with two Com-
ponents. In order to have a fiber with three components and two fibers with two,
the pencil of cubics must contain one member of the following forms (see section
B.4):

(1) A rational irreducible cubic such that the singular point is a base point
with multiplicity 3,

(2) A reducible cubic, split into a line and an irreducible conic, such that
only one of the intersection points between them is a base point and has
multiplicity 2,

(3) A reducible cubic, split into 3 lines, such that no intersection points are
base points;

and two members of the following forms (see section B.5):
(1) A rational irreducible cubic such that the singular point is a base point
with multiplicity 2,
(2") A reducible cubic, split into an irreducible conic and a line, such that the
intersection points between them are not base points.
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2.5.1.1. Construction. We will construct an elliptic surface of rank 4 from a
linear pencil of cubics as in (3) + (2) + (2).

Let Q. be an irreducible conic. Let pq, ..., pg be six distinct points on @, such
that the point pg, given by the intersection of the line I, = pspg and ns = P2p3
is not collinear with the points p; and py. We now define two lines n; = pgp1
and ny = pyps. Take a point p7 in ny and the point pg = ny; N popy. By Pascal’s
theorem there exists a (unique) conic Q) passing through pi,...,ps, pr,ps. This
conic is irreducible if p; is a general point in ng, that is p; ¢ P3ps. Now, call [, the

line p7ps.

FI1GURE 2.9. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with three reducible fibers.

Consider the pencil of cubics A, passing through py, ..., ps. We show in section
C.3 that A contains a smooth member. We now prove that the unique reducible
members are ninaong, Qul, and Qply. Suppose by contradiction that there exists a
reducible member in A different from Q.l., Qply and ningong. It cannot split into
three lines, since the only lines passing through point pg and two other base points
are components of the above reducible members. This implies that this member is
split into a line and an irreducible conic and pq is a point on that conic. This conic
should pass through five other base points, such that no combination of those five
points and pg leads to a reducible conic. This implies that the remaining three base
points are not collinear, thus the line composing the member does not exists.

We will denote by Py, ..., Ps the (—1)-curves above py, ..., ps.
We set Py as the zero section. The cubic ningong determines a fiber of type I3.
Since there are nine distinct base points, the configuration of the these points easily
determines the intersection between the exceptional curves and the components of
the fiber, giving the following matrix, using the Contribution Table in section 1.9.2
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in the case of a fiber with three components:
2/3 0 0 1/3 1/3 2/3 1/3 2/3

0 00 0 0 0 0 0
000 0 0 0 0 0
1/3 0 0 2/3 2/3 1/3 2/3 1/3
(contrs (P Pi))is =1 13 0 0 2/3 2/3 1/3 2/3 1/3
2/3 0 0 1/3 1/3 2/3 1/3 2/3
1/3 0 0 2/3 2/3 1/3 2/3 1/3
2/3 0 0 1/3 1/3 2/3 1/3 2/3

The cubic Q,l, determines a fiber with two components. We can associate the
following matrix:
/2 1/2 1/2 1/2 1/2 1/)2
1/2 1/2 1/2 1/2 1/2 1/2
1/2 1/2 1/2 1/2 1/2 1/2
oip | 12 12 1/2 172 1/2 1)2
(contr3 (P Pi))is = 12 172 172 172 12 12
/2 1/2 1/2 1/2 1/2 1/2
0 0 0 0 0 0
0 0 0 0 0 0 0

The cubic Qpl, determines a fiber with two components. We can associate the
following matrix:

OO OO O oo
OO OO O oo

o

1/2 1/2 1/2 1/2 0 0 1/2 1/2

1/2 1/2 1/2 1/2 0 0 1/2 1/2

1/2 1/2 1/2 1/2 0 0 1/2 1/2

, 1/2 1/2 1/2 1/2 0 0 1/2 1/2
(contr3 (P P))s=1 0" 00 0 0 00 0 0
O 0 0 0 00 0 0

1/2 1/2 1/2 1/2 0 0 1/2 1/2

1/2 1/2 1/2 1/2 0 0 1/2 1/2

We will consider the matrix given by the height pairing of Py, P35, Ps and P;. The
height matrix is the following:
1/3 0 1/6 1/6
YUURE B S Vo v
32271 1/6 1/2 5/6 1/3
1/6 1/2 1/3 5/6

According to theorem 2.1.1, the Mordell-Weil lattice of the induced surface has
determinant equal to 1/12. Since the determinant of the matrix As s is the same,
the elements P, P3, P; and P; generate the full Mordell-Weil group of the rational
elliptic surface.

THEOREM 2.5.2. Let & be a rational elliptic surface with Mordell-Weil rank
four with three reducible fibers. Then & arises from a linear pencil of cubic curves
on as in construction (3) + (2') 4+ (2).

PROOF. We have to prove that all the constructions of a rational elliptic surface
with rank four and three reducible fibers are equivalent. As for theorem 2.4.2,
we can use some results from | ] and | ], according to the procedure
explained in section B.6: in fact, we can show that all the pencils having two
irreducible members inducing the two fiber with two components are equivalent
using the same reasoning used in | ], in the context of a unique fiber with
three component (we must be careful not to involve the singular points of the
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irreducible cubics inducing the fiber with two components in the choice of the lines
to contract). For the same reason, we can reduce to | | for the equivalences
between pencils with exactly one irreducible member inducing a fiber with two
components and we can reduce to | | for the equivalences between pencils
with an irreducible member inducing the fiber with three components.

All the equivalences will be proven as summarized in the following diagram (we

denote by f? the technique of [ ] in the context of i reducible fibers and by s?
the technique of | ] in the context of two reducible fibers):
12 12

We now prove equivalence (7). Suppose we are in the setting of (1) + (2') 4+ (2).
We denote by po,...,ps the base points of the pencil and by /; ; the line passing
through p; and p;. Let & be the induced rational elliptic surface. We denote by
P; the (—1)-curve above p;. Let py be the base point of multiplicity 3. Let C; be
the reducible cubic in the pencil, split into the conic Q); and the line [;. Let p; be
the base point given by one of the intersection points of Q1 and l» and let py be
the base point given by one of the intersection points of @5 and l;. It is possible
to obtain a pencil as in (2) + (2') + (2') contracting two of the three exceptional
curves above py, the strict transforms of Iy 1, of lp 2 and of [; 2 and Ps, Py, Ps.
Vice versa, suppose we are working in the setting of (2) + (2') + (2'). We denote by
Do, - - -, 7 the base points of the pencil and by /; ; the line passing through p; and
p;. Let & be the induced rational elliptic surface. We denote by P; the (—1)-curve
above p;. Let pg be the base point of multiplicity 2. Let p; be a base point given by
the intersection of three conics each one of them belongs to a reducible member in
the pencil. Let ps and ps be the two base points collinear with pg. It is possible to
obtain a linear pencil as in (1) + (2') 4+ (2’) contracting both the exceptional curves
above pg, the strict transforms of [; 2, of I; 3 and of I3 35 and the curves Py, Ps, Fs, Pr.
We now prove equivalence (ii). Suppose we are working in the setting of (2) +
(2') 4+ (2'). We denote by po,...,pr the base points of the pencil and by I; ; the
line passing through p; and p;. Let & be the induced rational elliptic surface. We
denote by P; the (—1)-curve above p;. Let pg be the base point of multiplicity 2.
Denote by C; the reducible cubic of the pencil, split into a conic @); and a line
l;, inducing a fiber with two components. Let p; and ps; be the two base points
collinear with py. Let p3 be a base point given by an intersection point of /; and
Q2 and let py be a base point given by an intersection point of I and @q. It i
possible to obtain a linear pencil of cubics as in (3) + (2') + (2’) contracting only
one exceptional curve above pg, the strict transforms of Iy 3, of lp 4 and of I3 4 and
Py, Py, Ps, P, Pr.
Vice versa, suppose we are in the setting of (3) + (2) 4+ (2/). We use the same
notation of that construction. We denote by I; ; the line passing through p; and p;
and by P; the (—1)-curve above p;. It is possible to obtain a linear pencil of cubics
as in (2) + (2') + (2) contracting the strict transforms of I3 6, of I3 g and of lg s and
Py, Py, Py, Py, Ps, Pr. O
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2.6. Four Reducible Fibers

According to section 2.1 all the reducible fibers have two components. From
section A, each reducible fiber can be of type I or I11. We also recall that either
the Mordell-Weil group has torsion, or it is torsion-free and both cases may happen
(see theorem 2.1.1).

In order to have four fibers with two components, the pencil of cubics must
contain four members of the following forms (see section B.5):

(1) A rational irreducible cubic such that the singular point is a base point
with multiplicity 2,

(2) A reducible cubic, split into an irreducible conic and a line, such that the
intersection points between them are not base points.

We first deal with the non-torsion case and a full section will be devoted for
the torsion case.

2.6.1. The Non-Torsion Case. We are now trying to construct a rational
elliptic surface of rank four with four reducible fibers without torsion.

We will build it as the blow-up of a linear pencil of cubics containing four reducible
members split into a line and an irreducible conic.

First take two conics @, and @), intersecting at four points pi, p2, p3, p4. Let
lg be the line passing through p; and p, and [. be the line passing through p3 and
ps. Let pg be the point of intersection between [. and ;. Now, take two points pr
and pg on @ and two points p5; and pg on @, satisfying the following requirements:

e the points pg, pr and pg are collinear,
e the points pg, ps and pg are collinear,

e the points p1, po, ps, s, pr and pg are on an irreducible conic Q. and
e the points p3, p4, ps, Ps, pr and pg are on an irreducible conic Q.

We will denote by [, the line passing through p7; and pg and by [, the line passing
through ps and pg.

Consider the linear pencil of cubics A passing through pg,...,ps. We prove
in section C.4 that A contains a smooth member. Now we analyze the presence
of reducible members. The reducible members in A split into a line and a conic.
Since the base points of A are nine distinct points, any line should pass through
three base points. The only possibility for that line is to be one among [,,...,lq4,
since there cannot be other collinearity relations between the p;’s, otherwise at least
one among @, ..., Qg4 would be a reducible conic. This shows that A has exactly
Qula, ..., Q4qlg as reducible members.

Let Py, ..., Ps be the (—1)-curves above po, ..., ps. Set Py as the zero section.
Every reducible member in A determines a fiber with two components. Using the
same reasoning as in the previous constructions, we can deduce the contribution
of each fiber to each pairing between the P;’s. The height matrix associated to
Py, ..., P is the following:

/2 1/2 0 0 0 0
/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0
0 1/2 1/2 0 0
0o 0 0 1/2 1/2

o 0 0 1/2 1/2 0 0
o 0 0 0 0 1/2 1/2
o 0 0 0 0 0 1/2 1/2

Taking the submatrix given by the pairing of the exceptional curves above four base
points such that any two of them are not on any line l,, [, . or l4, we get a matrix

o OO oo
jen Bl enlianBlen B en)

OO OO




36 2. CONSTRUCTION OF RATIONAL ELLIPTIC SURFACES WITH RANK 4

F1GURE 2.10. Configuration of the base points of a pencil of cubics
inducing a rational elliptic surface with four reducible fibers.

of the following form:

1/2 0 0 0

0 1/2 0 0

0 0 1/2 0

0 0 0 1/2
This matrix has determinant equal to 1/16, which is exactly the determinant asso-
ciated to the Mordell-Weil group of the induced rational elliptic surface. Thus the
exceptional curves generate the full Mordell-Weil lattice of the surface. Moreover
the possibility that the surface has torsion is excluded: in the case of a rational
elliptic surface with rank four with torsion, the determinant of the height matrix
of any four elements is equal to 1/4 times a square integer. This happens because
the determinant of the associated Mordell-Weil lattice is 1/4.
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2.7. The Torsion Case

2.7.1. Construction. In this section we will construct a linear pencil of cubics
with four reducible members, split into a line and an irreducible conic such that
the induced rational elliptic surface has torsion.

To improve readability we will use the notation r N s for “r intersected with s”
and p U ¢ for “the line passing through p and ¢”.

First, take five points p1, p2, a, b and c¢. Let 3 be the line

B=(p2Ua)N(p1Uc))U((prUb)N(p2Uc)).
Let a and § be two lines defined by
a=aU ((p1Uc)N(p2Ud)),

d=bU((prUa)N (p2Uc)).

b2

p1

FIGURE 2.11. Construction of the Pascal’s lines.

The blue lines, denoted by Greek letters, will be crucial in proving the presence
of four conics passing through six points. In this step we will build the first two
lines appearing as components of two of the reducible members of the pencil of
cubics.

Let pg be the point
(BN Up)N((BNa)Ups).
Let [, be the line
((poUp1) Ne) U ((p1Ua) N (p2Ub))
and let I, be the line

((poUp2) M) U ((prUa)N(p2Ub)).
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b2

DPo

b1

FIGURE 2.12. Setting the first collinear base points.

In this stage we will complete the set of base points. Let [. be the line

(la N (p1Ub)) U Iy N (p1Uc))
and let I4 be the line
(Iy N (p2Ua)) U (la N (p2 Uc)).

la
)
le
D2
Do
c

FIGURE 2.13. The final setup.
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We label the intersection points of the [;’s as follows:
p3:lamlb7 p4:lamld7 p5:lbmlca

pﬁzlcﬂld, p’?:lamlcy p8:lbmld~
We fixed the position of nine points in P2. In section D.2 we prove that the
pi’s are base points of a pencil of cubics with four reducible members split into a
line and an irreducible conic. We check that the pencil contains at least a smooth
member in section C.5.

2.7.2. The Mordell-Weil Group. We just showed that it is possible to
choose nine distinct points po, . .., ps on P? such that there are four lines I, ..., lq
and four irreducible conics @, . .., Qg with the following properties:

D3, P5,P8 € la, D3,P4,P7 € lp, D5, D6, P7 € Lo, P4, P6, P8 € la,

Po,P1,D2,P4,P6,P7 € Qa7 Po,P1,P2;P5,P6,P8 € Qb7

Po,P1,D2,P3,P4,08 € Qe;, D0, P1,P2,P3,P5,P7 € Qs
any three other combination of the p;’s is not on a line and any other combination
of six of the p;’s is not on an irreducible conic.

Consider the pencil A determined by pg, . .., ps. The unique reducible members
are Qqlq, Qply, Q.. and Q4lg4, since for every other conic passing through six of the
pi’s the remaining three base points are not collinear.

We will denote by Py, ..., Ps the exceptional curves above po,...,ps. We set
Py as the zero section. Every reducible member of A determines a fiber with 2
components. With the same method used in the other constructions, it is possible
to get the intersection matrices for every reducible fibers and combine them in order
to get the height matrix of the P;’s (i # 0). The height matrix is the following:

1 1 1 1 1 1 1
1 1 1 1 1 1
1 1/2 12 1 1/2 1/2

12 1 1 1/2 1/2 1/2

12 1 1 1/2 1/2 1/2
1 1/2 12 1 1/2 1/2

1/2 1/2 1/2 1/2 1 1

11 1/2 1/2 1/2 1/2 1 1

As for the other constructions, we would like to show that the exceptional
curves above the p;’s generate the full Mordell-Weil group associated to the pencil
of cubics. In our case the Mordell-Weil group is isomorphic to D} @ Z/27 (see
theorem 2.1.1). This means that in order to generate the Mordell-Weil group, we
need to find four exceptional curves above the base points of the pencil that generate
the Mordell-Weil lattice D} (since the rank of the rational elliptic surface is four)
and check that there is a linear combination of the exceptional curves that leads to
a non-zero 2-torsion element.

For the latter part, one can check that 2(P; — Ps) = O (and 2(P; — P5) = O,
2(P; — Pg) = O), as done in subsection C.5.1. For the first part, we choose any
submatrix of A given by four independent elements and get one of the following
matrices (the first one if we choose only one between P; and P, and three indepen-
dent P;’s, ¢ > 2; the second one if we choose both P; and P, and two independent
P’s, i > 2)

e e e )
[ e R = V)

2 1 1 1 2 1 1 1
o112 12 1211

Bi=14 /2 1 1/2 |’ Ba=11 1 1 1/2
1 1/2 1/2 1 11 1/2 1
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In both cases the determinant is 1/4. This shows that the elements we chose
generate the Mordell-Weil lattice, since
1
det(B;) = i= det(Dy),
and implies that the exceptional curves above the base points of the linear pencil
of cubics generate the full Mordell-Weil group.



APPENDIX A

Fiber Configuration

In this section we will list all possible special fibers that can occur in a rational
elliptic surface, together with the Kodaira symbol, the order and the number of
irreducible components.

Kodaira # irreducible .
Symbol ordy(Av) components Drawing
Iy 0 1 Q
1, n n O
I 2 1 <
111 3 2 @
v 4 3

TABLE A.1. Fibers and properties 1/2.
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A. FIBER CONFIGURATION

Kodaira # irreducible .
Symbol ordv(Av) components Drawing
1
1
I 6 5 2
— )
1
2
I 6+n 5+mn
11
2
1
2
[
3 1
v 8 7 .
2 |
!
o
2
3
4
I 9 8 L 2
3
2
1
32
4
5
r 10 9 3
4
2
TABLE A.2. Fibers and properties 2/2.



APPENDIX B

Singular Cubics

B.1. Description of the Fibers

From section 1.7, each rational elliptic surface 7 : & — P! is obtained as the
blow-up of P? at the base points of a linear pencil of cubics A. This correspondence
yields a more specific relation: namely, for each fiber 7=1(t) we can associate a
specific member A; whose image after the blow-up is exactly 7= 1(¢).

First, define m,, as the multiplicity of p as a base point of the pencil; that is,
m, = % means that p is a base point having ¢ — 1 infinitely-near base points. In
order to obtain the fiber of 7 corresponding to the curve C', we do the following for
each base point p of A:

o if m, > 0, we blow-up the point; otherwise we quit.

e we set p’ as the strict transform of p in the proper transform C’ of C. the
value of my, is m, — 1. The curve C' is the strict transform of C' together
with the exceptional curve E above p counted with multiplicity me(p) —1.

e we re-label p’ as p and C’ as C and start again the procedure.

The final shape of the fiber associated to the original curve C is determined by
applying this procedure to each base point of A. Thus, the fiber is given by the
strict transform of the original curve C' plus all the (—2)-curves gained by the
procedures.

B.1.1. Example. In order to make the reader familiar with this technique
(that we use very often), we give an example of an I5 fiber induced by a member
in A split into three lines.

Suppose that the linear pencil A contains a member C, given by the product

of three non-concurrent lines, and only one of the three intersection points between
them is a base point a with m, = 3 and all the other base points p have m, = 1.
Since m, = 3, one of the lines composing C' a belongs to is tangent at a to all the
smooth cubics in A. Let [ be this line. The shape of this curve is given in Figure
B.1, by Bézout’s theorem (numbers correspond to multiplicities as base points).
We are going to first analyze the blow-up at the point a, in Figure B.2. After the
first blow-up, o’ will be the intersection point between (the image of) [ and the
exceptional curve E; above a (E; is a (—1)-curve at this stage). The curve C’ is
given by the strict transform of C' plus the exceptional curve F; above a, counted
with multiplicity 1.
After re-labeling and blowing-up the second time, a’ is a general point on the
exceptional curve Ey above a (E3 is a (—1)-curve); (the image of) the curve E; is
now a (—2)-curve (denoted by Ej, again); the curve C” is the strict transform of C
plus the exceptional curve Fy above a, counted with multiplicity 1.

Now, all (the images via the blow-ups of) the base points have multiplicity 1,
so their blow-up do not affect the shape of the fiber. The blow-up of each point
p among these points will just give a (—1)-curve intersecting (the strict transform
of) the component of the fiber p belonged to. The final configuration is given in
Figure B.3.
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FiGURE B.1. Position of the base points on the curve C.

Es

FiGURE B.2. Position of the base points on the blow-ups at the

point a.

Es

En

FIGURE B.3. Position of the (—1)-curves over the base points on
the fiber.
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B.2. A Fiber with Five Components

In the following table we summarize the possible cubics in A that can be the
image of a fiber with 5 components; from section A, we know that such fiber can be
a fiber of type I5 or Ij. The table shows the whole procedure, so the actual cubics
in P? are divided from the curves that are not cubics, in order to immediately see
the possible members in A.

I I
2
A fiber of type Is. A fiber of type I§.
1 1
2
2

4 concurrent lines or a double line and
two non concurrent lines (the latter
after 2 contractions).

!

!
2
2
3 2 2
X X 2

3 concurrent lines or a double line and
a single line.

4 non concurrent lines; one
intersection point is double.

1 11

3 non concurrent lines.

! |
2
An irreducible conic and a non An irreducible conic and a tangent
tangent line. line.
! |
) )
A node. A cusp.

TABLE B.1. Fibers with five components.
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B.3. A Fiber with Four Components

In the following table we summarize the possible cubics in A that can be the
image of a fiber with 4 components; from section A, we know that such fiber can
only be a fiber of type I,. The table shows the whole procedure, so the actual cubics
in P? are divided from the curves that are not cubics, in order to immediately see
the possible members in A.

1,

A fiber of type I4.
1

[\

3 non concurrent lines.

An irreducible conic and a non
tangent line.

!

A node.
TABLE B.2. A fiber with four components.
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B.4. A Fiber with Three Components

In the following table we summarize the possible cubics in A that can be the
image of a fiber with 3 components; from section A, we know that such fiber can
be a fiber of type I3 or IV.

I3 v
A fiber of type I3. A fiber of type IV.
1 1
2
An irreducible conic and a non An irreducible conic and a tangent

tangent line. line.
1 1
3 3

A node. A cusp.

TABLE B.3. Fibers with three components.
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B.5. A Fiber with Two Components

In the following table we summarize the possible cubics in A that can be the
image of a fiber with 2 components; from section A, we know that such fiber can
be a fiber of type Iy or I11.

I 117
A fiber of type I. A fiber of type I11.
1 1
2 2
A node. A cusp.

TABLE B.4. Fibers with two components.

B.6. Reduction to Other Papers

In this section we give a brief description of how to reduce a proof of an equiv-
alence to another equivalence between pencils of higher rank.

We say that two pencils are equivalent if they are birational to each other.

In the papers dealing with higher rank rational elliptic surfaces, as well as in
this thesis, equivalences between pencils are proven using Cremona transformations.
The goal is to separate infinitely near base points of the pencil and/or to merge
distinct base points of the pencil. In both cases, we can reach the result changing
the choice of the (—1)-curves to contract on the induced rational elliptic surface.

If we want to separate one infinitely near base point from a base point p having
m, — 1 infinitely near base points, we contract all the exceptional curves above p
except one (there are m,, exceptional curves; we contract m, — 1 of them) and then
we contract the strict transforms of the lines pa, pb and ab, where a and b are two
other distinct base points having both no infinitely near base points. We do not
contract the (—1)-curves above a and b, neither the last exceptional curve above p.
Every exceptional curve above the other base points is contracted as before.

If in the original pencil there is a base point ¢ different not lying in any line pa,
pb or ab that has m. — 1 infinitely near base points, there is a base point ¢’ having
m. — 1 infinitely near points also in the resulting pencil.

This procedure can be used in order to save some work: suppose that two linear
pencils of cubics A, and Ay were proven to be equivalent. Suppose that aq,...,a;
are the base points of A, and by,...,b; are the base points of A, and that in the
proof of the equivalence between A, and A, the birational maps (described above)
involve just the choice of ay,...,ar and by,...,b; (3 < k < t —1). That proof
holds also for the equivalence of Ay, and Ay having ay,...,ax,a),,...,a; and
bi,...,bk, b;c-l-l? ..., b} respectively as base points, with the only restrictions that
the points aj_ ,,...,a} have the same configuration of bj_ ,,...,b;.
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This fact allows us to use the proofs in | ] and | | whenever the
conditions on the pencils are met. In the reductions we make, we often use the
equivalence between A, and A, where the birational maps involve only the points
ai,...,ar and by,...,bx (k < 8) in order to prove that the pencils A, and Ay
are equivalent, where a; = a; and b; = b; for all i = 1,...,t and a; = aj, (and
bi = b}, ., consequently).






APPENDIX C

Pencils of Cubics from Reducible Generators

In this chapter we will prove that our constructions of linear pencils of cubics
with reducible generators actually produce smooth pencils of elliptic curves.
We need to prove that the pencils we construct have at least a smooth generator.
When we constructed rational elliptic surfaces with only one reducible fiber, we
built pencils with a smooth generator, so in these cases there is nothing to prove.
This is true also in the case of rational elliptic surfaces with two reducible fibers
with three components. The only cases left are the ones with two reducible fibers
with four and two components, the one with three reducible fibers and the cases
with four reducible fibers. In all the cases we will use the same procedure.

C.1. Technique

Let A be a linear pencil of cubics. Denote its base points by pg, . .., ps. To show
that there exists a smooth cubic passing through the nine points p;’s, we will take
an elliptic curve (E, O) over eight of them (this is possible in all constructions) and
then, using the group structure of E, we prove that the ninth point is on E. This
shows that the nine points we had at the beginning determine a smooth pencil of
cubics.

First we should check that there exists an elliptic curve through eight points
among the base points of a linear pencil coming from the constructions we want to
deal with. This is always the case, since there are not more than three points on a
line and not more than six points on a conic; Bézout’s theorem grants the existence
of a pencil of smooth cubics through those eight points.

C.1.1. The Group Law. The group law of a plane elliptic curve (F,O) can
be explained geometrically. From now on we denote by ¢ the third point of inter-
section between E and the tangent to F at O. Three collinear points a, b, ¢ add up
to q.

In particular, for an elliptic curve in Weierstrass form, O is an inflection point
and we have that ¢ = O: this leads to the usual group law (“three collinear points
add up to zero”).

The following Lemma describes the only further property of the group law that
we need for specialized configurations of base points.

LEmMA C.1.2. Let (E,O) be a plane elliptic curve. Let q be the third point of
intersection between E and the tangent to E at O. Let @ be a conic.
Then, the six intersection points between E and Q) add up to 2q.

PROOF. We know that in the divisor group of an elliptic curve the sum of three
collinear points a, b, ¢ is linearly equivalent to the sum of any three collinear points.
In particular (taking the tangent line at O) we have the following equality in the
Picard group:

a+b+c=2-0+q=q.
Consider now the relations given by the hyperplane sections of degree 2; that is,
the relations between sums of divisors of intersection between the elliptic curve and
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conics. Let @ be any conic. Let p1,...,ps be the intersection points between Q)
and the elliptic curve. Consider now the conic given by twice the tangent line to
the elliptic curve at O. Using linear equivalence again, we obtain the result:

P1L+p2H+p3+patps+ps=2-(2-04+q)=2-q.
O

C.1.3. Notation. In the next sections, we need to write some relations. We
will write them as equations (in the group determined by F) and sometimes we
will put an extra label after the equation, to explain from which membership it is
determined. For example, if [ is a line,

a+b+ec=q (1)

means that a, b, ¢ are the three points of intersection between E and the line [; if
Q is a conic

a+b+ct+d+e+f=2¢ (Q)

means that a, b, c,d, e, f are the six points of intersection between E and the conic
Q.

We will also add or subtract such equations; we will keep track of these opera-
tions on the labels: for example,

d+e+f=q (Q)—()

means that subtracting (1) to (Q) we get that the points d, e, f add up to g; this
also implies that they are collinear (the conic @ is reducible).

C.2. A Pencil with two Reducible Members

In this section we prove that the construction in subsection 2.4.1 leads to a
pencil containing a smooth cubic. We will use the same notation of that construc-
tion.

Suppose we fixed all the base points p;’s as described in subsection 2.4.1. We
want to show that all the cubics passing through eight p;’s pass also through the
ninth one.

Suppose that E is any smooth cubic passing through py, ..., ps with tangent ¢
at pg. We want to show that E passes through p;. We denote by p, the point of
intersection between E and [, that is not ps nor pg and p; the point of intersection
between E and [ that is not ps nor ps. Restating our problem, we need to show
that p, = p;. We will use the following relations:

po+pi+p2=q (L),

2po + p1 +ps +ps + =2 s
pot+pst+pi=q (), Po p;z +p;4 _f;l :p; (l)? @
D5 +p6 +pn =4q ( )
Now, subtracting (@) to (I.) and adding (I,) and (I;) we get that

P2 +ps+pn=gq.
This implies that p,, = p; and the proof is concluded.

C.3. A Pencil with three Reducible Members

In this section we prove that the construction in section 2.5 leads to a pencil
containing a smooth cubic. We will use the same notation of that construction.

Suppose we fixed all the base points p;’s as described in section 2.5. We want
to show that all the cubics passing through eight p;’s pass also through the ninth
one.
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Suppose that E is any smooth cubic passing through pq,...,ps. There exist
three points p,,, pa, pp such that

n3NE =ps+p3+pn
lamE:p7+p8 + Pa
Iy N E = ps + pe + po.

We need to show that p, = p, = py» (= po).
We will use the group law on E. Denote by ¢ the third point of intersection between
FE and the tangent to F at 0. Then, according to the notation explained in section
C.1.3, we can rewrite the above formulas as

p2tp3s+pn=9q (n3), pr+ps+tpa=4q (), pPstpstp=q (b)

and all the previous relations (points on lines and points on conics) as

p1+ps+ps=q (n1), P1+p2+p3+pa+ps+06 =20 (Qa),
pa+tps+pr=q (n2), pr+p2+ps+pi+pr+ps=2¢ (Qp).
Subtracting (1) from (Q,), we get that

P1+P2+p3+pi—po=¢q
and subtracting (I,) from (Qp), we get that

P1+Dp2+p3+ps—p.=gq.

Thus p, = py. We still have to show that p,, is the same point as p, and p,. This
can be proved combining some previous relations; we start from (ns) + (n1) + (n2):
Pn P2+ p3+p1+pe+ps+patps+pr=3q

and subtract (Q,)
PntP7+Ps =g
This implies p, = pq, subtracting (I,). We have shown that p,,p, and p;, are

actually the same point, so they coincide with pg. This shows that the cubic F
passes through the ninth base point of A and the proof is concluded.

C.4. A Pencil with four Reducible Members: the non-Torsion Case

In this section we prove that the construction in subsection 2.6.1 leads to a
pencil containing a smooth cubic. We will use the same notation of that construc-
tion.

Suppose we fixed the base points pyg,...,ps. We want to show that any cubic
passing through eight of them passes through the ninth one. Let E be a smooth
cubic passing through py,...,p7. There exist four points z,, ..., x4 such that (ac-
cording to the notation explained in section C.1.3):

po+prrtaza=q (la),
p1+p2+p3+patprta,=2q (Qp),
p1+D2+Dps+pe+prtre=2q (Qc),
p3+pa+ps+ps+pr+xa=29 (Qa)

Moreover:

pot+pi+tpe=q (la)

pot+pst+pi=q (L)

pot+ps+ps=q (I,
P1+p2+p3+pat+ps+pe =29 (Qa)
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Adding (1,), (Iy) and (I.) and subtracting (Q,), we get that 3p; = ¢. Plugging this
information in (@), (Q.) and (Qq) we get that x, = --- = x4. This concludes the
proof.

C.5. A Pencil with four Reducible Members: the Torsion Case

In this section we prove that the construction in section 2.7.1 leads to a pencil
containing a smooth cubic. We will use the same notation of that construction.

Suppose we fixed all the base points p;’s as described in sections 2.7.1 and 2.7.
We want to show that all the cubics passing through eight p;’s pass also through
the ninth one.

Suppose that E is any smooth cubic passing through pi,...,ps. There exist
four points x,, xp, . and x4 such that (according to the notation explained in
section C.1.3):

To+p1+p2+Dps+ps+ps =20 (Qa)
Ty +p1+p2+pa+pe+pr=2q (Qp)
Tetpi+p2+pstpatps=2¢ (Qo),
Tq+p1+p2+p3s+ps+pr=2¢ (Qa)
Moreover, the lines g, ..., [l; give the following relations
pstpatpr=q (la)
pst+ps+ps=q (Ib)
ps+ps+pr=q ()
patps+ps=¢q (la)

Now, we can gather all the information we have and conclude. First we will show
that x, = x,: we start by subtracting (I,) from (Q;). This gives the following:

ly
le

)
)

Ty +p1tPp2+ps—pP3=q.
We can now add (I;) and obtain

Ty + p1+p2 +ps + pe + ps = 2q,

which implies z, = xp, after subtracting (Q,). In a similar way we can conclude
that z, = z. (computing (Q.) — (l.) + (lc) — (Q.)), and z, = x4 (computing
(Qa) — (la) + (la) — (Qn)). Hence x, = 2 = . = x4 and concludes the proof.

C.5.1. Torsion. This the best place to prove that the construction made in
section 2.7.1 actually leads to a rational elliptic surface with torsion. We will use
the notation introduced in subsection C.1.3. We will show that for every elliptic
curve (E,O) passing through py,...,ps there exists an explicit point p # O such
that 2-p = 0.

It is enough to use the relations and the fact that py = z, = xp = z. = 24,
exhibited previously in this section. We first take (@), subtract (I4) and (I.) and
get

O =po+p1+p2+ps+ps+pr— (pa+ps+ps) — (s +pe +pr)
=po +p1+p2—ps—Ps— DPs-
Adding (Q,) we get
2 (po +p1 +p2) = 2¢;
This is equivalent to
2-(po+p1+p2—q) =0,

so the point p = pg + p1 + p2 — ¢ is a 2-torsion point for every (F,O) in the pencil
determined by po, ..., Dps.
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We still have to show that p is not O itself. Since pg, p1 and ps are not collinear,
we have that pg + p1 + p2 # ¢. This implies that p # O.

Similarly, one can prove that 2-(ps—pg) = O, 2-(p4—p5) = O and 2-(p7—ps) =
0.






APPENDIX D

Four Reducible Fibers: the Torsion Case

D.1. Concurrency

From the construction of a rational elliptic surface with four reducible fibers,
given by four reducible members in a linear pencil of cubics, it remains to prove
that [.NB=anfand lgNG=0NG. We will prove it now, using some properties
of the projective plane. We use the same notation used in that construction.

Up to projectivities, we can always choose

P :<03170)7 p2:(07051)7 C:<1,0,0).
Then, the points a and b are of the following forms:
a=(1,az,ay), b=(1,bg,by).

We can exclude that a and b have zero as the first coordinate, since they are general
points on the plane (so not collinear to p; and ps). In this setting, the lines «, 3,6
are given by Pliicker equations:

a = (—ayby,ay, —az +by), B = (agby, —by,—az), 0= (ayby,—ay + by, —by).
These allow us to compute the points N G and SN J:
an B = (—azay — azb, + byby,, —aza,b, — aZb, + azbyby, —aza,b, + a,biby),
BN = (—azay + azby + byby, —aza,by + azbyby,, —azayb, + aybyb, + awbi).
Now, we can deduce the equations for pg U p; and pg U pa:
Po Up1 = (—azayby + aybyby, + aa:bz, 0, agay — azb, — byby),
Po Upe = (agayby, + aiby — azbyby, —azay — azby + byby, 0).

Intersecting py U p; with « and pg U po with &, we get two points that allow us to
construct I, and [, given by:

l, = (amaf/bw + aiaiby — 4axa5bzby + aibiby — aiaybz + Qa%,ayb:,cbi7

o, —azayby + 2a,a,byby — aybib, + aZbl — azbyby),

Iy = (—agaby — 2a2aybyby + 4azaybib, — ayblb, + aibybl — azblby,
axasz + aiayby — 2azaybyby, — aibj + agcbgcbi7 aibxby — anbiby + biby).

3 2 2
— aga, + 2aza,b, — azayb

Now we can compute the lines [. and I4:

le = (—agalb? — 2a2a2byby + 4a,a2b2b, — aZblb, + aZa,byb? — aga,bib,
awag’lbaC + aiaiby — Qawaibwby — aiaybfj + aggaybzbf,,
—adayb, + 4a2a,b.b, — daza,bib, + a,b3b, + ab? — 2a2b,b2 + a,b2b?)
2@y Oy 2@y 0z 0y THY Tty yYzvy amy amry TV Yy /)
lg= (—amagbi - aiaibxby + 4a$a§biby - aibiby + aiaybwbi - Qawaybibi,
axagbz + aiaiby — 4axa2bzby — Qaiaybf/ + 4azaybmb§ + aibz — axbzbz,

aZaybyby, — 2a,a,b2b, + aybib, — ai@bi + awbibz).
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Now we can check if . NG =aN @ and lgN G =N G: this is true, since
le N B = (—azay — azby + byby, —azayby — a2by + azbyby, —aza,by + aybyby),
lanN B = (—agay + agby + byby, —azayby + azbyby, —azayby + aybyb, + axbi).
This concludes the proof.

D.2. Members

In this section we will show that the construction in subsection 2.7.1 leads to
a linear pencil of cubics with four reducible members, all given by a line and an
irreducible conic.

We will use Pascal’s Theorem several times: consider pg, p1, p2 and the three
intersection points given by 3 of the four green lines. Those six points determine an
hexagon (meaning a 6-tuple of points); from the configuration of the base points,
the opposite sides of this hexagon meet at three points on one of the blue lines; this
implies that the hexagon is inscribed into a conic. In the following drawings we
underline each hexagon in red and label its points in order, so that the intersection
points between opposite sides are given by

(nUn+1)N(n+3Un+4), all modulo 6.

The first hexagon is given by (p2, po, p1,Ps5, D6, Ps) and the opposite sides meet
at BNl., fNlg and (p; Ue) N (p2 Ua). These three points are collinear, since they
belong to .

FIGURE D.1. A reducible member.

We will denote by @, the conic passing through pg, p1, p2, Ps5, Pe, Ps-
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The second hexagon is given by (p2,po,p1,P7, Ps, P4a) and the opposite sides
meet at BN, SNlg and (ps Uc) N (p1 Ub). These three points are collinear, since
they belong to 5.

FIGURE D.2. A reducible member.

We will denote by Q) the conic passing through pg, p1, p2, P4, D6, P7-

The third hexagon is given by (ps, po, p1, P3, Ps, pa) and the opposite sides meet
at 6 Ny, d N1y and (p1 Ua) N (pe Uc). These three points are collinear, since they
belong to 6.

|

FIGURE D.3. A reducible member.

We will denote by Q. the conic passing through pg, p1, D2, P3, P4, Ps-
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The fourth hexagon is given by (pa, po, p1, D5, P3, p7) and the opposite sides meet
at aNl., aNl, and (p; Uc) N (pe Ub). These three points are collinear, since they
belong to «.

FIGURE D.4. A reducible member.

We will denote by Q4 the conic passing through pg, p1, p2, p3, Ps, P7-
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