W1005
Intro to CS and Programming in MATLAB

Object Oriented Programming (OOP)

Fall 2014
Instructor: llia Vovsha

http://www.cs.columbia.edu/~vovsha/w1005



Outline

Review of concepts: objects, classes, methods,
properties, inheritance

Classes in MATLAB

e Self-contained
e @classname folder

Initialization, constructor
Scope & Access



OOP (concepts)

Program: collection of objects
Object: data structure with collection of behaviors
Object: instance of a class

Class: defines attributes (variables) and methods
(functions), i.e. behavior applied to class/instances

Each instance of class (object) keeps track of its own
attribute values

Instance methods refer to actions of specific object

Class methods refer to actions of entire class of (many)
objects

To generate a new object we use a constructor method



OOP (more concepts)

Can share methods between classes: inheritance

Derived / sub class inherits methods from base / parent /
super class

The derived class can “update” the behavior of the
parent class

Given an (derived) object, how do we select the most
appropriate method for it? Polymorphism

General design principle: when using the object, the
object is a black box (we shouldn’t manipulate
attributes / methods directly)

Encapsulation: access objects through methods alone



OOP (inheritance)

We can define a hierarchy of classes to share methods
between them

Derived / sub class inherits methods from
base / parent / super class

Single Inheritance: one parent class (search parent for
methods)

Multiple Inheritance: multiple parent classes



Classes in MATLAB

" Two ways to specify classes with respect to folders:
* Create a single, self-contained class definition file in some folder

* Distributing a class definition to multiple files in some @classname
folder

* Which approach?
* Simple class, few functions -2 single file
* Large class, lots of functionality = class folder

= Useful function:
 Add directory to search path: (‘/export/projects/code’);



Self-Contained Class (blocks)

= Each block starts with a keyword and closes with ‘end’
= The basic components (blocks):
contains the class definition within a file

: contains property definitions, optional initial values
contains function definitions for the class methods

: containsthe namesofeventsthat thisclassdeclares:

: contains the enumeration members defined by the class

= properties/methods/events block: one for each unique
set of attribute specifications)

= Note: properties, methods, events, and enumeration are
keywords only within a classdef block



Class Blocks (example)

classdef circle
properties
x=0.0;y=0.0;
r=1.0;
end
methods
function c = circle(x,y)
% Constructor:
CX=X;Cy=Yy,
end
end
end




Properties & Attributes

= We can assign property attributes on the same line
as the properties keyword

= Common attributes: Access, GetAccess, SetAccess
» Typical values: public, protected, private

classdef circle
properties (Attrl = vall, Attr2 = val2)
x=0.0; y=0.0;
r=1.0;
end




Access Level

- — unrestricted access (default)
= protected — access from class or subclasses
" private —access by class members only (not subclasses)

classdef circle
properties (Access = public)
x=0.0;y=0.0;
end
properties (Access
r=1.0;
end

private)




Set / Get Access

= Access —set both SetAccess and GetAccess to the
same value

= Can distinguish between setting and displaying
(getting) properties

classdef circle

properties (SetAccess = private, GetAccess = public)
x=0.0; y=0.0;
end

11



Constructor (definition)

= Each class file must contain a constructor:
e Function name is the name of the class
* Header specifies arguments & return variable

classdef circle
methods
function C = circle(x,y)
Cx = x;
Cy=y;
end
end

12



Constructor (purpose)

" Force users to use code provided in the class to
initialize (manipulate) objects (user can’t mess up)

" Do error checking inside constructor

classdef circle
methods
function C = circle(x,y)
if nargin == 2
Cx = x;Cy=y;
end
end
end




Instance Method

= Almost identical to any function, except first
parameter in header must be a reference to instance
itself

classdef circle
methods
function self = calc_area(self)
self.area = pi*self.radius"2;
end
end




Calling the Methods

= Constructor call syntax: obj _ref =cname(args)

" |[nstance method syntax: omit the ref to the object
itself—since the reference is specified before the
method name using the dot notation.

CR =circle(1,2); % constructor
CR = CR.calc_area(); % instance method




Overloading

* Change behavior of built-in function for an object of

a class by specifying an instance method with same
name

= Example: ‘disp’ function

function disp(self)
if isempty(self)
% print almost nothing
else
% print properties
end
end




Useful Built-in Functions

All nonabstract classes have a static method named
empty that creates an empty array of the same class

isempty: return true if argument is an empty array
class: return string specifying class of argument

C =circle(1,2);

TF = isempty(C);
cname = class(C);
disp(C);

17



Inheritance (subclass)

" To inherit from a parent class use “<“
= ‘Left’ class is a subclass of ‘right’ class

classdef circle < shape
properties
x=0.0; y=0.0;
end
methods

end
end

18



Inherited Methods

" A subclass object inherits the superclass’ properties
and methods that have protected or public
accessibility

" |nherited properties and methods can be accessed in

the subclass as though they were locally defined in
the subclass



Value vs. Handle Classes

= Type of class you need depends on desired behavior
= Value class:
e represent entities that do not need to be unique
 Example: polynomial data type
= Handle class:
* Dynamic properties
* Create a reference to the data, not copy

 Example: phone book entry accessed by multiple
applications



Value vs. Handle (example)

p = polynomial([10-2-5]);
P2 = p;
p.Coefficients = [23-1-2-3];
p2.Coefficients

% ans=10-2-5

e = employee('Fred Smith','QE');
e2 =e;
transfer(e,'Engineering')
e2.Department

% ans = Engineering

% poly = value class

% emp = handle class
% Copy handle object




Handle Class

= Handle: an object that references its data indirectly

= Construct a handle: creates an object with storage
for property values, return handle

= Assign/pass the handle: copies the handle, but not
the underlying data

classdef circle < handle
properties
end
methods
end
end




Outline (part 2)

Two ways to specify classes with respect to folders:
* Create a single, self-contained class definition file in some folder

* Distributing a class definition to multiple files in some @classname
folder

Which approach?
* Simple class, few functions -2 single file

e Large class, lots of functionality

Constructor
Overloading

23



@folder Class

= Class definition distributed to multiple files

= Creating the class:
* Create directory @classname
e Add file classname.m to the directory (the constructor)
e Add file display.m to the directory (to display variable)
* Add any other functions (.m files) to implement class

24



Constructor

= Constructor should handle these input cases:
* No arguments
* Variable of the same class
e Data passed as arguments

= Constructor rules:
* Check input data for errors

* To create class variable, define a struct and set field names
appropriately. Then, call function to convert struct to class
variable

e Struct fields should be created in the same order inside the
constructor



Constructor (example)

function obj = film(varargin)

if nargin ==
obj = varargin{1};
else

obj.name = varargin{1};
obj.year = varargin{2};
end
obj = class(obj, ‘film’);
end




Display Function (example)

function display(obj)

disp(obj.name)

disp(obj.year)

% Can access field names of object inside method
% functions, but not outside

% ‘methods film’ to see all class methods




Overloading

* Overloading operator: redefine internal rules for an
operation

" To support overloading of operators, each operator
corresponds to a function name (some examples):

plus (A,B)
minus (A,B)

eq (A,B)
It (A,B)
or (A,B)

28



Overloading (example)

function TF = eq(F1,F2)
if lower(F1.name) ==lower(F2.name)
TF=1;
else
TF=0;
end

29



