W3203 Discrete Mathematics

Logic and Proofs

Spring 2015

Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/w3203

Outline

- Propositional Logic
- Operators
- Truth Tables
- Logical Equivalences
- Laws of Logic
- Rules of Inference
- Quantifiers
- Proof Patterns
- Text: Rosen 1
- Text: Lehman 1-3

Logic Puzzle

- Three kinds of people live on an island:
 - Knights (K): always tell the truth
 - Knaves (V): always lie
 - Spies (S): either lie or tell the truth
- You meet 3 people, A, B, and C
 - You know one is K, one is V, and one is S
 - Each of them knows all of their types
 - They make three statements about each other
 - Can you determine who is the knight/knave/spy?

Logic Puzzle

Statements:

- A: "I am the knight"
- B: "A is not the knave"
- C: "B is not the knave"
- Can you determine who is the knight/knave/spy?

Logic Puzzle (solution)

Statements:

- A: "I am the knight"
- B: "A is not the knave"
- C: "B is not the knave"
- Can you determine who is the knight/knave/spy?
 - Suppose A is the Knight (K). Then B tells truth, B must be a spy (S). But C tells truth, can't be a knave (V).
 - Suppose B is K. Then B tells truth, A must be S. Hence C is
 V, but he tells truth. Hence we have a contradiction.
 - C must be K. Then C tells truth, B must be S. A is the V.

Propositions

- Definition: A proposition is a declarative sentence (statement) that is either true (T) or false (F), but not both
 - Fact-based declaration
 - \rightarrow 1 + 1 = 2
 - "A is not the knave"
 - "If A is a knight, then B is not a knight"
 - Excludes commands, questions and opinions
 - "What time is it?"
 - ➤ "Be quiet!"
 - What about statements with (non-constant) variables?
 - \rightarrow x + 2 = 5
 - "n is an even number"

Predicates

- Definition: A predicate is a proposition whose truth depends on one or more variables
 - Variables can have various domains:
 - nonnegative integers
 - > x > 1
 - people: "all people on the island are knights, knaves or spies"
 - Notation: P(x)
 - Not an ordinary function!
 - > P(x) is either True or False

Puzzle (propositions)

Statements:

- A: "I am the knight"
- B: "A is not the knave"
- C: "B is not the knave"
- Lets introduce propositional (boolean) variables:
 - V_A ::= "A is the knave", V_B ::= "B is the knave"
 - V_A or V_B ::= "A is the knave or B is the knave"
 - If V_A then not V_B ::= "If A is the knave then B is not the knave"
 - K(p) ::= "person p is a knight"

Constructing Propositions

- English: modify, combine, and relate statements with "not", "and", "or", "implies", "if-then"
- Atomic propositions: boolean constant (T,F) or variable (e.g. p, q, r, V_A , V_B)
- Compound propositions: apply operators to atomic forms in order of precedence.
 - Construct from logical connectives and other propositions.
- Precise mathematical meaning of operators can be specified by truth tables

Common Operators

- Negation: "not" ¬Conjunction: "and" ∧
- Disjunction: "or" V
- Implication/ Conditional: "if-then" →
- Monadic operator: one argument
 - Examples: identity, negation, constant ... (4 operators)
- Dyadic operator: two arguments
 - Examples: conjunction, disjunction ... (16 operators)

Truth Tables (idea)

- Boolean values & domain: {T,F}
- n-tuple: $(x_1, x_2, ..., x_n)$
- Operator on n-tuples : $g(x_1 = v_1, x_2 = v_2, ..., x_n = v_n)$
- Definition: A truth table defines an operator 'g' on n-tuples by specifying a boolean value for each tuple
- Number of rows in a truth table?
 - $R = 2^n$
- Number of operators with n arguments?
 - 2^R

Truth Table (negation)

■ The *negation* of a proposition p is denoted by $\neg p$ and has this truth table:

p	$\neg p$
Т	F
F	Т

■ **Example**: If p denotes "The earth is round.", then $\neg p$ denotes "It is not the case that the earth is round," or more simply "The earth is not round."

Truth Table (conjunction)

■ The *conjunction* of propositions p and q is denoted by $p \land q$ and has this truth table:

p	q	$p \wedge q$
T	Т	Т
Т	F	F
F	Т	F
F	F	F

■ Example: If p denotes "I am at home." and q denotes "It is raining." then $p \land q$ denotes "I am at home and it is raining."

Truth Table (disjunction)

■ The *disjunction* of propositions p and q is denoted by $p \lor q$ and has this truth table

p	q	$p \lor q$
T	Т	T
T	F	Т
F	Т	Т
F	F	F

■ Example: If p denotes "I am at home." and q denotes "It is raining." then p ∨ q denotes "I am at home or it is raining."

Truth Table (exclusive or)

If only one of the propositions p and q is true but NOT both, we use "Xor" symbol

p	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

 Example: When reading the sentence "Soup or salad comes with this entrée," we do not expect to be able to get both soup and salad

Truth Table (implication)

■ If p and q are propositions, then $p \rightarrow q$ is a conditional statement or implication: "if p, then q"

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- **Example**: If p denotes "I am at home." and q denotes "It is raining." then $p \rightarrow q$ denotes "If I am at home then it is raining."
- In $p \rightarrow q$, p is the antecedent and q is the consequent

Understanding Implication

- There does not need to be any connection between the antecedent or the consequent.
 - The "meaning" of $p \rightarrow q$ depends only on the truth values of p and q.
 - "If pigs fly then you are rich."
- Think of an obligation or a contract
 - "If I am elected, then I will lower taxes."

Puzzle (compound propositions)

Statements:

- A: "I am the knight"
- B: "A is not the knave"
- C: "B is not the knave"

Compound propositions:

- $\neg V_{\Delta}$::= "A is not the knave"
- $K_A \vee K_B ::=$ "A is the knight or B is the knight"
- $V_A \rightarrow \neg V_B ::=$ "If A is the knave, then B is not the knave"
- $K_c \rightarrow \neg V_B ::=$ "If C is the knight, then C tells the truth"

Truth Table (rules)

- Row for every combination of values for atomic propositions
- Column for truth value of each expression in the compound proposition
- Column (far right) for the truth value of the compound proposition
- Build step by step $p \lor q \rightarrow \neg r \text{ means } (p \lor q) \rightarrow \neg r$
- Big problem with this approach!

Operator	Precedence
¬	1
^ V	2, 3
$\rightarrow \leftrightarrow$	4, 5

Truth Table (example)

lacktriangledown Construct a truth table for $p \lor q \to \neg r$

р	q	r	¬r	pvq	$p \lor q \rightarrow \neg r$
T	T	T	F	Т	F
Т	Т	F	Т	Т	Т
Т	F	Т	F	T	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	F
F	Т	F	Т	Т	Т
F	F	Т	F	F	Т
F	F	F	Т	F	Т

Logical Equivalences

- Two compound propositions p and q are logically equivalent if and only if the columns in the truth table giving their truth values agree.
 - We write this as $p \Leftrightarrow q$ or as $p \equiv q$
 - Not an operator! (relation on propositions)
- This truth table shows $\neg p \lor q$ is equivalent to $p \to q$

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
Т	Т	F	T	T
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Converse, Contrapositive, & Inverse

- Given $p \rightarrow q$,
- The *converse* is: $q \rightarrow p$
- The *contrapositive* is: $\neg q \rightarrow \neg p$
- The *inverse* is: $\neg p \rightarrow \neg q$
- Example: "Raining is a sufficient condition for my not going to town."
 - Converse: If I do not go to town, then it is raining.
 - Inverse: If it is not raining, then I will go to town.
 - Contrapositive: If I go to town, then it is not raining.

Truth Table (biconditional)

■ If p and q are propositions, then $p \leftrightarrow q$ is a biconditional (IFF) statement: "p if and only if q"

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

■ Example: If p denotes "I am at home." and q denotes "It is raining." then $p \leftrightarrow q$ denotes "I am at home if and only if it is raining."

Terminology $(p \rightarrow q)$

- Simple English:
 - if p, then q p implies q
 - if p, q p only if q
 - q unless $\neg p$ q when p
 - *q* if *p*
 - q whenever p p is sufficient for q
 - q follows from p q is necessary for p
- A necessary condition for p is q
- A sufficient condition for q is p
- Biconditional:
 - p is necessary and sufficient for q
 - p iff q

Tautology & Contradiction

- Tautology is a proposition which is always true
 - Example: $p \lor \neg p$
- Contradiction is a proposition which is always false
 - Example: $p \land \neg p$
- Contingency is a proposition which is neither a tautology or a contradiction

P	$\neg p$	$p \lor \neg p$	$p \land \neg p$
Т	F	Т	F
F	Т	Т	F

Laws of Logic

- Trivial laws: identity, double negation
- Express \wedge and \vee in terms of each other via \neg

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

Order & Parenthesis (3,4):

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

$$p \wedge q \equiv q \wedge p$$
$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$

$$(p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r)$$

Laws involving (bi)conditional operators

The Axiomatic Method

- Begin with some assumptions (axioms)
 - Given as true or used to specify the system
- Provide an argument (proof)
 - Sequence (chain) of logical deductions and previous "results" (premises)
 - Ends with the proposition in question (conclusion)
- Important true propositions are called theorems
- Hierarchy of derived truths:
 - *Proposition*: minor result (theorem)
 - Lemma: preliminary proposition useful for proving later propositions
 - Corollary: a proposition that follows in just a few logical steps from a theorem

Logical Argument

- To provide a logical argument (proof):
 - Sequence of logical deductions (rules of inference) and previous compound propositions (premises)
 - Ends with the proposition in question (conclusion)
- A valid argument can never leads to incorrect (false) conclusion from correct statements (premises)
- Fallacy: from true statements to incorrect conclusion
- If some premises untrue: conclusion of valid argument might be false
- Conclusion of fallacy might be true
- If premises are correct & argument is valid, conclusion is correct

Rules of Inference (modus ponens)

- Example:
 - Let p be "It is snowing."
 - Let q be "I will study discrete math."

$$\begin{array}{c} p \to q \\ p \\ \hline \vdots q \end{array}$$

- "If it is snowing, then I will study discrete math."
- "It is snowing."
- "Therefore, I will study discrete math."
- Method of rule validation: record (in a truth table) where all premises are true. If the conclusion is also true in every case, then the rule is valid

Rules of Inference (fallacy)

- Affirm the consequent, conclude the antecedent
- Example:

```
• Let p be "It is snowing." q
• Let q be "I will study discrete math." p \to q
p \to q
p \to q
```

- "If it is snowing, then I will study discrete math."
- "I will study discrete math."
- "Therefore, it is snowing."

Rules of Inference (modus tollens)

Example:

$$p \rightarrow q$$

Let p be "It is snowing."

$$\neg q$$

Let q be "I will study discrete math."

$$\therefore \neg p$$

- "If it is snowing, then I will study discrete math."
- "I will not study discrete math."
- "Therefore, it is not snowing."
- Fallacy: deny the antecedent (p), conclude the consequent (q) is false

Common Rules

• Disjunctive-syllogism:
$$\frac{\neg p}{\cdot a}$$

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

Puzzle (logical argument)

Statements:

- A: "I am the knight" K_A
 B: "A is not the knave" ¬V_A
 C: "B is not the knave" ¬V_B
- Argument:
 - Suppose A is the Knight (K). Then B tells truth, B must be a spy (S). But C tells truth, can't be a knave (V)

```
• K_A \rightarrow \neg V_A ::= "If A is the knight, then A is not the knave"

• \neg V_A \rightarrow (K_B \lor S_B) ::= "If A is not knave, then B is knight or spy"

• \neg V_B \rightarrow (K_C \lor S_C) ::= "If B is not knave, then C is knight or spy"

• S_B \rightarrow \neg (S_A \lor S_C) ::= "If B is the spy then A and C are not spies"
```

Quantifiers

- Purpose: express words such as "all", "some"
- *Universal Quantifier*: "For all",
- Existential Quantifier: "There exists", 3
- Definition:
 - $\forall x P(x)$ asserts P(x) is true for <u>every</u> x in the domain
 - $\exists x P(x)$ asserts P(x) is true for some x in the domain

Quantifiers (examples)

- $\forall x P(x)$: "For all x, P(x)" or "For every x, P(x)"
- $\exists x P(x)$: "For some x, P(x)" or "There is an x such that P(x)" or "For at least one x, P(x)."
- Example:
 - 1) P(x) denotes "x > 0"
 - 2) Q(x) denotes "x is even"
 - For positive integers domain, ' $\forall x P(x)$ ' is true ' $\exists x P(x)$ ' is true
 - For integers domain, ' $\forall x P(x)$ ' is false but ' $\exists x P(x)$ ' is true
 - For integers domain, ' $\forall x Q(x)$ ' is false but ' $\exists x P(x)$ ' is true

Quantifiers (scope)

Rules:

- The quantifiers ∀ and ∃ have higher precedence than all the logical operators.
- Note location of parenthesis:
 - $ightharpoonup orall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
 - \blacktriangleright $\forall x (P(x) \lor Q(x))$ means something different
- Variable not within scope (clause to which it applies) of any quantifier: unbound variable
 - \rightarrow x + 4 > 2
 - $\rightarrow \forall y [2x + 3y = 7]$

Quantifiers (translation)

Example:

- 1) P(x): "x has taken calculus."
- 2) Domain: students in class
- 3) $\forall x P(x)$: "Every student in class has taken calculus."

Translate: "It is not the case that every student in class has taken calculus."

Answer:

- 1) $\neg \forall x P(x)$ $\neg (\forall x)[P(x)]$
- 2) "There is a student in class who has not taken calculus" $\exists x \neg P(x)$

Quantifiers (negation rules)

Rules:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Quantifiers (translation)

Example:

- 1. "All lions are fierce."
- 2. "Some lions do not drink coffee."
- 3. "Some fierce creatures do not drink coffee."

Translate to predicates:

- a. P(x): "x is a lion"
- b. Q(x): "x is fierce"
- c. R(x): "x drinks coffee"
- 1. $\forall x [P(x) \rightarrow Q(x)]$
- 2. $\exists x [P(x) \land \neg R(x)]$
- 3. $\exists x [Q(x) \land \neg R(x)]$

Quantifiers (mixing)

Nested quantifiers:

- "Every real number has an inverse"
- $\forall x \exists y (x + y = 0)$
- Specify domain when not evident: the domains of x and y are the real numbers

$$(\forall x \in \Re)(\exists y \in \Re)[x + y = 0]$$

- Does order matter?
 - Switching order is not safe when the quantifiers are different!
 - $\forall x \forall y P(x,y)$ and $\forall y \forall x P(x,y)$ have the same truth value

Nested Quantifiers (translation)

- Example 1: "Brothers are siblings."
 - Solution: $\forall x \forall y [B(x,y) \rightarrow S(x,y)]$
- Example 2: "Everybody loves somebody."
 - Solution: $\forall x \exists y \ L(x,y)$
- Example 3: "There is someone who is loved by everyone."
 - Solution: $\exists y \ \forall x \ L(x,y)$

Nested Quantifiers (negation)

- Example 1: "There does not exist a woman who has taken a flight on every airline in the world."
 - \triangleright Solution: $\neg \exists w \forall a \exists f [P(w,f) \land Q(f,a)]$
- Use negation rules to move ¬ as far inwards as possible:

Nested Quantifiers (negation)

- Example 1: "There does not exist a woman who has taken a flight on every airline in the world."
 - > Solution: $\neg \exists w \forall a \exists f [P(w,f) \land Q(f,a)]$
- Use negation rules to move ¬ as far inwards as possible:
 - > Solution:

```
\neg\exists w \ ( \forall a \exists f \ [ P(w,f) \land Q(f,a) ] )
\forall w \neg ( \forall a \exists f \ [ P(w,f) \land Q(f,a) ] )
\forall w \exists a \neg (\exists f \ [ P(w,f) \land Q(f,a) ] )
\forall w \exists a \forall f \neg [ P(w,f) \land Q(f,a) ]
\forall w \exists a \forall f \ [\neg P(w,f) \lor \neg Q(f,a) ]
```

Proof Patterns

- Proof approach:
 - Direct / Indirect methods
 - Forward / Backward reasoning
- Standard templates:
 - Implication (If P then Q)
 - Contrapositive (if not Q then not P)
 - If and only if statement (P if and only if Q)
 - By cases
 - By contradiction

"Backward" Reasoning

- Claim: "arithmetic/geometric means inequality"
- Approach:
 - 1. Start from conclusion
 - 2. Show when conclusion is true
 - 3. Algebraic manipulation
 - a. Simplify
 - 4. Derive simple equivalent premise which is clearly true

Let
$$a, b > 0$$
, $a \neq b$.

Then,
$$\frac{(a+b)}{2} > \sqrt{ab}$$

$$(a+b) > 2\sqrt{ab}$$

$$(a+b)^2 > 4ab$$

$$a^2 + 2ab + b^2 > 4ab$$

$$a^2 - 2ab + b^2 > 0$$

$$(a-b)^2 > 0$$

Proving the Contrapositive

- Claim: "If r is an irrational number then Vr is an $Q = \left\{ \frac{p}{q} : \ p, q \in \mathbb{Z}, q \neq 0 \right\}$ irrational number"
- Approach:
 - Assume $\forall r$ is rational, show that r is rational.
 - Use definition to express Vr as a fraction
 - Algebraic manipulation: square both sides
 - 4. Conclude claim

Proving If and Only If

- Claim: "The standard deviation (std) of a set of numbers is zero if and only if (iff) all the values are equal to the mean"
- Approach:
 - 1. Construct chain of iff statements
 - 2. Use definition of std and mean
 - 3. Algebraic manipulation
 - a. Simplify: square both sides
 - Show that condition holds for each value iff condition holds for the set

Proof by Cases

- Claim: "Let x be any integer, then $x^2 + x$ is even"
- Approach:
 - 1. Break into cases:
 - a. Case 1: x is even
 - b. Case 2: x is odd
 - 2. Use definition of even/odd integer to express $x^2 + x$ as an even integer
 - a. Case 1: x = 2n
 - b. Case 2: x = 2n + 1

Proof by Contradiction

- Claim: "V2 is irrational"
- Approach:
 - Assume V2 is rational
 - 2. Use definition to express √2 as fraction in lowest terms
 - 3. Algebraic manipulation
 - a. Square both sides
 - b. Apply rules of divisibility
 - 4. Derive a negation of one of the premises (2), that is the contradiction.

