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Figure 1: Complex lighting effects like soft shadows require transport matrices that have a very high rank or dimensionality. However, within local blocks,
the dimensionality is much lower. This paper analyzes these effects theoretically. One practical application is to all-frequency relighting of high-resolution
images; (a) shows a 1024× 1024 image, lit by a 6× 32× 32 cubemap, rendered interactively. We achieve this result by using our framework to adaptively
subdivide the image into local patches. The adaptive subdivision, and zoom-ups to show the full resolution are in (b). Our main contribution is a theoretical
analysis of how light transport dimensionality varies with patch size. For complex shadows like these, dimensionality is essentially linear in patch area (c).

Abstract

Blockwise or Clustered Principal Component Analysis (CPCA) is
commonly used to achieve real-time rendering of shadows and
glossy reflections with precomputed radiance transfer (PRT). The
vertices or pixels are partitioned into smaller coherent regions, and
light transport in each region is approximated by a locally low-
dimensional subspace using PCA. Many earlier techniques such as
surface light field and reflectance field compression use a similar
paradigm. However, there has been no clear theoretical understand-
ing of how light transport dimensionality increases with local patch
size, nor of the optimal block size or number of clusters.

In this paper, we develop a theory of locally low dimensional
light transport, by using Szego’s eigenvalue theorem to analytically
derive the eigenvalues of the covariance matrix for canonical cases.
We show mathematically that for symmetric patches of area A, the
number of basis functions for glossy reflections increases linearly
with A, while for simple cast shadows, it often increases as

√
A.

These results are confirmed numerically on a number of test scenes.
Next, we carry out an analysis of the cost of rendering, trading off
local dimensionality and the number of patches, deriving an opti-
mal block size. Based on this analysis, we provide useful practical
insights for setting parameters in CPCA and also derive a new adap-
tive subdivision algorithm. Moreover, we show that rendering time
scales sub-linearly with the resolution of the image, allowing for
interactive all-frequency relighting of 1024×1024 images.

∗e-mail: {dhruv,ravir,belhumeur}@cs.columbia.edu
†e-mail: ira.kemelmacher@weizmann.ac.il

1 Introduction

Real-time rendering of light transport with glossy reflections, shad-
ows and high frequency lighting is a challenging problem. In recent
years, precomputed radiance transfer (PRT) [Sloan et al. 2002] has
been widely adopted to achieve these goals. The essence of the
approach1, can be expressed simply as [Ng et al. 2003],

B = T L, (1)

where B is a vector of outgoing intensities (at each image pixel or
object vertex), L is a vector of lighting intensities from each direc-
tion, and T is a precomputed light transport matrix. For simplic-
ity, most of this paper uses the canonical problem above of all-
frequency relighting of images, with fixed view [Ng et al. 2003].
However, a factorization of the BRDF enables a generalization to
changing both dynamic lighting and view [Liu et al. 2004; Wang
et al. 2006], and we demonstrate results for this case in Fig. 11.

Note that L may be a 6× 322 texel or higher resolution cube-
map, and B may be a 5122 pixel or higher-resolution image. Hence,
T can have in excess of 109 elements, precluding real-time perfor-
mance and storage. Modern PRT methods address this by cluster-
ing into smaller patches, in each of which the transport T is com-
pressed using PCA. These methods are referred to as clustered PCA
or CPCA [Sloan et al. 2003; Liu et al. 2004]. A faster to precom-
pute method (but possibly suboptimal for rendering) is to simply
divide an image into regular smaller blocks [Nayar et al. 2004].

While our main focus is on PRT, very similar ideas are also used
in many other applications. For surface light fields, T represents
variation with view, for fixed lighting, rather than vice versa. (Fig-
ure 10b shows an example of applying our method to surface light
fields.) Previous work [Nishino et al. 2001; Chen et al. 2002] has
used PCA on local triangular patches for compression. Block-based
PCA for more general reflectance fields is employed by [Matusik
et al. 2002]. Nishino et al. [2005] considers more general visual
data as well, merging PCA blocks from finer levels. Locally low-
rank approximations of sub-regions are used even for adaptive ac-
quisition of reflectance fields [Garg et al. 2006]. Indeed, basic im-

1Relighting, and equation 1, also has a long earlier history in graphics,
including early work by [Nimeroff et al. 1994; Dorsey et al. 1995].
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Figure 2: Schematic of how rendering costs vary with patch size. With
increasing size, light transport dimensionality (red) increases, but the over-
head cost (blue) decreases. The overall cost (black) is minimum where an
increase in dimensionality balances the decrease in overhead cost.

age and video encoding with JPEG and MPEG also employ local
blocks.

There is a key insight, underlying all of this large body of cur-
rent practice—light transport is locally low-dimensional. Even if
the global dimensionality of T is large, the light transport in each
local patch is low-dimensional and can be compressed using sim-
ple PCA or SVD.2 As shown schematically in Fig. 2 (red curve),
transport dimensionality increases with patch area. Surprisingly,
there has been no theoretical explanation of why this should be so,
how exactly dimensionality varies with patch size, or depends on
material properties and global effects (shadows, interreflections).

It may seem that an optimal patch size for rendering is one pixel,
where light transport dimensionality is lowest. However, there is
an overhead (blue curve in schematic of Fig. 2) in projecting to the
local basis functions at each patch, that varies inversely with patch
area. The total cost is a sum of these two effects, and finding the op-
timal cost/patch size involves a tradeoff between these competing
factors (black curve in Fig. 2). While this is known qualitatively,
there has been no theoretical analysis of what the optimal block
size or number of clusters is. Indeed, most current methods either
use square blocks of constant size [Matusik et al. 2002; Nayar et al.
2004] or arbitrarily fix the number of clusters/patches used [Sloan
et al. 2003; Liu et al. 2004]. In this paper, we address these impor-
tant theoretical questions, making the following contributions:
Theoretical Analysis of Dimensionality: One of our main con-
tributions is a theory of how the dimensionality of T varies with
patch size (red curve in Fig. 2).3 First (Sec. 2.1), we consider
canonical cases in 2D. We assume shading behaves like a convo-
lution, as has been shown for diffuse and glossy reflection [Basri
and Jacobs 2001; Ramamoorthi and Hanrahan 2004], and cast shad-
ows [Soler and Sillion 1998; Ramamoorthi et al. 2005]. We derive
an analytic formula for the eigenvalues of T based on Fourier anal-
ysis, and Szego’s eigenvalue theorem [Grenander and Szego 1958].
Specifically, we demonstrate that dimensionality in 2D increases
approximately linearly with patch area A, for both reflections and
shadows. We show that the key steps extend to 3D (Sec. 2.2),
with similar results for convex specular surfaces, as well as com-
plex shadows with multiple blockers as in Fig. 1. However, in the
presence of simple shadows in 3D, the dimensionality for symmet-
ric patches increases sublinearly as

√
A. We validate our theory

(Sec. 3), showing numerical plots with a variety of scenes.

Theoretical Analysis of Rendering Cost: Based on our theory,
we do a detailed analysis (Sec. 4) of how the overheads and to-
tal rendering cost vary with patch size (blue and black curves in

2We use the terms SVD and PCA interchangeably. While the mean is
usually subtracted when applying PCA or computing a covariance matrix,
we do not do so explicitly in this paper, for clarity and notational simplicity.

3This analysis significantly extends [Ramamoorthi 2002], who only con-
sidered the change of dimensionality for Lambertian objects when the front
facing normals alone were visible. We consider general glossy reflection
and cast shadows, as well as continuously varying patch areas.
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Figure 3: Schematic of canonical 2D setup for (a) Diffuse reflection, (b)
Specular or Phong reflection, and (c) Cast Shadows.

Fig. 2). This enables us to derive an optimal patch size, where the
increase in local dimensionality balances the decrease in overhead.
We also show that the cost increases sublinearly as we increase the
resolution of the image, enabling one to scale up to scenes with up
to 1 million pixels at interactive rates (see Fig. 1).

Practical Applications: Our analysis provides many useful in-
sights in setting parameters, such as block size or number of clus-
ters in existing PRT methods like CPCA (Sec. 5, Fig. 10). We also
present a practical algorithm which adaptively subdivides the ob-
ject/image into a nearly optimal number of clusters (Fig. 11). We
demonstrate results on complex scenes with shadows and glossy
objects, where we can change lighting and/or viewpoint at real-time
rates, as shown in our results in Figs. 1, 10 and 11.

2 Theoretical Analysis of Dimensionality
Starting with equation 1, assume the object/image is divided into
local patches. Consider one such patch i, containing pi pixels or
vertices. Let Ti denote the transport matrix for this patch alone,
with dimensions pi× l, where l is the lighting resolution. We seek
to compress Ti using PCA, with ni � l eigenmodes,

Ti ≈UiSiV T
i , (2)

where Ui is a pi×ni matrix, Si is a ni×ni diagonal matrix of eigen-
values and Vi is a l×ni matrix, in the standard way.

We now conduct a theoretical analysis of how the dimensionality
ni of Ti (or the form of the eigenvalues in Si) changes with patch
size and other properties like the BRDF. For simplicity and clarity,
we conduct most of our analysis in the 2D or flatland planar case
(Sec. 2.1), deriving an analytic solution for common assumptions.
Section 2.2 briefly outlines how the main steps extend to 3D.

2.1 Local Light Transport Analysis — 2D Case

Preliminaries: In 2D, first consider a simple convex arc, as
shown in Fig. 3a. We parameterize lighting direction by γ (in the
range [−π,+π].) We parameterize surface location by angle α . For
the diffuse case (Fig. 3a), α refers to the normal direction and for
the specular case (Fig. 3b), it refers to the reflection of the view
about the surface normal. The reflected radiance B(α) is

B(α) =
∫

L(γ) f (α− γ)dγ. (3)

Here, we assume the BRDF f (·) is a symmetric function, depend-
ing only on the difference between the lighting direction γ and
the angle α . This assumption is good for many common BRDFs
like diffuse f (α − γ) = max(cos(α − γ),0) and the Phong BRDF,
f (α−γ) = coss(α−γ). This formulation of the reflection equation
is a convolution, as in the 2D setup of [Ramamoorthi and Hanrahan
2004]. Note that we assume the BRDF is homogeneous. This is a
very common assumption made in most of the PRT methods, espe-
cially for rendering of synthetic objects. It is particularly applicable
in our case, since we are considering local regions or patches. It has
recently also been shown that even for acquired complex materials,



one can use a linear combination of a small number of basis homo-
geneous materials [Lawrence et al. 2006] which makes our analysis
useful for these materials as well.

The same mathematical form also holds for cast shadows due
to a single blocker [Ramamoorthi et al. 2005]. In this case, α is
interpreted as the extremal angle induced by the blocker for a given
spatial location (Fig. 3c), and f is a step function. Thus, equation 3
is quite general, and we therefore make it our starting point.

The light transport T is a function of spatial location (here α)
and light direction (here γ), and is given from equation 3 simply by

T (α,γ) = f (α− γ). (4)

Finally, the “image size” or p is simply proportional to the half-
angle width β of the patch4, so that we can simply study how the
dimensionality of T (α,γ) varies with β .
Covariance Function: Let M(α1,α2) denote the covari-
ance/correlation function for T in PCA. The dimensionality of the
arc/patch is essentially the dimensionality of the function M.

M(α1,α2) =
∫

π

−π

T (α1,γ)T (α2,γ)dγ

=
∫

π

−π

f (α1− γ) f (γ−α2)dγ, (5)

where we have made use of the fact that f is symmetric. By ex-
panding in terms of Fourier series, or by substituting u = α1− γ ,

M(α1,α2) =
∫

π

−π

f (u) f (α1−α2−u)du = g(α1−α2), (6)

where g (and M) is a symmetric function, given by the convolution
of f with itself, i.e., g = f ⊗ f .

So far, we have worked in the continuous regime. Now, let us
consider a discretization of M for p pixels. Then, the matrix ele-
ment Mi j = M(αi,α j) = g(αi,α j) = g(αi−α j). We can also dis-
cretize g so that gk = g(αk). In this case,

Mi j = gi− j, (7)

where g is still a symmetric function. Since Mi j now depends only
on | i− j |, it is by definition a symmetric Toeplitz matrix.
Eigenvalues: Let λr,0 ≤ r < p be the eigenvalues of discrete
Mp (the superscript indicates a discretization to p pixels). For
sufficiently large resolution, i.e., for large values of p, it can be
shown using Szego’s eigenvalue distribution theorem [Grenander
and Szego 1958] and Lemma 4.6 in [Gray 2006] that the distri-
bution of eigenvalues of M can be approximated5 by those of the
truncated Discrete Fourier Transform (DFT) coeffcients of gk (with
I =

√
−1),

λr ≈
p−1

∑
k=−(p−1)

gke2πIkr/p. (8)

In the limiting (continuous) case, as p→ ∞, Mp →M(α1,α2) and
the dimensionality of the patch is the bandwidth6 of the truncated
Fourier Transform of the continuous function g, now restricted in
the range from −β to β . Figure 4 shows plots of the DFT coeff-
cients of the truncated gk function (red curve) and eigenvalues of
the Toeplitz matrix Mp (blue curve) computed using SVD for the
Phong BRDF with Phong exponent s = 50 and two different values
of β . The two curves match well, thus validating our analytic result.

4In practice, this relation can be somewhat non-linear for specular reflec-
tion and cast shadows, where α does not map linearly to spatial location.
Our numerical tests do not indicate this is a major factor, except near the
edges of objects, which we will discuss separately in Sec. 3.

5A technical condition is that g must be absolutely summable, or that
∑

∞
k=−∞

| gk |< ∞. Hence, we use gπ (ω), which is g when −π ≤ ω ≤ π and
0 otherwise. Since gπ

k = gk for −p≤ k ≤ p, equation 8 still holds.
6In practice, we consider bandwidth to be where the magnitudes of the

eigenvalues drop below some tolerance (usually 0.1% of total energy.)
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Figure 4: Plots of DFT coefficients of the truncated gk function (red curve)
and eigenvalues of the Toeplitz matrix Mp (blue curve) for a Phong BRDF
with Phong exponent s = 50. Resolution p = 3000 is sufficiently high. Note
that the curves match quite well, validating the theoretical analysis.

Dimensionality Analysis: We now have an analytic formula for
the eigenvalues, if we know the function f (and hence g). However,
we still need to understand how dimensionality varies as a func-
tion of patch size or area β . In other words, how does the Fourier
transform of g change when restricted in [−β ,β ]?

To proceed, we first define β ′ = β/π for simplicity, so that we
have 0≤ β ′ ≤ 1. Then, we define the restriction of g as

g(α;β
′) = g(α)h

(
α

β ′

)
, (9)

where h(u) is a box function = 1 in −1≤ u≤ 1 and 0 otherwise.
The Fourier transform, G(Ωα ;β ′) is now given by

G(Ωα ;β
′) =

∫
∞

−∞

g(α)h(
α

β ′
)e2πI( α

β ′ )Ωα dα

= β
′
∫

∞

−∞

g(β ′u)h(u)e2πIuΩα du. (10)

In the first line, the α/β ′ factor in the exponential is because the
DFT effectively “stretches” the region from [−β ,+β ] to [−π,+π].
In the second line, we make a simple substitution u = α/β ′.

To simplify further, we note that the Fourier transform of a
product is a convolution in the frequency domain. Moreover,
by the Fourier scale theorem, the Fourier transform of g(β ′u) is
(1/β ′)G(Ωα/β ′). Putting all this together,

G(Ωα ;β
′) = G(

Ωα

β ′
)⊗H(Ωα ). (11)

This is a critical result of the paper, providing a simple but very
general analytic formula for the eigenvalues of the covariance ma-
trix, as a function of the patch area β ′ and the BRDF or shadowing
function f (which determines G since g = f ⊗ f ).

Let ωGβ ′ , ωG and ωH be the effective bandwidth of G(Ωα ;β ′),
G(Ωα ) and H(Ωα ) respectively. Since the bandwidth of a convo-
lution of two functions in the frequency domain is the sum of their
respective bandwidths, we have

ωGβ ′ = β
′
ωG +ωH . (12)

This is a central result of the paper, showing precisely how light
transport dimensionality ω varies with patch area β ′. The dimen-
sionality varies linearly with β ′, having a constant offset ωH and a
linear slope ωG, that is of the order of the bandwidth of the BRDF or
shadowing transfer function (g(α) is the convolution of the BRDF
function f (α) with itself). Hence, dimensionality increases more
rapidly with β ′ for highly specular materials or complex cast shad-
ows, and more slowly for diffuse surfaces. This is intuitive since
the dimensionality of light transport is of course greater for sharp
reflections and shadows. Later in the paper, we will find it more
convenient to consider loglog plots where the slope is always close
to 1 for linear behavior, irrespective of the material properties, and
the absolute linear slope ωG represents only a constant offset.
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Figure 5: (a) shows the log-log plot of dimensionality vs size for a con-
vex 2D arc with a Phong BRDF and two different Phong exponents s. The
graphs are close to linear, with a slope of approximately 1 in most parts,
but with a slight decrease early (for small sizes β ). (b) shows the plots for
the shadow case. The blue curve is for a step blocker, considering only vis-
ibility, and the red curve is for a concave arc with diffuse BRDF. Again the
curves are linear with slope = 1. Since visibility has very high frequencies
ωG, the curves attain linear slope = 1 early, even for low β .

Note that as we increase β ′, the β ′ωG term in equation 12 dom-
inates so that

ωGβ ′ ≈ β
′
ωG (13)

Hence, for sufficiently large values of β ′, there exists a linear re-
lationship between the dimensionality of the patch and the size of
the patch. However, this relationship becomes sub-linear for small
patch sizes (small β ′), since the ωH term cannot be neglected. We
show later in Sec. 4.3 that the sublinearity for smaller patches plays
a critical role in determining the optimal patch size.

Numerical Simulations: Figure 5 shows numerical simulations
for a glossy reflector, as well as cast shadows, confirming the anal-
ysis above. We use loglog plots throughout this paper, so the slope
is the power of dimensionality variation. This enables easy analysis
of both linear (slope = 1) and sublinear (slope < 1) behavior. In this
domain, ωG contributes only to a constant offset between the plots
for different BRDFs, and hence the slope is independent of BRDF.

We obtain a nearly linear increase of dimensionality with patch
size (with slightly sub-linear behavior for low β and glossy reflec-
tions). This behavior is consistent for most scenes, even though
the actual value of dimensionality, and the transition point between
linear and sub-linear regimes is data dependent. For example, in
Fig. 5b, since visibility has very high frequencies (ωG is large), the
curves attain linear slope = 1 early, even for low β . However, the
sub-linear effects are clearly visible in Fig. 5a for the Phong BRDF
since ωG is not that high.

Extensions to Changing View: Now consider the case where we
fix the lighting and change the viewpoint. We seek the equivalent of
the light transport matrix, which is simply the appearance of a sur-
face point α from view direction γ . Assuming a parameterization
by the reflected direction, we have,

T (α,γ) =
∫

L(ω) f (α− γ−ω)dω, (14)

which is only a function of α − γ , i.e. T (α,γ) = f̃ (α − γ), with
f̃ = L⊗ f . This has exactly the same form as equation 4. Hence,
our framework is also immediately applicable to patch-based sur-
face light field methods [Nishino et al. 2001; Chen et al. 2002]. A
practical result for our method on surface light fields is in Fig. 10b.

2.2 Extension of Key Steps to 3D

We now extend our analysis to 3D, following the 2D framework.
We will outline the extensions of the relevant steps, and provide
numerical verification where appropriate. Section 3 shows numeri-
cal plots with a number of 3D examples, to validate our theory.
Preliminaries: Instead of a circular arc, in 3D we consider a
patch on the sphere with 0≤ θ ≤ β ,0≤ φ ≤ 2π . We parameterize
using standard spherical coordinates ααα = (θ ,φ). For the diffuse
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case, ααα is the normal direction and for the specular case, it refers to
the reflection direction, as in flatland. Let γγγ be the light direction.
In 3D, the light transport function T (ααα,γγγ) is given by

T (ααα,γγγ) = f (ααα · γγγ), (15)

where f (·) is the radially symmetric BRDF. Equation 15 has a sim-
ilar form as equation 4, with the difference between the angles in
2D replaced by the dot product or cosine of the angle in 3D.

Covariance Function: The covariance function M(ααα1,ααα2) is

M(ααα1,ααα2) =
∫

S2
f (ααα1 · γγγ) f (γγγ ·ααα2)dγγγ

= g(ααα1 ·ααα2). (16)

The last line is a standard result and can be obtained, for instance,
by expanding in spherical harmonics and applying the addition the-
orem. As in flatland, g = f ⊗ f , and is radially symmetric.

If we discretize, Mi j = g(ααα i,ααα j) = g(ααα i ·ααα j), which depends
only on the angle between ααα i and ααα j. This closely resembles the
Toeplitz matrix form in equation 7 and is the 3D analog.

Eigenvalues: Szego’s eigenvalue theorem can be extended to the
sphere [Okikioulu 1996], with the 2D Discrete Fourier Transform
replaced by the Spherical Harmonic Transform. A recent appli-
cation in vision is [Shirdhonkar and Jacobs 2005], although in a
very different context (they seek to ensure positivity given low-
frequency spherical harmonic coefficients). For us, we need sim-
ply consider the spherical harmonic transform of g, with 0≤ θ ≤ β

“stretched” out to the [0,π] range. Figure 6a,b compares the eigen-
values of M (blue curve) with the spherical harmonic coefficients
of gk (red curve), for a Phong BRDF with exponent s = 100, with
two values of β = π

4 and β = π

2 . The two curves match well.

Dimensionality Analysis: Hence in 3D, the dimensionality of T
for the patch can be approximated by the bandwidth of the Spherical
Harmonic Transform7 Gl(Ωα ;β ′) of g(α), 0≤ α ≤ β .

We can now conduct a similar analysis as in 2D, obtaining the
3D analog to equations 11 and 12. The only tricky issue is that the

7Since the function is radially symmetric with no azimuthal dependence,
only the m = 0 term matters for each l.
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Complex Examples
Figure 7: Plots showing validation of a variety of scene behaviors discussed in Sec. 3, including glossy reflections from convex objects, shadows in concave
regions, and more complex examples. Dimensionality here means the number of eigenvalues constituting up to 99.95% of the energy.

2D derivation used the Fourier scale theorem, while there is no ex-
act equivalent for spherical harmonics. However, a similar relation
can be shown approximately for high-frequency Legendre polyno-
mials, and is verified numerically in Fig. 6c,d (since m = 0, Yl0 are
simple Legendre polynomials). Analytically, the asymptotic form
Pl ∼ cos(lα + Φ), where Φ does not depend on l. Therefore, for
high frequencies, Legendre polynomials behave similarly in many
respects to high-frequency Fourier modes, leading to the same con-
clusions in 3D as in equations 12 and 13 in 2D.

3 Experimental Validation and Discussion
In this section, we present several examples to validate our main
result—that dimensionality of light transport varies almost linearly
with patch size, especially for larger areas (and sub-linearly for
smaller areas). We show examples with glossy materials, shadows
and interreflections, and discuss several insights and implications.

Convex Glossy Surfaces: Figure 7a plots dimensionality vs size
(area) A of the patch on a log-log scale for a convex hemisphere
with Phong BRDF and different Phong exponents s. We consider
circular patches centered at the center of the hemisphere. As ex-
pected, for large values of A, the plot is a straight line approaching
slope 1, whereas for small A (left of graph), the curve flattens.

Effect of Specularity: The point at which the plot reaches slope
near 1 is a function of Phong exponent s. As specularity s increases,
the bandwidth ωG in equation 12 increases and hence the curve
approaches slope 1 earlier, for smaller patch sizes.

Deviation from Centre: Figure 7b shows these plots for some
reasonable deviation of the patch center from the sphere center.
Nearly all the plots show similar behavior approaching slope 1.

Curvature: In Fig. 7c, we consider ellipsoids with decreasing y
and z semi-axes and hence decreasing curvatures. Again, most of
the curves show similar behavior, approaching the slope 1.

Extreme Cases: Figures 7b and 7c respectively show one plot
each for an extreme point near the edge, and one plot where the
surface effectively becomes a cylinder. In these extreme cases, the
slope is closer to 0.5 rather than 1, i.e., dimensionality is propor-
tional to

√
A instead of A. Note that a point near the edge of the

hemisphere also corresponds to the important case when a surface

that is tilted away from the camera. These rare deviations are re-
lated to the fact that, although the patch is symmetric, variation
along one dimension of the surface is much larger than the other, so
dimensionality is proportional to patch radius (or

√
A) rather than

area A. We will discuss this effect in more detail next, under cast
shadows.

Concave Surfaces with Shadows: Figure 7d shows plots for
a concave hemisphere with different centers for the patch. These
are the plots of the dimensionality of the visibility function itself
(without any BRDF). Note that, unlike for the convex case, there
is almost no noticeable sub-linear region in these curves since the
bandwidth ωG for visibility in equation 12 is relatively large. Sur-
prisingly however, the curve has a slope of 0.5 and not 1, so that
dimensionality is proportional to

√
A, rather than A.

There is a simple explanation for this seeming discrepancy. A
canonical example is where we have a long step along the Y axis
(think of extruding Fig. 3c). The plot for this case is also shown
in Fig. 7d, and is similar to the concave hemisphere. For all points
lying on a line parallel to the Y axis, the visibility function is the
same. We know from the 2D analysis (and numerical plots in flat-
land) that transport dimensionality of shadows is proportional to the
extent of the patch—but in this case, only extent along the X axis.
Therefore, dimensionality is really proportional to the length or ra-
dius of the patch, and hence to square root of actual area or

√
A.

The same explanation applies to extreme cases of glossy reflection.
Figure 7e shows a particularly interesting example, where we

have a grid of blockers over a plane. We get the black curve by
varying visibility along the X direction only (a 1D grid of blockers),
and the red curve by varying it along both X and Y directions (2D
grid). As expected, for the more common case of simple shadows,
the black curve has a slope of 0.5. However for the rarer case of
the 2D grid (red curve), the visibility function is quite intricate,
involving both dimensions, and we get a slope closer to 1.0 (≈ .9)—
a practical example of very complex shadowing is in Fig. 1.

Combining Glossy Reflections, Shadows and Interreflections:
Figure 7f shows the plots for a concave hemisphere with diffuse and
Phong BRDF and different Phong exponents s. Since the diffuse
BRDF is low frequency, the visibility function dominates and slope



Clusters for Phong Sphere with Exponent 100

Figure 8: CPCA clusters for Phong sphere with exponent 100. Note how
the clusters orient themselves along the boundary at the edges.

is 0.5. However, since the Phong BRDF is high frequency, we get
a slope of approximately 0.8, between 0.5 and 1.0. We also show
the effects of interreflections. Since these are a very low-frequency
effect, they do not significantly affect our results.

Complex Examples: Figure 7g shows dimensionality plots for
relighting the geometry of the David. Light transport is dominated
by shadowing effects for complex geometry, and the slope is consis-
tently 0.5 as expected. Figure 7h shows the dimensionality plots for
the light transport of a real face. The face has a large diffuse com-
ponent, as well as noticeable specularities and shadows (such as
from the nose). Hence the slope is around 0.75−0.8 as expected.8
Similar results are obtained for a number of other scenes we tested,
including on view-dependent examples using BRDF factorizations.

Asymmetric Patches: All of our plots use symmetric patches
(as for example do the methods of [Matusik et al. 2002; Nayar et al.
2004]). It is also possible with CPCA to obtain asymmetric patches
adapted to the light transport. In the canonical case of shadows
from a step, the patch area would then increase only along the X
axis, while having a fixed width along the Y axis. Another exam-
ple is a simple Phong sphere in Fig. 8, where CPCA clusters are
oriented along the sphere boundary near its edges. In these cases,
dimensionality is proportional to A. More generally, for a variety
of the effects considered, dimensionality would be proportional to
A1−ε , where ε is small for large patch areas. (ε is never exactly 0,
because of the convolution with the box function in equation 11).

4 Theoretical Analysis of Rendering Costs
We have studied how dimensionality varies with patch size (con-
ceptually the red curve in Fig. 2). However, this is only one term in
the rendering cost. We also need to consider the overhead of pro-
jecting onto the local basis functions at each patch, and the overall
storage and rendering costs (the blue and black curves in Fig. 2).

4.1 General Framework
We first review the general PCA framework [Sloan et al. 2003].
Consider equation 2. During rendering, V T

i first transforms l light-
ing directions to ni local basis coefficients (this is done only once
for the patch). Ui then transforms these local coefficients to pi sam-
ple values (at each pixel separately). The total cost ci is

ci = nil +ni pi = ni(l + pi). (17)

We have verified numerically that equation 17 corresponds closely
to wall clock running time, and we therefore use it as a measure
directly. Moreover, ci is just the sum of the sizes of Ui [ni× pi]and
Vi [l×ni], and therefore also corresponds to storage size.

High-resolution lighting can easily involve l = 6000 or more di-
rections. The size of l can be reduced to N � l, by a second SVD on

8An interesting observation on the face is the magenta (top) curve, with
the center of the nose as central point. One can notice the saturation at
the far end where the curve flattens. This is because the nose is close to
spherical, and hence covers the full range of frontal normals. So, as we
increase the patch size and move towards the cheeks, we are not adding any
extra information. This is consistent with our theory, which describes only
the local (not global) variation of light transport with dimensionality.

stacked versions of the matrix V T
i , as shown by [Nayar et al. 2004].

An alternative is simply to do an SVD on a reduced representation
of the full T directly, by choosing an appropriate (possibly random)
subset of the pixels (rows). In particular, the global dimensional-
ity of T , even for complex shadows and specular reflections, will
rarely be more than N = 500 basis functions. The original lighting
is projected into these global basis functions only once per frame,
using a wavelet approximation [Ng et al. 2003].

Finally, we actually care about the total cost for the scene, which
is the sum for all patches. Alternatively, it will be most useful to
actually consider the rendering cost per pixel,

ci

pi
= ni

N
pi

+ni = ni

(
N
pi

+1
)

. (18)

4.2 Cost-Efficient Method for Patch Subdivision

Equation 18 makes clear there are two opposing influences (the red
and blue curves in Fig. 2). The dimensionality ni increases with
patch size pi, and is optimal for very small patches (in the limit
a single pixel). On the other hand, the overhead for converting to
local bases decreases with pi as per the N/pi term—it is optimal for
very large patches (in the limit a single patch for the full image).

Instead of using a fixed number of basis functions, and a fixed
block size [Matusik et al. 2002; Nayar et al. 2004] or number of
clusters [Sloan et al. 2003], we represent each patch accurately to a
desired tolerance, and adaptively or hierarchically subdivide the im-
age (similar in some respects to a kd-tree or quadtree—see Figs. 1b
and 11c for examples) to find a near-optimal patch size.

We first derive a cost metric for dividing a patch into a number
of sub-patches. Since we deal with a single patch, we omit the
subscript i. From equation 17, the cost c is

c = nN +np = n(p+N). (19)

Assume we divide the patch into r subpatches of equal size. Let
n j denote the number of bases required for the jth subpatch. From
equation 19, the cost c′ for rendering the subpatches is given by

c′ =
r

∑
j=1

n j(
p
r

+N)

=
∑

r
j=1 n j

r
p+

r

∑
j=1

n jN. (20)

Here ∑
r
j=1 n j

r is the average number of bases required to represent

each subpatch. Let ∑
r
j=1 n j

r = µn,

c′ = µnp+ rµnN. (21)

The difference d in the two costs c and c′ is

d = c− c′ = np+nN− (µnp+ rµnN) (22)
= (1−µ)np+(1− rµ)nN. (23)

d acts as a cost metric for subdivision. If d > 0, the cost decreases
after subdivision and we should subdivide. Otherwise, we have
found a good patch size, and cannot easily improve the cost further.

4.3 Analysis of Cost Metric and Implications

First, assume the patch size is reasonably large, so that we are in
the range where n varies linearly with p (i.e., equation 13 is a good
approximation to equation 12), as shown in Sec. 3. Assuming a con-
vex patch with no shadows, from equation 13, µ ≈ 1

r . The first term
(per-pixel cost) in equation 21 decreases sharply by a factor µ , since
smaller patches mean fewer local basis functions. Moreover, the
second term rµnN in equation 21 remains constant at nN. In other
words, although the number of patches has increased, the number
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Figure 9: Left (a,b): Showing how cost varies with patch size for images of a 256× 256 face with different lighting. The blue curve shows the global basis
to local basis conversion cost and decreases as patch size increases. The red curve shows the local basis to pixel conversion cost and increases as patch size
increases. The global basis count N is 150. (a) shows the plots for blockwise PCA whereas (b) shows them for CPCA. In both cases, minima occur around
p∗ ≈ 150 as predicted by our analysis. Right (c,d,e): How minimum cost changes with resolution of the image. (c) shows the total cost curves for 128×128
and 256×256 face images using CPCA. Note that minimum cost increases only by a sublinear factor of 1.9 as predicted by our analysis. Also the position of
minima (in terms of pixel size) essentially remains the same. The distribution of clusters is shown in (d) and (e).

of local bases per patch has proportionately decreased. Considering
the cost differential in equation 23, the term (1− rµ)nN ≈ 0 and

d ≈ (1− 1
r
)np > 0. (24)

Therefore, we should always subdivide the patch if we are in the
linear regime, down to a very small size (for an example, see Fig. 1).

Now, consider the opposite case, when we are in the flat region
of the dimensionality curve i.e. patch size is very small (so that
the constant factor ωH dominates in equation 12). µ is close to 1,
so that the per-pixel cost does not decrease significantly (remains
at np), while the local basis conversion cost increases by approxi-
mately a factor of r. In terms of d, (1−µ)np≈ 0, and

d ≈ (1− r)nN < 0. (25)

So, we should not subdivide the patch further.
In general, the patch may be between linear and flat regions,

and/or have parts with shadows. From our analysis, the slope of
dimensionality is usually between 0.5 and 1.0. Hence, µ often lies
between 1

r and 1.0. Assuming constant µ , there exists an optimal
patch size p∗, which we can determine by setting d = 0. At p∗, the
decrease in per-pixel cost when subdividing exactly balances the
increase in cost from more patches and more local basis functions.

(1−µ)np∗+(1− rµ)nN = 0 (26)

p∗ = N
rµ−1
1−µ

. (27)

An important insight is that p∗ is proportional to N, i.e., the opti-
mal number of pixels in a patch is roughly the same as the number of
global basis functions N. We should subdivide less (larger patches)
if the global transport complexity N is large, while simpler scenes
(like low-frequency convex objects) should be subdivided more.

This may appear counterintuitive, since it would seem that for
low-frequency objects, the global dimensionality is already low
and further subdivision will provide limited benefits. However,
the overheads for additional subdivision are minimal precisely be-
cause the total number of basis functions required is small—on the
other hand, for high-frequency materials or shadows, these over-
head costs soon become significant.

Evaluation: Figure 9a shows the cost vs size plot for a 256×256
face image, lit from a 6× 32× 32, cubemap, with global dimen-
sionality N = 150. The image is divided into square blocks of
different sizes and cost computed for each size. As expected, the
minimum cost is for p ∼ N, and lies between 8× 8(p = 64) and
16× 16(p = 256) patches. Somewhat better results are obtained
using CPCA [Sloan et al. 2003], which does not place any con-
straint on the structure of clusters. Figure 9b shows the plot for
the face dataset created using different numbers of CPCA clusters.
Note that cost is minimum for approximately 220 clusters. Since

the face has 38,000 occupied pixels, this corresponds on average to
p≈ 170 which is again of the order of N (µ ≈ 0.68 and r = 2 here).

4.4 Scaling of Cost with Resolution
We now analyze how cost varies if we increase the resolution of an
image/mesh. Assume we double the number of pixels p in the patch
and that the dimensionality n does not change. From the previous
section, since the optimal patch size p∗ is dependent only on µ and
global basis N, we can subdivide the patch into two smaller patches.
Hence increasing resolution allows further subdivision.

In each of the two (equally sized) smaller patches, n → µn, but
p and N remain the same. Hence, new cost c1 after subdividing is,

c1 = 2µn(p+N), (28)

where the factor of 2 is because we now have two sub-patches. Note
that if we are in the linear regime, with µ ≈ 1/2, the cost remains
the same, even though we have increased resolution. This makes
sense, because even though there are now more pixels, the informa-
tion content is the same. More generally, comparing c1 and c,

c1

c
= 2µ. (29)

Since µ < 1, we always get a sub-linear increase in the cost. For
example, for µ = .7 the cost increases by only 1.4 and not 2. Equiv-
alently, the per-pixel rendering cost decreases by a factor of µ .

Figure 9c shows the cost vs. size plot for the face dataset at
128× 128 and 256× 256 resolutions. We estimate µ ≈ 0.68 by
taking a few patches. Since we have increased the resolution by
a factor of 4 or 2× 2, our analysis predicts an increase in the total
cost by a factor of 2µ ·2µ = 4µ2 = 1.85. Equivalently, the per-pixel
cost should decrease by a factor of µ ·µ = µ2 ≈ 0.5. The minimum
cost for each size is shown in the plot. Note that the ratio of the
total costs comes out to be 1.9 which is consistent with our theo-
retical estimate (and the per pixel cost decreases to approximately
one half, also consistent with our estimate). The optimal average
patch size p∗ for both the resolutions come out to be approximately
the same. Figure 9d,e further show the histograms of the size of the
clusters. Note that both show a similar distribution (but the tail of
the distribution is reduced for the smaller 128×128 resolution.)

5 Practical Applications
In this section, we discuss some practical applications of our anal-
ysis. First, we show how to set the right parameters in existing PRT
methods, without any other modification. We then present a simple
algorithm that adaptively subdivides the object/image into a nearly
optimal number of clusters. Finally, we scale up our resolution to
show all-frequency relighting of 1024×1024 images.
5.1 Setting Parameters in Existing Methods
In Sec. 4.3, we derived a relation between optimal patch size p∗
and global basis count N (equation 27). Once we know µ and N
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Figure 10: (a) Using our analysis to set parameters in Clustered PCA (for
relighting with fixed view) for the Buddha dataset (24,000 vertices, optimal
number m of clusters = 220). (b) Application of our adaptive subdivision
algorithm to render with changing viewpoint for surface light fields.

for the object/image, we should be able to set the optimal patch
size in existing methods like blockwise PCA [Nayar et al. 2004] or
CPCA [Sloan et al. 2003], and use them without any modification.

This requires us to estimate µ and N. For any given patch, with
a given central point, we determine µ based on the average slope s
or growth rate of dimensionality with the number of pixels/vertices.
We then use µ = r−s, with r = 2 for CPCA and r = 4 for block PCA
(corresponding to subdivision into 2 clusters or 4 sub-blocks).9 Fi-
nally, to determine N, we randomly choose a large number of sam-
ple points and do an SVD decomposition of the resulting transport
matrix (we could use the full image/mesh, but this is too compu-
tationally expensive). We choose N as the number of eigenvectors
needed to capture most of the total energy (usually 99.9%).

Figure 10a shows the Buddha (24,000 vertices), with complex
shadows using CPCA relighting for fixed view, with illumination
from 6× 32× 32 cube maps. For the estimated µ = .57 (220
clusters), the optimal per-vertex cost is 114.78. (Note that the
unit of costs in this section will be the effective number of basis
functions required at each vertex—corresponding to the average
value of c/p in equation 18.) A range around the optimal µ of
[.53, .6] corresponds to 130− 600 clusters, where the cost is be-
tween 114.78−130, so our method is not very sensitive to the ini-
tial points chosen to estimate µ . However, if we move far outside
this range such as 11 clusters, the cost is 310.7 which is not even
below the global number of basis functions, and nearly 3 times the
cost of our method. Prior to our work, there was no simple way to
determine the correct number of clusters (trial and error was effec-
tively the only possibility, but the precomputations take a long time
to run, often making that approach infeasible).

5.2 Practical Adaptive Algorithm

In practice, µ may vary non-uniformly along the scene, and we
now present a simple algorithm that adaptively and hierarchically
subdivides the object/image. We initially run the standard CPCA
algorithm with a few (usually 5-10) clusters. We then take each
initial cluster, and subdivide it into two using CPCA (see Fig. 11c),
comparing the cost of rendering the cluster before and after subdi-
vision. The subdivision stops if the cost increases after subdivision.
Otherwise, the process is repeated for each newly formed cluster.

Since the lighting dimensions are large (6× 32× 32), and ini-
tially when we have only a few clusters, the cluster size is also large,

9In standard CPCA or block PCA, there is no actual adaptive subdivi-
sion, or notion of r. However, equation 27 is relatively insensitive to r, and
we therefore use values corresponding to our adaptive technique in Sec. 5.2.

PCA becomes computationally difficult. Therefore, for the initial
few subdivisions, we do a wavelet decomposition of light transport
for each vertex and take the first K wavelet coefficients with highest
energy globally.10 After a few subdivision steps, when cluster size
becomes manageable, we shift to the full original light transport.
Our algorithm can be applied to changing view as well [Liu et al.
2004], separately considering each view-dependent BRDF factor.

Figure 11 shows the results of our algorithm on a complex scene
with specular objects (street lamps). The scene has approximately
40,000 vertices, and we can change lighting and view in real-
time. For the ground plane, with adpative subdivison, the cost (per-
vertex) is 64. In this case, the number of global basis functions is
N = 500, so we provide a speedup of nearly an order of magnitude.

The number of clusters generated are 219. Even if we run stan-
dard CPCA with the same fixed (219) number of clusters, the per-
vertex cost is 76, which is around 20% more than our adaptive algo-
rithm. This is because running standard CPCA must use a wavelet
approximation throughout. More importantly, since the clustering
is being done globally for the full scene (instead of reclustering
each individual cluster hierarchically), it is more prone to local op-
tima. Again, if we move to extremes such as 10 clusters, the cost
increases to 197, which is more than 3 times the cost with our algo-
rithm. At the other extreme, if we make the number of clusters very
large (around 5000) the cost becomes 184, which is again nearly
thrice the cost of our method. In the intermediate range (50 clus-
ters), the cost is 112 which is around twice the optimum.

Application to Surface Light Fields: While our main focus is
PRT, we can also use the adaptive subdivision algorithm to render
surface light fields with dynamic view. Instead of the relighting
transport matrix, we have the intensity of each vertex from all views
(on a 6×32×32 cube map.) Figure 10b shows a surface light field
of the Buddha, rendered at a cost of 31.8 bases per vertex (compare
with N = 300 global basis functions). As with relighting, the cost
is 3×–4× less than CPCA with a sub-optimal number of clusters.

5.3 Scaling to Large Resolutions

Our theory indicates we can increase resolution with only a sub-
linear increase in cost. Fig. 1a demonstrates this practically, show-
ing interactive rendering at a 1024×1024 resolution. We use block-
wise PCA (similar to [Nayar et al. 2004]), with adaptive subdivision
using our method (Fig. 1b). Because the shadows are very com-
plex, the global dimensionality N = 700 is large, and the variation
of dimensionality with patch size is nearly always linear in Fig. 1c.
Hence, as predicted by our cost analysis, we subdivide down to
very small patches with areas of 4×4 or 8×8, which is much less
than N. Note that the subdivision becomes finer (Fig. 1b) as we
move closer to the plant on the ground plane, since the shadows be-
come more complex. Overall, our adaptive block PCA provides a
speedup of approximately an order of magnitude, enabling interac-
tive relighting of this very high-resolution image.

6 Conclusions and Future Work
We have developed a theoretical analysis of the dimensionality of
local light transport. First, we show how the dimensionality of a
patch changes with its size, observing that dimensionality is pro-
portional to area for glossy reflections, and proportional to length
or radius for shadows. Second, we analyze the rendering cost, and
derive the optimal patch size. In practical applications, this analysis
allows us to fine tune the parameters of existing methods, scale to
very large resolutions, and develop adaptive clustering algorithms.

In the future, we would also like to analyze other global illumi-
nation effects such as sub-surface scattering or caustics. Another
important theoretical question is how this analysis relates to the lo-
cal frequency-space analysis in [Durand et al. 2005], and whether

10This is used only for clustering. The full light transport is always used
for computing the final bases needed for rendering.
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Figure 11: Adaptive algorithm with CPCA for a scene with 40,000 vertices. (a) shows the rendering of the scene with dynamic lighting and view, (b) shows
the final clustering of the scene, and (c) shows the steps of our adaptive subdivision algorithm for a small patch on the ground plane—notice the subdivisions
into two in steps (i), (ii) and (iii), but how most of the patches do not subdivide further in step (iv).

they can be unified. Moreover, clustering techniques and PCA are
also widely used to represent visual appearance and other quantities
in different application areas like computer vision.

While we have presented our theory in the context of PRT and
rendering, the paper describes a fundamental analysis of light trans-
port that has potential applications in many other domains. For
example, locally low-dimensional subspaces provide a robust and
efficient computational framework for inverse rendering problems
like illumination estimation. In computer vision, they allow us to
understand and recover the effects of lighting in the context of ap-
plications like lighting-insensitive face recognition (indeed, our nu-
merical validations have included tests on real faces).

With the growing application and maturity of algorithms based
on local patches and clustering, we believe that a fundamental theo-
retical analysis, as in this paper, is critical to explain and make fur-
ther progress. In the future, we expect a more solid foundation for
a variety of methods that compress and represent high-dimensional
visual appearance compactly.
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