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Abstract
The shading in a scene depends on a combination of many factors—
how the lighting varies spatially across a surface, how it varies
along different directions, the geometric curvature and reflectance
properties of objects, and the locations of soft shadows. In this
paper, we conduct a complete first order or gradient analysis of
lighting, shading and shadows, showing how each factor separately
contributes to scene appearance, and when it is important. Gradi-
ents are well suited for analyzing the intricate combination of ap-
pearance effects, since each gradient term corresponds directly to
variation in a specific factor. First, we show how the spatial and
directional gradients of the light field change, as light interacts with
curved objects. This extends the recent frequency analysis of Du-
rand et al. to gradients, and has many advantages for operations,
like bump-mapping, that are difficult to analyze in the Fourier do-
main. Second, we consider the individual terms responsible for
shading gradients, such as lighting variation, convolution with the
surface BRDF, and the object’s curvature. This analysis indicates
the relative importance of various terms, and shows precisely how
they combine in shading. As one practical application, our theoret-
ical framework can be used to adaptively sample images in high-
gradient regions for efficient rendering. Third, we understand the
effects of soft shadows, computing accurate visibility gradients. We
generalize previous work to arbitrary curved occluders, and develop
a local framework that is easy to integrate with conventional ray-
tracing methods. Our visibility gradients can be directly used in
practical gradient interpolation methods for efficient rendering.

1 Introduction
A theoretical analysis of lighting and shading has many applica-
tions in forward and inverse rendering. For example, understanding
where the image intensity varies rapidly can be used to determine
non-uniform image sampling rates for efficient rendering. Under-
standing how shading changes in penumbra regions can lead to ef-
ficient and robust soft shadow computations, as well as advances in
inverse lighting-from-shadow algorithms. In this paper, we seek to
address these theoretical questions through a first order or gradient
analysis of lighting, shading and visibility.

The appearance of a surface, and its gradients, depends on many
factors. The shading is affected by lighting—the spatial lighting
variation over a flat object surface due to close sources, as well as
the angular variation in lighting at a point from different directions.
Shading also depends on geometric effects like the object’s curva-
ture, which determines how much the surface normal or orientation
changes between neighboring points. The material properties are
also important, since shading is effectively a convolution with the
object BRDF [Ramamoorthi and Hanrahan 2001]. These factors
can combine in complex ways in an image, and each factor may
have less or more importance depending on the situation. For ex-
ample, the spatial variation in lighting over a surface can be pri-
marily responsible for the specular reflections from a near source
on a glossy flat table. On the other hand, the angular variation in
lighting is most important for a highly curved bumpy object on the
table—the effect of spatial variation here is often small enough, that
the lighting can effectively be treated as distant (see Fig. 5).

By definition, the gradient is usually a sum of terms, each cor-
responding to variation in a specific factor. Hence, a first order
analysis is able to isolate the impact of various shading effects.
Our computation of gradients also enables new practical rendering
algorithms, such as efficient gradient-based image sampling, and
fast and accurate gradient-based interpolation of visibility (Fig. 1).
Specifically, we make the following contributions:

Analysis of Light Reflection: First, we analyze the basic con-
ceptual steps in the reflection of light from a curved surface
(Sec. 4.1). We develop the theory for both spatial and angular (or

Figure 1: Our theoretical analysis can be applied to efficient rendering.
Top: Gradient-based image sampling achieves a 6× speedup on a scene
with bumpy, diffuse and specular objects, including shadows and near-field
lighting. Bottom: We use visibility gradients for rendering accurate soft
shadows from curved objects on the ground plane, evaluating visibility ex-
plicitly at only 1% of image pixels. More details are in Figs. 8 and 15.

directional) gradients of the light field, since many visual effects
involve a rich interplay between spatial and angular information.
Analysis of First Order Terms and Image Sampling: In
Sec. 4.3, we determine the gradients for shading on a curved ob-
ject lit by general spatial and directionally-varying lighting. We
combine the basic shading steps in Sec. 4.1, augmenting them with
non-linear transformations like bump mapping (Sec. 4.2). Our final
gradient formula can be separated into individual terms that corre-
spond to effects like spatial lighting variation, angular variation, and
surface curvature. We analyze the effects of these terms in a variety
of situations, understanding which factors are important for the ap-
pearance of different scenes (Sec. 4.5). Moreover, we show how to
extend the first order analysis to second-order Hessians (Sec. 4.7).

Section 5 (Figs. 1 and 8) applies these ideas to efficient render-
ing, by adaptively sampling images using a metric based on gra-
dient magnitude. We consider general scenes, with bump maps,
glossy reflectance, shadows, and near-field lighting, achieving ac-
curate results using only 10%−20% of the effective pixels.
Analysis of Visibility Gradients: We derive new analytic ex-
pressions for soft shadow gradients in Secs. 6 and 7. These have
usually been neglected in practical gradient techniques [Ward and
Heckbert 1992; Annen et al. 2004]. Our analysis is general, and
works for arbitrary curved blockers, as well as polygonal objects.
Moreover, our formulation is local, based only on analyzing angular
discontinuities in visibility at a single spatial location. We demon-
strate practical applications to efficient and accurate rendering of
soft shadows using gradient-based interpolation (Figs. 1 and 15).

2 Previous Work
This paper builds on a substantial body of previous work on ana-
lyzing light transport in a number of different representations.



Operator Spatial and Angular Domain Gradient Fourier Wavelet
Multiplication h(x,θ) = f (x,θ)g(x,θ) 5h = f5g+g5f H(Ω) = F(Ω)⊗G(Ω) Hi = Ci jkFjGk

Integration h(x) =
∫

f (x,θ)dθ hx =
∫

fx(x,θ)dθ H(Ωx) = F(Ωx,0) Haar only, Hi = Fi0

Convolution h(x,θ) =
∫

f (x,ω)g(θ −ω)dω 5h = 5f⊗g H(Ω) = F(Ω)G(Ω) No simple formula

Linear Transforms h(u) = f (Mu) 5h(u) = MT5f(Mu) H(Ω) = 1
|det(M)|F(M−T Ω) No simple formula

Nonlinear Transforms h(u) = f (T (u)) 5h(u) = JT (u)5f(T (u)) No simple formula No simple formula

Figure 2: The basic mathematical operators of light transport, and the resulting transformations in gradient, Fourier and wavelet representations.

Frequency Domain Analysis: Frequency domain techniques
have been popular for light field analysis, leading to a signal-
processing approach. Chai et al. [2000] analyze light field sampling
in the Fourier domain. Ramamoorthi and Hanrahan [2001] develop
a convolution framework for reflection on curved surfaces using
spherical harmonics. Ng [2005] has shown how Fourier analysis
can be used to derive a slice theorem for light fields.

Most recently, and closest to our work, Durand et al. [2005] de-
rive a frequency analysis of light transport considering both spatial
and angular variation. In Sec. 3.1 (Fig. 2), we directly compare
Fourier and gradient analysis in terms of basic mathematical oper-
ators (Sec. 8, at the end, has a more detailed discussion of specific
steps.) First order analysis has two main benefits for us. The gradi-
ent is naturally written as a sum of terms corresponding to specific
variations in shading, while keeping other factors fixed. This makes
it easier to analyze the importance of various shading effects. More-
over, first order analysis is by definition fully local and can handle
general non-linear effects like bump mapping, while Fourier analy-
sis always requires a finite neighborhood and linearization.
Wavelet Analysis: Wavelets have been another popular tool for
efficient computations and representation of light transport. Early
work in rendering includes wavelet radiosity [Gortler et al. 1993;
Gershbein et al. 1994]. More recently, Ng et al. [2004] have an-
alyzed multiplication and triple product integrals using wavelets.
However, many of the mathematical operations of light transport
currently have no simple analytic interpretation in wavelets (see
Sec. 3.1 and Fig. 2). Thus, wavelets seem more useful for efficient
practical computation, rather than for deriving theoretical insights.
Differential and Gradient Analysis: Gradient-based methods
have been widely used in graphics, starting with the irradiance gra-
dients of Ward and Heckbert [1992]. While we are inspired by these
methods, there are some important differences. While Ward and
Heckbert [1992] essentially try to find the gradients of the incident
light field, we seek to determine how these gradients evolve as light
interacts with object surfaces or blockers. Igehy [1999] and Chen
and Arvo [2000] find differentials of individual ray paths as certain
parameters (like viewpoint or location on the image plane) vary.
By contrast, we seek to determine how the gradients over the entire
light field transform. Most importantly, this paper is focused more
on theoretical analysis, understanding the nature of shading varia-
tion by considering the various gradient terms. We are optimistic
that our analysis can be used to derive new theoretical bounds and
practical algorithms for previous methods.
Visibility Analysis: Shadows are one of the most important vi-
sual features and have received significant theoretical attention. Du-
rand et al. [2002] develop a full characterization of visibility events
in terms of the visibility complex. Soler and Sillion [1998] and Ra-
mamoorthi et al. [2004] have characterized special cases as convo-
lutions. Arvo [1994] has derived irradiance Jacobians for occluded
polyhedral scenes, and applied them to shadow computations based
on a global analysis of scene configuration. Holzschuch and Sil-
lion [1998] compute gradients and Hessians of form factors for
error analysis. By contrast, our approach is local, using only the
visibility information at a single spatial location, and can consider
general curved occluders in general complex lighting.

3 Preliminaries
We start by writing the reflection equation at a single point x,

B(x,θ) =
∫

L(x,ω)ρ(x,θ ,ω)V (x,ω)cosω dω, (1)

where B is the reflected light field, L(x,ω) is the incident light field,
ρ is the BRDF and V is the visibility. In this paper, light fields such

as B or L are expressed in terms of their spatial location x and local
angular direction (ω or θ ), with respect to the local surface normal.

Our goal is a first order analysis of reflection on a curved surface.
We consider both spatial and angular gradients, because most phys-
ical phenomena involve deep interplay between spatial and angular
effects. For example, angular variation in the lighting often leads to
spatial variation in the shading on a curved object.

For much of the paper, the derivations are carried out in the 2D
plane or flatland for clarity and simplicity. While the 3D extensions
(detailed in Secs. 4.4, 7 and Appendix B) are more complicated
algebraically, much the same results are obtained. Our analysis is
applied practically to efficient rendering of 3D scenes (Sec. 5), and
to evaluation of soft shadows from curved blockers in 3D (Sec. 7).

We will be analyzing various parts and generalizations of Equa-
tion 1. In this section, we will consider abstractly the result h of
the interaction of two functions f and g, which will usually corre-
spond to the lighting and BRDF respectively. From Sec. 4 onwards,
we will be more concrete, using notation closer to Equation 1. The
partial derivatives will be denoted with subscripts—for example,
fx(x,ω) = ∂ f (x,ω)/∂x. In Sec. 3.1, we will also compare the first
order analysis to Fourier analysis, such as [Durand et al. 2005], pre-
senting a unified framework for both in terms of basic mathemat-
ical operations. Sec. 8 at the end of the paper has a more specific
discussion and comparison with examples. We denote the Fourier
transform of f (x,θ) as F(Ωx,Ωθ ), where the subscripts now stand
for the spatial (x) or angular (θ) coordinate.

3.1 Mathematical Operations of Light Transport

The interaction of lighting with the reflectance and geometry of ob-
jects involves fairly complex effects on the light field, as well as
the gradients or Fourier spectra. However, the basic shading steps
can all be reduced to five basic mathematical building blocks—
multiplication, integration, convolution of functions, and linear and
nonlinear transformations on a function’s domain. For example,
modulation of the shading by a texture map involves multiplica-
tion. Adding up the contributions of lighting from every incident
direction involves integration. The interaction of lighting and re-
flectance can usually be written as a convolution with the surface
BRDF. We will see that transformations between a global coordi-
nate frame and the local frame of the surface can be written as linear
transformations of the spatial and angular coordinates. Complex
shading effects like general bump mapping, and visibility computa-
tions require nonlinear transformations of the coordinates.

Figure 2 summarizes these mathematical operators for gradient,
Fourier and wavelet representations. While many of these formulae
are widely available in calculus textbooks, their forms give consid-
erable insight in comparing analysis with different representations.
Multiplication: Canonically, h(x,θ) = f (x,θ)g(x,θ). In the
Fourier basis, this is a convolution, H(Ω) = F(Ω)⊗G(Ω), where
the ⊗ symbol stands for convolution. For gradients,

5h = f5g+g5f. (2)

Integration: Consider h(x) =
∫

f (x,θ)dθ , where for example f
may denote the lighting pre-multiplied by the cosine term (with the
result h(x) being the diffuse shading). After a Fourier transform,
this corresponds to restricting ourselves to the Ωθ = 0 line, i.e. Ωx

axis, so H(Ωx) = F(Ωx,0). For first order analysis,

hx =
∫

fx(x,θ)dθ . (3)

Convolution: Canonically, h(x,θ)=
∫

f (x,ω)g(θ −ω)dω , where
f can be thought of as the incident lighting and g as the homoge-
neous radially symmetric BRDF. In the Fourier basis, this becomes



a multiplication, H(Ω) = F(Ω)G(Ω). For gradient analysis, it is
convenient to realize that convolution is a symmetric operation.1

Thus, derivatives and convolutions commute, so that

h = f ⊗g ⇒ 5h = 5f⊗g, (4)

where the convolution is only over the angular coordinate.
Linear Transformations: In general, we consider

h(u) = f (Mu), (5)

where u is a n× 1 vector and M is a n× n matrix. In 2D, the light
field has two dimensions, so n = 2 and u = (x,θ)T . For example, f
could be the incident light field in global coordinates, and h could
be the lighting in the local coordinate frame of a point, with M being
the appropriate transformation of u = (x,θ)T .

For Fourier analysis, we can use the general Fourier linear trans-
formation theorem. While the derivation is straightforward, it does
not appear to be commonly found in standard texts or well known
in the field, so we briefly derive it in Appendix A,

H(Ω) =
1

| det(M) |F(M−T Ω), (6)

where det(M) is the determinant of M.
For gradients, we have a similar linear transformation theorem

(also derived in Appendix A). In particular,

5h(u) = MT5f(Mu). (7)
Nonlinear Transformations: Finally, we come to nonlinear trans-
formations. These are seldom considered in analyses of light trans-
port (and are not treated by Durand et al. [2005] at all), because it
is not clear how to handle them with Fourier or wavelet methods.

To apply gradient techniques, we effectively use the chain rule.
We assume h(u) = f (T (u)), where T is a general non-linear and
not necessarily invertible transformation. However, T can be lo-
cally linearized by computing the Jacobian, to obtain a local linear
transformation matrix J(u) (that now depends on u),

h(ui) = f (Ti(u)) Jik(u) =
∂Ti

∂uk
5h(u) = JT (u)5f(T (u)). (8)

Implications: Besides relating Fourier and gradient techniques,
direct application of these formulae simplifies many derivations
both in our paper and in previous work. For example, many deriva-
tions in [Durand et al. 2005] follow directly from the Fourier linear
transformation theorem. The Fourier slice result in [Ng 2005] can
be easily derived using a combination of the linear transformation
and integration relations. Figure 2 also indicates why certain repre-
sentations are more commonly used for mathematical analysis. The
Fourier basis handles the first four basic operations in a very sim-
ple way, making it possible to conduct a full analysis of linear light
transport, such as Durand et al. [2005]. Similarly, the simple form
of those operations with gradients makes them well suited to the
analysis in this paper. Moreover, gradients are often the only avail-
able tool when considering nonlinear transformations, for which
there is no simple Fourier equivalent. For wavelets, on the other
hand, most operations like convolution or linear transforms are very
difficult to study analytically (even though there are often efficient
computational methods, such as the recent triple product multipli-
cation algorithms [Ng et al. 2004; Clarberg et al. 2005]).

4 Light Reflection from Curved Surfaces
In this section, we first discuss the important conceptual steps for
reflection from a homogeneous curved object (with a brief digres-
sion to consider spatially-varying materials and analysis in 3D).
Then, we analyze non-linear transformations like normal or bump
maps, and derive the combined gradient including all effects. Fi-
nally, we analyze the effects of individual shading terms, and the
sampling of images. In this section, we do not explicitly consider
cast shadows, since visibility is analyzed in detail in Secs. 6 and 7.

1By symmetry, hθ = fθ ⊗ g in Equation 4 is the same as hθ = f ⊗ gθ .
This symmetry no longer holds for 3D spherical convolution, where the
lighting is a 2D spherical function, while the radially symmetric BRDF is
1D. In that case, we must use f ⊗gθ (see Appendix B). However, Equation 4
is still accurate for flatland, and can be used even for 3D sampling.
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Figure 3: The light field and its spatial and angular gradients, as a result of
the various curved surface shading steps in Sec. 4.1. Green denotes positive
values, and red denotes negative values.

4.1 Basic Shading Steps

To illustrate our ideas, we start with a spatially and directionally-
varying light source, showing how the light field and gradients
change with various shading steps. As shown in Fig. 3a, the source
intensity L(x,θ) varies as a Gaussian along both spatial (horizon-
tal) and angular (vertical) axes. Besides providing a simple didactic
example, one motivation is to consider spatially and directionally-
varying sources, that have rarely been studied.

We assume the global coordinate frame is aligned so the surface
normal at the origin x = 0 is pointing straight up (towards θ = 0).
The surface is parameterized by the arc-length distance x along it
(which is equivalent to the global x coordinate near x = 0 and used
interchangeably). We linearize the surface about x = 0, so that the
normal is given by kx, where k is the standard geometric curvature,
and we use positive signs for counter-clockwise directions.
Step 1—Per-Point Rotation into Local or Surface Frame: We
must perform a rotation at each point to convert global coordinates
to local. Let L(x,θ) be the incident light field in the global frame.
As shown in previous work [Ramamoorthi and Hanrahan 2001; Du-
rand et al. 2005], the light field in the local or surface coordinate
frame is Ls(x,θ) = L(x,θ +n), where n is the surface normal. Not-
ing that n = kx, we write Ls(x,θ) = L(x,θ + kx). This is a linear
transformation of the variables x and θ , that mixes spatial and angu-
lar coordinates, shearing the light field along the angular dimension
as seen in Fig. 3b. If u = (x,θ)T , Ls(u) = L(Mu) with M being
(

xnew
θnew

)

=

(

1 0
k 1

)(

x
θ

)

M =

(

1 0
k 1

)

MT =

(

1 k
0 1

)

.

(9)
Using the linear transformation theorem in Equation 7, and pre-

multiplying by MT as required,

Ls(x,θ) = L(x,θ + kx)

5Ls(x,θ) =

(

1 k
0 1

)

5L(x,θ + kx). (10)

This can be written out explicitly as



(

Ls
x

Ls
θ

)

=

(

1 k
0 1

)(

Lx(x,θ + kx)
Lθ (x,θ + kx)

)

=

(

Lx(x,θ + kx)+ k ·Lθ (x,θ + kx)
Lθ (x,θ + kx)

)

, (11)

which can be easily verified by differentiating Ls directly, and
where we have made the arguments for evaluation explicit. As seen
in Fig. 3b, the spatial and angular gradients are sheared in the angu-
lar dimension like the light field, because all quantities are evaluated
at the sheared coordinates (x,θ + kx).

From the above equation, the angular gradients Ls
θ have the same

form as Lθ . The spatial gradient Ls
x makes explicit that shading vari-

ation occurs in two ways—either the incident light field includes
spatially varying components Lx, and/or the surface has curvature k
(and there is angular lighting variation Lθ ). For a distant environ-
ment map (so L is independent of x), there is no spatial variation
(Lx = 0), and Ls

x is only due to curvature. For a flat surface, there is
no curvature (and in fact, Ls = L for this step), and spatial gradients
only come from the original light field. We can also see how to re-
late the two components, which have comparable magnitude when
| Lx |∼| kLθ |. This discussion also immediately shows the benefit
of first order analysis, where individual gradient terms correspond
directly to different types of shading variation.
Cosine Multiplication: We can now multiply by the cosine
term, with the standard multiplication formula for the gradients
(Equation 2). Since the cosine effect is relatively subtle and of-
ten rolled into Phong-like BRDFs, we will simply incorporate it in
the BRDF transport function for the combined analysis in Sec. 4.3.
Step 2–Mirror Reparameterization: For glossy materials,
we reparameterize by the mirror direction, setting Lm(x,θ) =
Ls(x,−θ). The light field and gradients in Fig. 3c are therefore
reflected about the θ−axis. The angular gradient is also negated,

Lm
θ (x,θ) = −Ls

θ (x,−θ), (12)

or more formally,

Lm(x,θ) = Ls(x,−θ)

5Lm(x,θ) =

(

1 0
0 −1

)

5Ls(x,−θ). (13)

Step 3—BRDF Convolution: Reflection from the surface can
be written as a convolution with a radially symmetric BRDF 2 ρ ,

Bs(x,θ) = Lm ⊗ρ =
∫

Lm(x,ω)ρ(ω −θ)dω. (14)

For gradients, we use the gradient convolution rule in Equation 4,

5Bs(x,θ) = 5Lm ⊗ρ =
∫

5Lm(x,ω)ρ(ω −θ)dω. (15)

Since gradients and convolutions commute, we effectively obtain
gradients of the convolution by convolving the gradients,

(

Bs
x

Bs
θ

)

=

(

Lm
x ⊗ρ

Lm
θ ⊗ρ

)

. (16)

Figure 3d shows the results of convolving with a Gaussian for ρ .
This is analogous to a Phong or an approximate Torrance-Sparrow
BRDF. We would expect the convolution to lead to some blurring
along the vertical, or angular direction, and this is in fact the case
for both the light field, and the spatial and angular gradients.
Step 4—Inverse Per-Point Rotation into Global Frame: So
far, we have worked in the local or surface coordinate frame (hence,
the superscript s on the reflected light field Bs). If we seek to express
the final result in the global frame, we should undo the original per-
point rotation, writing, analogous to Equation 10,

B(x,θ) = Bs(x,θ − kx)

5B(x,θ) =

(

1 −k
0 1

)

5Bs(x,θ − kx). (17)

2We use ρ(ω − θ) instead of ρ(θ − ω) for algebraic simplicity in
Sec. 4.3. Since the BRDF is symmetric, this does not matter, and is actually
more consistent with our sign conventions.

Spatially Varying Materials: As a brief aside, we consider a gen-
eralization of step 3 to spatially-varying materials.3 In this case,

Bs(x,θ) =
∫

Lm(x,ω)ρ(x,ω −θ)dω. (18)

Note that the convolution is only over the angular coordinates,
while Lm and ρ are multiplied over the spatial coordinates. The
gradients are given by

(

Bs
x

Bs
θ

)

=

(

Lm
x ⊗ρ +Lm ⊗ρx

Lm
θ ⊗ρ

)

. (19)

The only additional term is Lm⊗ρx in Bs
x, which corresponds to the

spatial gradient or texture in the BRDF.
An interesting special case is texture mapping, where ρ(x) sim-

ply multiplies the diffuse shading. In that case, we denote E as the
irradiance

∫

Ls(x,ω)dω so that Bs(x) = E(x)ρ(x) and

Bs
x = Exρ +Eρx. (20)

For smooth objects, the diffuse shading is low frequency [Ra-
mamoorthi and Hanrahan 2001], so Ex is generally small and
Bs

x ∼ Eρx. (A similar result holds even in 3D, with 5Bs ∼ E5ρ .
In 3D, the direction of the gradient 5Bs depends primarily on the
direction of the texture gradient 5ρ , independent of the lighting or
irradiance, while the magnitude is scaled by E. This is one explana-
tion why the direction of the gradient is a good measure for lighting-
insensitive recognition in computer vision [Chen et al. 2000].)
Analysis in 3D: In Appendix B, we extend the four basic shading
steps to 3D. This requires simple vector calculus and differential
geometry. While the algebra is more complex, we obtain very sim-
ilar results as in the 2D or flatland case. For example, the curvature
k simply corresponds to the principal curvatures in 3D. In fact, as
we will see in Sec. 4.4, it is possible and simpler to directly use the
straightforward 3D analogs of these 2D results for real images.

4.2 Gradients for Normal or Bump Maps

Section 4.1 assumes a local linearization of the surface. We now
generalize to arbitrary normal or bump maps, which are nonlinear
transformations. In this case, the per-point rotation step involves a
general function n(x) for the normal. By differentiating, using the
chain rule (or using Equation 8, with the Jacobian of the transform),

Ls(x,θ) = L(x,θ +n(x))

5Ls(x,θ) =

(

1 nx
0 1

)

5L(x,θ +n(x)), (21)

where nx = ∂n/∂x. Hence, we can define a general per-point
curvature, k(x) = nx = ∂n/∂x, assuming an arc-length parame-
terization. For normal maps n(x) = n̂(x) + n0(x), where n̂ is the
bump map, and n0(x) is the base normal of the surface. Assum-
ing the bump map has much higher frequencies than the base sur-
face, k(x) ≈ ∂ n̂/∂x, and depends primarily on the curvature of the
bump map. If there is no bump map, k(x) is simply the curvature
of the base surface ∂no/∂x. The use of the gradient analysis lets
us generalize to bump maps very easily, with the general function
k(x) = nx = ∂n/∂x simply taking the place of k in Equation 10.

4.3 Light Field Gradients

We now combine the four light-surface interaction steps in Sec. 4.1,
replacing kx with n(x). From Equations 17 and 14,

B(x,θ) = Bs(x,θ −n(x)) =
∫

Lm(x,ω)ρ(ω −θ +n(x))dω. (22)

Upon substituting Equations 13 and 10 for Lm, we obtain
Lm(x,ω) = Ls(x,−ω) = L(x,−ω +n(x)). Hence,

B(x,θ) =
∫

L(x,−ω +n(x))ρ(ω −θ +n(x))dω

=
∫

L(x,ω ′)ρ(2n(x)−θ −ω ′)dω ′, (23)

3We could also generalize the BRDF model beyond radially symmet-
ric. The gradients would be essentially the same, but with the convolutions
replaced by a general integral using the general BRDF ρ(x,θ ,ω).



SV DV CV CDV SV+CDV
Lx ⊗ρ Lθ ⊗ρ 2nx 2nx(Lθ ⊗ρ) Bx

Distant Light 0 CDV
Overcast Sky 0 low low low
Near Light high SV+CDV
Bump Map high high CDV
Flat Surface 0 0 SV
Flat+Envmap 0 0 0 0
Lambertian low low SV+CDV
Mirror high CDV

Figure 4: Magnitudes of various light field gradient terms, corresponding
to a variety of common situations and special cases. Entries not filled in
have “normal” values, depending on the specific lighting and BRDF.

where we set ω ′ = n(x)−ω , and we end up with a standard convo-
lution, but evaluated at the “reflected outgoing direction,” given by
θr = 2n(x)−θ , as one might expect.

Upon making similar substitutions for the gradients (Equa-
tions 10, 13, 16 and 17), and combining the linear transforms,

5B =

(

1 −nx
0 1

)(

1 0
0 −1

)(

1 nx
0 1

)

×
∫

5L(x,−ω +n(x))ρ(ω −θ +n(x))dω (24)

=

(

1 2nx
0 −1

)

∫

5L(x,ω ′)ρ(2n(x)−θ −ω ′)dω ′.

Now, we can write down explicitly, using θr = 2n(x)− θ for the
reflected direction, and ⊗ for convolution,

Bx(x,θ) = (Lx ⊗ρ)(x,θr)+2 ·nx ·
(

Lθ ⊗ρ
)

(x,θr)
Bθ (x,θ) = −

(

Lθ ⊗ρ
)

(x,θr).
(25)

This is an overall formula for shading gradients on a curved sur-
face. While the initial derivation in Sec. 4.1 assumed the global
coordinate frame was aligned with the surface at x = 0, and used a
linearization of the surface as a conceptual tool, the final formula is
completely local, as expected for gradient analysis. We only need
the geometric curvature nx at a point, and the spatial and angular
gradients of the incident light Lx and Lθ , expressed in the local co-
ordinate or tangent frame—where x is a local arc-length parameter-
ization of the surface. We have verified these results for a number of
flatland scenes, with analytic examples and numerical evaluation.

For simplicity, we focus on homogeneous objects in this section.
However, incorporating spatial BRDF variation is straightforward.
First, consider the common case when ρ is a product of the current
angular BRDF, and a spatially-varying texture which simply mul-
tiplies the final result. We have already studied texture mapping
in Equation 20. The spatial gradient Bx involves a modulation of
Equation 25 by the texture, and an additional term corresponding to
the texture gradient modulated by the image intensity from Equa-
tion 23. This latter term can dominate in regions of large texture
gradients and corresponds to the observation that high-frequency
texture often masks slow shading variations. General spatially-
varying BRDFs require a generalization of the BRDF convolution
in step 3, as in Equation 19 of Sec. 4.1. The only additional term in
Equation 25 is (L⊗ρx)(x,θr), in the spatial gradient Bx.

4.4 Direct Extension to 3D

While our derivations have been in 2D, one can directly use the
3D analogs of these results for many rendering applications and
analyses. A formal, accurate 3D derivation of the shading steps is
given in Appendix B and is seen to have a very similar form.

To directly extend Equation 25 to 3D, we interpret the convo-
lutions ⊗ as 3D convolutions of lighting gradients and the BRDF,
over the full sphere of incident lighting directions. The 2D curva-
ture nx is simply replaced by the Gaussian curvature of the surface.
For practical computations, the incident light field’s spatial and an-
gular gradients (corresponding to Lx and Lθ ) can be determined
analytically where possible, or numerically otherwise, and usually
relate directly to the variation in intensity of the light sources.

Consider the spatial gradient Bx in 2D. In 3D, we will have two
such expressions Bx and By. For the gradient magnitude visualiza-
tions in Sec. 4.5 or the non-uniform image sampling in Sec. 5, we

consider the net magnitude (B2
x +B2

y)
1/2. These magnitudes are in-

dependent of which specific (orthogonal) directions are picked for
the axes x and y. For the angular gradients, we treat the direction θ
as a unit vector, with Bθ corresponding to two gradients along the
directions in the tangent plane to θ . Finally, we consider the net
magnitude of these angular gradients in Secs. 4.5 and 5.

4.5 Implications: Analysis of Gradient Terms

We now discuss some implications of Equation 25. Figure 4 shows
a number of common situations. To aid our discussion, we label
the important terms. We refer to Lx ⊗ ρ as the spatial variation
(SV) term in the lighting. Analogously, Lθ ⊗ ρ is the directional
variation (DV) term—the directional variation in the reflected light
field Bθ is essentially the same as the incident DV. We refer to 2nx

as the curvature (CV) term, and the product 2nx(Lθ ⊗ ρ) as the
curvature directional variation (CDV) term. Spatial gradients in
the reflected light field Bx are a combination of SV and CDV terms.

We first describe how various factors (lighting, geometry and
materials) affect shading gradients. Fig. 4 summarizes our insights.
Then, we use a simple 3D scene to illustrate some of these effects.
Lighting: In distant lighting, there is no spatial lighting variation
SV (Lx = 0), and spatial gradients Bx are due solely to the curva-
ture and angular lighting variation (CDV). If the environment itself
varies little (low DV, small | Lθ |), such as an overcast sky, we get
soft shading effects with little spatial variation (| Bx | is small). On
the other hand, for a near light source, there is significant spatial
variation (large Lx), and both SV and CDV must be considered.
Geometry: A bump-mapped surface has high curvature, so the
directional term CDV will be large, and the main contributor to
Bx. On the other hand, a flat surface has no curvature, so the CDV
term vanishes, and only the spatial variation Lx in the lighting can
induce shading changes. A particularly interesting special case is
a flat surface in a distant environment map. In this case, we get
uniform shading across the surface, and indeed Bx = 0.
BRDF: Material properties can also affect the results. For a Lam-
bertian object (or the diffuse lobe of a general material), the BRDF
ρ is a low-pass filter that causes the directional shading DV to be
low-frequency and smooth. Hence, strong spatial gradients in the
lighting (the SV term) can often be important to the overall shad-
ing. Moreover, we know that sharp edges cannot come from the
DV term, and will either be at geometric discontinuities (very high
curvature) or because of strong spatial variation in lighting. On the
other hand, for a mirror surface, like a chrome-steel sphere often
used to estimate the illumination, we will see the full directional
variation in the lighting, and DV will be high.

We can also make some quantitative statements. The spatial term
SV and directional CDV will be of roughly the same magnitude
when |Lx |∼ 2 | nx ||Lθ |. This allows a concept like “far” lighting to
formalized as | Lx |� 2 | nx || Lθ |. In the simple case when the near
light source(s) is isotropic and at a distance d, from trigonometry,
Lx ≈ Lθ /d so the condition for far lighting becomes 1/d � 2 | nx |,
which relates the distance of the lighting to the surface curvature.
This criterion depends on the curvature—a light source that is far
for a bump-mapped object may not be classified as far for a flat
table. One application is efficient rendering approximation, where
light sources could be treated as distant for bump-mapped or other
high-curvature surfaces, while being modeled exactly in flat regions
based on these criteria. There are similar applications for inverse
problems and perception—it will be relatively easier to estimate
near-field lighting effects from flatter objects than curved surfaces.

We illustrate some of these ideas with a simple didactic 3D scene
in Fig. 5 that includes a nearly (but not with zero curvature) flat
table on which sit a diffuse, diffuse+glossy, and bumpy sphere. The
scene is lit by a moderately close area source. We use the direct 3D
analogs of the 2D gradients, as discussed in Sec. 4.4.

The gradient magnitudes are visualized on a log scale in Figs. 5b-
5e. The spatial gradient of the (moderately near) lighting (b) can be
large, and is primarily responsible for the highlight on the (nearly)
flat table. Indeed, CDV is very low on the table, while being highest
on the bumpy sphere. CDV is also responsible for effects like the
specular highlight on the glossy sphere. Figure 5e plots the ratio



Figure 5: A scene that shows various shading effects, including a nearly flat table, and diffuse, glossy and bumpy spheres, lit by a moderately close area
source. (b), (c) and (d) show various terms of the gradients. (e) shows the ratio of curvature-weighed directional variation (CDV) and spatial variation (SV).

Figure 6: Change in ratio of directional and spatial gradients as the light
moves further away. For near lighting, SV is important, while the relative
importance of the angular term (and CDV/SV) increases for far lighting.

of angular and spatial terms CDV/SV. This ratio is very high for
the bump-mapped object, where the angular term dominates, and
very low for the table. One insight is that the lighting is effectively
distant for the bumpy sphere, but not for the table. In diffuse regions
of the Lambertian and diffuse+glossy sphere, there are parts where
CDV and SV are comparable.

Finally, Fig. 6 shows the effects of moving the light source fur-
ther away for the same scene. For near lighting, the spatial gra-
dient SV is quite important. As the lighting becomes more distant,
this term becomes less important relative to the directional variation
CDV, and CDV/SV increases, as expected.

4.6 Image Gradients

So far, we have found the light field gradients. We now seek the
projected image I(u) and image gradients Iu. For this, we assume
the perspective projection model, with u = γx⊥/z, where z is the
vertical distance to the point, x⊥ is the horizontal distance and γ is
the focal length. Using the standard chain rule for gradients,

Iu = CT B C =

(

∂x/∂u
∂θ/∂u

)

B =

(

Bx
Bθ

)

. (26)

The terms B just correspond to Bx = ∂B/∂x and Bθ = ∂B/∂θ , and
are the light field derivatives in Equation 25. The terms C are the
camera derivatives. To derive them, we write u = γx⊥/z. The al-
gebra is slightly tricky, but these are standard trigonometric expres-
sions. For brevity, we omit the derivation, stating the result,

∂x
∂u

=
z2

γ
√

z2 + x2
⊥(n0 ·v)

∂θ
∂u

=
1

γ +u2/γ
, (27)

where n0 · v is the dot product between the viewing ray and the
(global, without normal mapping) geometric surface normal.

As an example, consider highlights on a flat surface under dis-
tant lighting (but with close viewer). Since there is no curvature
or spatial lighting variation, the spatial light field gradient Bx = 0.
In this case, for u � γ , ∂θ/∂u ≈ γ−1, and the image gradient is
Iu ≈ γ−1Bθ , dominated by the angular variation in the light field.

At the other extreme, assume the camera is distant (large γ and
z). We can neglect ∂θ/∂u, since θ does not vary much over the
image. Moreover, x⊥ is small relative to z, so that we can write
∂x/∂u ∼ (z/γ)(n0 ·v)−1, and

Iu ≈
1
γ

z
n0 ·v

Bx. (28)

Figure 7: Comparison of sample locations (using 10% of image pixels)
with our gradient algorithm, and the approximation of Durand et al., for
the scene in Fig. 5. We correctly place more samples on the bumpy sphere,
and in highlights, while Durand et al. focus on the relatively smooth regions
near the sphere boundaries, with a coarser sampling for the diffuse object.
Note: To avoid line aliasing, the reader may wish to zoom into the PDF.

This just corresponds to scaling up the spatial light field gradient
Bx at grazing angles (when n0 ·v is small) and for distant objects
(large z), when more of the surface projects onto a single pixel.

4.7 Second Order Light Field Analysis
Finally, one benefit of a first order analysis is that it is easy to ex-
tend to higher orders. Appendix C differentiates the convolutions
in Equation 25 to derive second-order terms or Hessians,

Bxx = Lxx ⊗ρ +4nx(Lxθ ⊗ρ)+4(nx)
2(Lθθ ⊗ρ)+2nxx(Lθ ⊗ρ)

Bθθ = Lθθ ⊗ρ
Bθx = Bxθ = −Lxθ ⊗ρ −2nx(Lθθ ⊗ρ). (29)

As expected, these second derivatives involve second derivatives of
the incident light field. The angular second derivative Bθθ is easy,
just corresponding to the second derivative Lθθ of the incident light
field. Similarly, the mixed partials involve only two terms—the
mixed partial Lxθ and the curvature-weighted Lθθ . This is very
similar to the spatial gradient behavior Bx in Equation 25. The spa-
tial second derivative Bxx is the most complex, and includes a num-
ber of terms, including a curvature derivative nxx in one of them,
indicating the intricacies of the reflected light field.

5 Practical Application: Gradient-Based Im-
age Sampling for Efficient Rendering

We now develop a simple prototype application that adaptively
samples images. We seek to place more image samples in high-
contrast regions with large gradients, to speed up image synthesis.
The analysis in the last section immediately confers insight, and
one could develop a number of simple heuristics to place samples
where SV or CDV terms are expected to be large. One would not
even need to formally evaluate the convolutions, and we could sim-
ply focus on regions of high spatial or directional change in lighting.
We could also use our analysis to sample more finely in high cur-
vature regions, and grazing angles for the camera (low n0 ·v), or to
develop a simple metric using a product of these factors. As a proof
of concept, in this section, we will show how to use the full gradient
computation, i.e. Iu from Equation 26, with camera terms in Equa-
tion 27, and light field gradients in Equation 25. As in Sec. 4.5, we
use the direct 3D analogs of the 2D or flatland gradients.



Figure 8: Comparison of various image sampling strategies for a 3D scene with complex geometry, reflectance and shadows. Our method, based on gradient
magnitude, places samples in regions of high-curvature and shading change, closely matching the reference with only 17% of the effective pixels. By contrast,
both uniform sampling and Durand et al. blur the bumpy sphere, as well as having other regions with large errors. Note: To avoid on-screen aliasing in the
sampling visualizations, the reader may wish to zoom into the figure in the PDF.

For adaptive sampling, we use a method based on quad-trees.
We first render a sparse uniform sampling, dividing the image into
8×8 blocks. We treat each sample as the center of a square, and use
the gradient magnitude | Iu |, multiplied by the area of the square, as
an importance metric. We then greedily pick the square of greatest
importance, and refine it into four smaller squares, placing four new
samples at their centers—this reduces the net importance metric in
each sub-square, since the area is reduced to one-fourth. We also
always subdivide along object boundaries or silhouettes in image
space, to avoid interpolating across different objects. At the end,
samples are eventually distributed according to gradient magnitude.
Note that when we subdivide to create new samples, those need not
lie on the original grid of image pixels, and can be at fractional
locations—our final image reconstruction involves a Delaunay tri-
angulation of all the sample locations (including those at each level
of subdivision), and interpolates to determine pixel intensities.

This simple adaptive scheme also allows us to directly compare
with any other metric. In particular, we consider the frequency-
based sampling heuristic of [Durand et al. 2005] (Equation 20 of
their paper), which in our notation can be written as

I ∼ 1
γ

2kz
n0 ·v

Ωρ ,

where I is the importance given to a pixel, k is the global curvature
(without considering nonlinear effects like bump maps), and Ωρ
is an overall bandlimit for the BRDF (based on [Ramamoorthi and
Hanrahan 2001], we use Ωρ =

√
6s where s is the Phong exponent).

Figure 7 compares the sample distribution for our gradient met-
ric, and that from the above formula for the scene in Fig. 5 (both
with 10% of the total image samples). The approach of [Durand
et al. 2005] places many samples near object boundaries where
n0 · v is small. However, these regions are primarily diffuse, with
the shading not varying rapidly. Moreover, more weight is given to
the glossy spheres than the Lambertian sphere, and no special im-
portance is attached to the bumpy object. By contrast, our approach
can explicitly evaluate the gradients. Therefore, it places lots of
samples in the bumps, to capture them accurately. Moreover, the
glossy sphere has a finer sampling in only the highlight region, but
coarser sampling elsewhere. Finally, our approach samples some-
what more densely on the table, between the spheres, where there
are interesting near-field lighting effects like highlights.

To extend these results to complex geometric objects, we must
address curvature on meshes, complex reflectance and shadows.
Gaussian curvatures are assumed given as part of the input, and in
practice are precomputed using the TriMesh library [Rusinkiewicz
2004]. For general BRDFs, we simply replace the convolutions
with the explicit shading calculation for gradients, as we already
must do for the image intensity. Finally, for shadows, we modulate
the shading integrals for the gradients by visibility, as for the im-
age itself. Shadow testing is the expensive operation in a ray tracer,
especially with soft shadows in complex lighting.4 Since the same
visibility samples are used for image and gradient calculations, our
approach introduces minimal overhead.

Figure 8 shows a similar scene, now with complex geometric
objects and shadows. We see that with only 17% of the samples,
we obtain sharp results comparable to the reference, including on
the bumpy sphere. By contrast, an equal number of uniform sam-
ples, or those from [Durand et al. 2005] blurs the bumps consid-
erably. Moreover, comparison of sample distributions shows that
we place them appropriately, in high-curvature (bumpy) areas and
rapid change regions like highlights or shadows. Considering the
error plots on the far right, uniform sampling has large errors on all
of the objects. [Durand et al. 2005] has large errors on the bumpy
sphere, and to some extent in the teapot highlight, as well as on the
head of the cow—since less weight is given to diffuse objects.

In terms of running time, the reference image took 75.9 minutes.
If we perform a gradient calculation at every pixel, to check over-
head, the additional time is only 1.2 minutes, or less than 2%. The
primary overhead actually comes from quad tree construction, and
takes about 6 minutes (8%). On this specific scene with 17% of
the pixels, since the bumps are easier to ray-trace for shadows (a
simple sphere), we actually obtain a slightly super-linear speedup
(11.5 minutes for gradient sampling, or a 6.6× improvement), and
are also somewhat faster than [Durand et al. 2005], who place fewer
samples in the bumps (17.5 minutes). In general, we expect the ef-
ficiency improvement to be directly proportional to the number of
pixels evaluated for both our method and [Durand et al. 2005].

4Coherence-based shadow accelerations like [Agrawala et al. 2000] are
not readily applicable, since the lighting cannot be assumed distant or a
small area source. Moreover, we also consider complex reflectance effects.
Earlier coherence-based techniques like [Guo 1998] are not intended for
bumpy surfaces in complex environment illumination with soft shadows.
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Figure 9: We consider the gradient of the blocked region αx = dα/dx. (a)
shows the case of a poly-line blocker, where the extremal ray intersects a
single point P, and (b) shows a curved blocker.

6 First Order Analysis of Soft Shadows in 2D
So far, we have not explicitly considered the visibility term V (x,ω)
in Equation 1. In this section, we analyze soft shadow gradients in
detail. We start by showing how to incorporate visibility into the
shading equations. Then, we compute visibility gradients Vx and
Vω in 2D, followed in Sec. 7 by a 3D analysis.

6.1 Incorporating Visibility

Taking shadows into account, the incident light field Lshad at a point
is a product of the unshadowed lighting L and binary visibility V ,

Lshad(x,θ) = L(x,θ)V (x,θ). (30)

The gradients are given simply by

5Lshad(x,θ) = 5L(x,θ)V (x,θ)+L(x,θ)5V(x,θ). (31)

Our previous formulae are still valid, if we re-interpret L as the
shadowed illumination Lshad, which is already pre-multiplied by the
visibility. Hence, in any gradient formula, we can replace Lx by
LxV +LVx and Lθ by LθV +LVθ . The first term (LxV or LθV ) sim-
ply requires us to modulate the shading integrals or convolutions,
such as those in Equation 25, by the visibility V . We have already
taken this into account for practical image synthesis and sampling.

The second term (LVx or LVθ ) requires us to find visibility gra-
dients. Indeed, these gradients are the focus of this section, and
have usually been omitted in previous analyses and algorithms. In
general, the shading gradients in these cases can be written as

B(x,θ) =
∫

T (x,θ ,ω)V (x,ω)dω

5BV =
∫

T (x,θ ,ω)5V(x,ω)dω, (32)

where T is a general transport operator encompassing lighting L and
BRDF ρ . For simple convolution, T (x,θ ,ω) = L(x,ω)ρ(x,θ −ω).
The superscript in BV indicates explicitly that we are considering
the visibility gradient term (not gradients of the lighting or BRDF).
For ease of notation, we will drop this superscript from now on.

6.2 Local Visibility Gradients
The visibility V is a binary function, and the gradients of it are delta
functions, being 0 except at discontinuities, where they are infinite.
However, the integral above for 5B(x,θ) is still finite.5

Figure 9 shows the 2D cases we consider, of poly-line and curved
blockers. For computing gradients, it suffices to consider the local
region around an extremal blocker point P, summing over all such
visibility discontinuities. From Fig. 9, V (x,ω) = 1 (visible) when
ω < α(x) and 0 (blocked) when ω > α(x). Formally,

V (x,ω) = H(α(x)−ω), (33)

where H is the Heaviside step function (H(u) = 1 when u > 0 and 0
otherwise). If the visibility transition at α is from blocked to visible
instead of vice-versa, we will need to change signs, using 1−H.
The derivative of the Heaviside function is the delta function,

Vx = δ (α(x)−ω)αx Vω = −δ (α(x)−ω). (34)

5As noted by Arvo [1994] and others, there are degenerate configura-
tions (such as where shadow lines from multiple blockers meet at a point or
a visibility ray is tangent to two blockers), when the gradients can actually
be infinite. In practice, as seen by our results, these degenerate cases are
relatively rare and do not affect the numerics significantly.
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Figure 10: Representation of the visibility V (x,ω) at a single point for (a)
single and (b) multiple discontinuities. The sign in the visibility equations
is positive if going from visible to blocked, and we sum over discontinuities.

Angular Gradients: Plugging into Equation 32, the angular gra-
dient is simple—the delta function evaluates T at ω = α(x),

Bθ = ∑
j
−sgn jT (x,θ ,α j(x)), (35)

where we sum over all discontinuities j of the visibility V (x,ω)
for given x, with the appropriate sign. For example, in Fig. 10a,
Bθ = −T (x,θ ,α1(x)). In Fig. 10b, Bθ = −T (x,θ ,α1(x)) +
T (x,θ ,α2(x)). Note that we only need to observe the visibility dis-
continuities at a single spatial location x to compute the gradients.
If one numerically computes V (x,ω), such as by ray-tracing, it is
easy to determine the discontinuities and apply the equation above.
Spatial Gradients: The spatial gradients are more interesting,
since we need to determine αx = dα/dx. This effectively controls
how fast the visibility changes as we move along x, and therefore
depends on the vertical distance d to the blocker.

First, consider the case where we have a poly-line blocker, and
therefore a single extremal point P, as in Fig. 9a. From trigonome-
try, tanα = x/d, which can be differentiated to give

dα
dx

=
cos2 α

d
=

cosα
D

, (36)

where d is the vertical distance to the blocker, and D is the total
distance, with D = d/cosα . In appendix D, we show that exactly
the same result holds even if we consider a curved blocker, as in
Fig. 9b. Finally, we can write for the spatial gradient,

Bx = ∑
j

+sgn jT (x,θ ,α j(x))
cosα j

D j
, (37)

where we sum over all discontinuities, as for the angular gradient.
Finally, note that Equations 35 and 37 no longer involve delta

functions, and therefore easily allow further differentiation to find
second-order Hessians. Moreover, our approach can also apply to
other shading situations involving delta-function gradients, such as
the sharp edges of area light sources, or mirror reflectance.
Implications and Discussion: These results have several impli-
cations. First, the gradient varies inversely with the distance to the
blockers, and we must sum over all discontinuities. This explains
why the harmonic mean of blocker distances is commonly used as
a metric for gradient algorithms and sampling [Ward and Heckbert
1992]. However, we go further in deriving an exact formula, which
considers general curved or polygonal blockers, and can accurately
be used for gradient-based interpolation, beyond its use as a metric
for sampling. Moreover, we consider the cosα term in the numera-
tor, with a smaller gradient for blockers at grazing angles.

Also note the rich interplay between spatial and angular effects
for visibility, as for the earlier shading formulae. Equation 37 for
the spatial gradient involves knowledge only of the angular discon-
tinuities α j in visibility at a single spatial location.

6.3 Results in 2D or Flatland

To focus on visibility effects, we consider an environment map
(with usual Gaussian variation in lighting) acting on a flat diffuse
surface, shadowed by a box (rectangle) and circle. The cosine term
can be folded into the lighting, and T corresponds almost directly
to the illumination. Figure 11b shows that the shading on the re-
ceiver has complex umbra and penumbra regions. As seen in (c),
the numerical intensity gradient is very noisy. Because visibility is
a binary function, the intensity (and local visibility extremum α(x))



Figure 11: Using our formula for visibility gradients and sampling. In (a) we show a schematic of our scene. (b) shows the shading on the receiver, that includes
complex umbra and penumbra regions. (c) compares gradients obtained by numerical differentiation, with those from our theoretical formula, indicating the
noise in numerical differentiation. (d) (including closeup on right), compares our adaptive sampling based on gradients to uniform sampling.

Figure 12: Comparison of gradient interpolation versus standard linear
interpolation for shadows (with uniform sampling). As seen in the closeup
on the right, using gradients gives significantly greater accuracy.

usually changes in a stair-step pattern, depending on specific light-
ing and image resolutions. While this mild aliasing is not usually
a problem for image synthesis, it introduces serious problems for
numerical differentiation. By contrast, with our formal treatment of
the visibility gradient as a delta function, we calculate a smooth
result that precisely matches the analytic value. Figure 11d ex-
plores applications to sampling, using an adaptive sampler based on
our accurate gradients, which places more samples in high-gradient
shadow regions. We compare in this case to uniform sampling since
Fourier bandwidth bounds will also give only an (uniform) overall
sampling rate, depending on the harmonic distance to blockers.

Our calculations will perhaps be most useful in terms of accurate
visibility gradients for gradient-based interpolation in algorithms
like [Ward and Heckbert 1992], which currently usually ignore vis-
ibility gradients. Figure 12 compares gradient interpolation to stan-
dard linear interpolation (for uniform sampling)—it is clear gradi-
ent interpolation gives much higher accuracy.

7 First Order Analysis of Soft Shadows in 3D
Unlike for curved surface reflection in Sec. 4, it is not possible to
use the direct 3D analog of the 2D results (as in Sec. 4.4). However,
we can extend our visibility analysis to 3D, using much the same
techniques as in 2D. In this section, for simplicity we assume a
flat receiver. We start by considering spatial visibility gradients.
Then, we compute gradients for the total visible area of the sphere
of directions, followed by gradients in complex lighting. To our
knowledge, this is the first derivation of accurate visibility gradients
for general curved occluders, and we apply our results to gradient
interpolation methods for efficient rendering (Fig. 15).

7.1 Spatial Visibility Gradients
In 3D, the visibility is

V (x,y,θ ,φ) = H(α(x,y,φ)−θ), (38)

where θ and φ are a standard spherical parameterization, in terms
of elevation and azimuthal angle, and (x,y) are spatial coordinates.
We consider only Vx here, since the derivation for Vy is similar,

Vx(x,y,θ ,φ) = δ (α(x,y,φ)−θ)αx(x,y,φ). (39)

As in 2D, the difficult part is determining αx. It is convenient to
define new axes u and v, where u is aligned along φ , i.e., is given
by (cosφ ,sinφ), and v is aligned at 90◦ given by (−sinφ ,cosφ).
In this case, applying the chain rule,

αx(x,y,φ) = αx(u,v) = αu(u,v)ux +αv(u,v)vx, (40)
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Figure 13: Local geometry for calculation of αu and αv in 3D visibility.

which can be simplified to

αx(x,y,φ) = αu(u,v)cosφ −αv(u,v)sinφ . (41)

We now derive αu and αv for a general curved surface. Figure 13
shows the local geometry in the u-v plane. (Appendix D derives the
analogous result for a polygonal object or mesh, which we have
numerically verified extensively using general cuboids or boxes.)

The basic idea is to think about the differential change in the
point of intersection p, as one moves the spatial location slightly in
the u-v plane. We define w as the direction of the tangent ray to the
surface, given in the (u,v,z) frame by (sinα,0,cosα). c is the trans-
verse direction given in the (u,v,z) frame as (cosα,0,−sinα). w
and c are orthogonal, forming a coordinate frame for the u-z plane.

If the angle α changes a small amount, the point of intersection
moves an amount dp = (Ddα)c along c, from basic trigonometry.
Similarly, if the distance to the blocker changes a small amount,
the point of intersection moves along the tangent ray, dp = (dD)w.
Finally, if the starting spatial location shifts in the u-v plane by an
amount dr in the direction m (where for us m is either the u− or
v−axis), the point of intersection will move dp = dr m,

dp = (Ddα)c+(dD)w+(dr)m. (42)

The new point of intersection still lies on the tangent plane to
the surface at p (shown in red in Fig. 13) to first order. Therefore,
dp ·n = 0, where n is the surface normal at p,

dp ·n = 0 = (Ddα)c ·n+(dD)w ·n+(dr)m ·n. (43)

Now, the condition of tangency requires that w ·n = 0, so that

D dα(c ·n)+dr(m ·n) = 0 ⇒ dα
dr

= − 1
D

m ·n
c ·n . (44)

Finding αu: Let dr = du and m = u be a unit vector along u. It is
possible to express u = sinαw+ cosαc. Noting that w ·n = 0,

αu = − 1
D

sinαw ·n+ cosα c ·n
c ·n = − cosα

D
, (45)

as expected, since αu is essentially the flatland 2D case.
Finding αv: Now, consider αv with m = v. Directly from Equa-
tion 44,

αv = − 1
D

v ·n
c ·n . (46)

Finally, note that as in the 2D case, the spatial gradients depend
inversely on the distance to the blocker D. The gradients also de-
pend on the angle α , as well as the angle between the blocker’s
surface normal n, and the vectors c and v.



Figure 14: Accuracy of net visibility gradients. From left to right, the simple
scene, the independent analytic gradient for Bx (for a head-on view of the
ground plane), the accurate results computed by our method, and the very
noisy results obtained by numerical differentiation.

7.2 Gradients of Net Visibility
Now, we consider gradients of the net visibility, i.e., what fraction
of the hemisphere of directions is blocked. This is immediately
useful for ambient occlusion [Christensen 2002], and provides a
useful background for the complex environments considered later,

B(x,y) =
∫ 2π

φ=0

∫ π/2

θ=0
V (x,y,θ ,φ) sinθ dθdφ . (47)

To compute gradients Bx, we use the visibility gradients Vx from
Equation 39. The delta function causes the θ integral to be evalu-
ated at α(x,y,φ). Summing over multiple discontinuities as usual,

Bx(x,y) =
∫ 2π

φ=0
∑

j

(

sgn j

∂α j

∂x
(x,y,φ)sinα j(x,y,φ)

)

dφ , (48)

where we use the long form ∂α j/∂x instead of αx, to avoid confu-

sion with the subscript j for the jth discontinuity. For simplicity, we
assume x and y are coordinates on the receiver. If we seek gradients
in the image, we will need to consider camera terms as we did in
2D, and we have implemented these where appropriate.
Efficiency and Accuracy: Our gradient computation is very ef-
ficient and accurate.6 The gradients depend only on discontinuities,
not the full visibility function. In particular, Equation 48 is only a
1D integral, as opposed to image evaluation in Equation 47, which
requires 2D integration. Figure 14 shows a plane with a single
sphere blocker. For a single sphere, it is easy to derive an indepen-
dent analytic expression for Equation 47, to test accuracy. Indeed,
with 400 samples in φ , the gradients computed by our method in
Fig. 14 are nearly exact for 24 bit RGB images. On the other hand,
with even 900 samples, image evaluation shows noticeable variance
or bias. While these errors are usually tolerable for image synthesis,
they become pronounced when computing gradients by numerical
differentiation—which is also compared to in Fig. 14.

7.3 Complex Lighting
We now consider environment map illumination on a flat Lamber-
tian surface. In this case, the cosine term can be folded into the
lighting, and the gradients are only due to soft shadows,

B(x,y) =

∫ 2π

φ=0

∫ π/2

θ=0
L(θ ,φ)V (x,y,θ ,φ) sinθ dθdφ (49)

Bx(x,y) =
∫ 2π

φ=0
∑

j

(

sgn j L(α j(x,y,φ),φ)
∂α j

∂x
(x,y,φ)sinα j(x,y,φ)

)

dφ .

These visibility gradients can also trivially be extended to spatially-
varying lighting, L(x,y,θ ,φ)—however, the intensity gradients Bx
would need an additional term corresponding to variation in the
lighting itself. Similarly, complex reflectance can be baked into the
lighting term for a flat surface with a distant viewer. For a close
viewer, the visibility part of the gradient simply replaces L with a

6The only tricky numerical issue occurs if ∂α j/∂x is very large. The
denominator c ·n in Equation 46 can be small when the u-z plane is (nearly)
tangent to the surface (so both c · n and w · n are zero). It can be shown
that this is a weak singularity, going as (φ − φ0)

−1/2, where φ0 is where
the u-z plane is tangent to the surface. Therefore, the integral is still well
behaved, and we evaluate it efficiently by an adaptive sampling of φ . The
other potential problem is minor errors when the number of discontinuities
α j changes abruptly, such as from 1 to 2. This is responsible for the slight
errors near the projection of the sphere on the ground plane in Fig. 14.

general transport function, and there will be an additional term for
gradients of the BRDF themselves.

Results: Figure 15 applies these results to image synthesis with
complex penumbra regions of a diffuse plane in environment map
lighting (with the usual Gaussian lighting variation). The plane
shading is computed accurately (with a high resolution 100× 100
environment sampling) at a coarse grid of only 1/10 the resolution
of the image in both directions (or 1% of the total pixels), and in-
terpolated using gradients. These results are compared to simple
linear interpolation, and are clearly seen to be much more accurate.
Thus, we can use our gradient formulae to very efficiently render
complex shadows with standard gradient interpolation methods.

8 Discussion and Comparison

In this section, we briefly discuss some of our theoretical results,
comparing to Fourier analysis [Durand et al. 2005], and previous
analyses of visibility [Arvo 1994; Ramamoorthi et al. 2004].

Basic Shading Steps: Section 4.1 conducts a first order analy-
sis of the basic steps for light reflection from a curved surface, and
is similar to the frequency analysis of light transport in [Durand
et al. 2005]. Most analogies and differences follow directly from
the forms of the mathematical operations in Sec. 3.1. For instance,
consider the per-point rotation in step 1 with Ls(x,θ) = L(x,θ +kx),
and gradient formula in Equation 10. The effects on the Fourier
spectrum are found from the linear transformation theorem in Equa-
tion 6. To apply that, we need M−T and its determinant. M−T is
simply MT in Equation 9, with k replaced by −k, and det(M) = 1,

Ls(Ω) = L(Ω′)

(

Ω′
x

Ω′
θ

)

=

(

1 −k
0 1

)(

Ωx

Ωθ

)

=

(

Ωx − kΩθ
Ωθ

)

. (50)

Apart from a sign change (we use a different sign convention
for k), this is the formula derived from first principles by Du-
rand et al. [2005]. The important differences between Fourier
and gradient results are direct consequences of the linear transfor-
mation theorems in Equations 7 (gradient) and 6 (Fourier). The
function in the gradient case is evaluated at L(Mu)—in this case
(x,θ + kx). Hence, the gradients will be transformed in the same
way as the light field—in this case, sheared along the angular di-
mension. By contrast, the function in the Fourier case is evalu-
ated at L(M−T Ω)—in this case (Ωx −kΩθ ,Ωθ ). Therefore, the 2D
Fourier spectrum is often sheared in the opposite way as the light
field (and gradients)—in this case, along the spatial dimension.

Also note that [Durand et al. 2005] include additional shading
steps at the beginning and end, for reparameterization into the local
tangent frame, in their equivalent of section 4.1. Because gradi-
ent analysis is fully local, as discussed after Equation 25, our final
results do not need these additional reparameterization steps.

Advantages of First Order Analysis: For the theory in this pa-
per, first order analysis easily separates the different factors respon-
sible for shading variation. Moreover, we can accurately consider
non-linear transformations like bump maps, aspects of the cam-
era transformations, and visibility. The derivations and insights in
Secs. 4.2–4.7 would not be easy to obtain from Fourier analysis.

A concrete example is the relative performance of gradient-based
sampling versus a frequency-based metric, in Sec. 5. In fact, one
can consider the metric in [Durand et al. 2005] a special case of
Equation 28, with the assumption of a distant camera with distant
lighting and no bump mapping. In that case, Bx = 2k(Lθ ⊗ ρ),
where we substitute the global curvature k for nx,

Iu ≈
1
γ

2kz
n0 ·v

(Lθ ⊗ρ)(x,θr). (51)

If we further approximated the convolution with a constant band-
limit ((Lθ ⊗ρ) ∼ Ωρ ) derived from the BRDF, we would recover
the image sampling criterion in Equation 20 of [Durand et al. 2005].

We emphasize that the gradient approach allows spatially-
varying lighting, bump mapping and close cameras. Moreover, we
can explicitly evaluate the convolutions like Lθ ⊗ρ , while Fourier
methods do not easily lend themselves to practical computation.



Figure 15: Comparison of gradient interpolation with linear interpolation. The leftmost image shows the scene. The other images interpolate shading directly
on the ground plane (shown in a head on view), using a uniform 20× 20 sampling (less than 1% of total pixels). Gradient interpolation with our accurate
gradients is very high quality, and substantially lowers the error from simple linear interpolation.

Visibility: Since visibility is non-linear, frequency analysis can
give some insights, but not the precise formulae derived here. Our
analysis of 2D visibility is perhaps closest to the shadow convo-
lution relation in [Ramamoorthi et al. 2004]. However, we make
an exact calculation of local shadowing and gradients, and gener-
alize to curved occluders. The 3D analysis has some similarities
to the irradiance Jacobian of [Arvo 1994] for polygonal scenes, but
we also consider general curved occluding surfaces. Moreover, our
approach is different, in that all computations are local, depend-
ing only on visibility discontinuities at a single point, and being
easy and efficient to integrate into a ray-tracing framework. Note
that we consider local gradients, and our method is orthogonal to
identifying global visibility events [Durand et al. 2002]—a future
direction is to combine visibility gradients with global analysis.

9 Conclusions and Future Work

We present a complete first order theory of lighting, shading and
shadows. First, we develop a full gradient analysis of the basic
shading steps, showing the interplay between spatial and angular
effects. Second, we analyze the gradients for general scenes with
bump maps, and spatially and directionally-varying lighting. Gradi-
ent analysis allows us to separate the effects of the individual terms,
and determine under what conditions each factor—lighting varia-
tion, surface curvature, and object reflectance—is important. We
show how to practically use gradients to adaptively sample images
for efficient rendering. Third, we develop novel results for visi-
bility gradients, that generalize much previous work on analysis of
soft shadows, and enable gradient-based visibility interpolation.

We see this paper as an important theoretical step in the analy-
sis of light transport. In the future, we are hopeful that methods
from here can be used to derive rigorous theoretical bounds and
new practical algorithms for many widely used gradient interpo-
lation methods like irradiance gradients, spherical harmonic gra-
dients, ray differentials and path perturbation. We also expect to
see the sampling rate analysis applied to other problems involving
nonlinear steps, such as the flow of light fields in the full volume
or 5D space, as is necessary for applications like shadow fields for
precomputed radiance transfer [Zhou et al. 2005]. Finally, gradient-
based methods are also likely to be important in inverse problems
where we have only local information, such as nearby views.
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Appendix A: Linear Transformation Theorems
In this appendix, we briefly derive the linear transformation theorem for Fourier trans-
forms, as well as gradient-based methods. For Fourier, note that (with I =

√
−1),

F(Ω) =
∫

f (u)exp
[

−2πIΩT u
]

du, (52)



where Ω and u are both vectors. If we now set u = Mv, then

F(Ω) = | det(M) |
∫

f (Mv)exp
[

−2πIΩT Mv
]

dv

= | det(M) |
∫

h(v)exp
[

−2πI(MT Ω)T v
]

dv,

F(Ω) = | det(M) | H(MT Ω) ⇒ H(Ω) =
1

| det(M) |F(M−T Ω). (53)

Now, if the transform includes translations, and so we have u = Mv+ c, then

F(Ω) =| det(M) | exp[−2πIΩT c]
∫

h(v)exp
[

−2πI(MT Ω)T v
]

dv (54)

= | det(M) | exp[−2πIΩT c]H(MT Ω) ⇒ H(Ω) =
exp[2πIΩT M−1c]

| det(M) | F(M−T Ω).

For gradients, we can write

h(ui) = f (vi = ∑
j

Mi ju j) ⇒ ∂h
∂ui

= ∑
k

∂ f
∂vk

∂vk

∂ui
= ∑

k

∂ f
∂vk

Mki, (55)

which can be rearranged to Equation 7.

Appendix B: Light Reflection from 3D Surfaces
We briefly extend the light-curved surface interaction steps in Sec. 4.1 to 3D. We define
local tangent frames, and gradients with respect to motion in a particular direction. At
x, the tangents are t and b, which along with the normal n, form a coordinate frame.
Similarly, ω can be treated as a vector, with tangents u and v for Ls. The angular
tangent directions of the global L will be l = Ru and m = Rv, where R is the appropriate
rotation (or reflection) matrix. Algebraic simplicity in the formulae requires precisely
choosing these tangent vectors, which we will describe shortly. For now, note that a
gradient such as Ls

t is defined as Ls
t = (∂/∂α)Ls(x+αt,ω).

Rotation (step 1): We first discuss rotations, writing Ls(x,ω) = L(x,R[n(x)]ω),
where R is a 3×3 rotation matrix in 3D. The angular gradients now become

Ls
u =

∂
∂α

L(x,R(ω +αu)) Ls
v =

∂
∂α

L(x,R(ω +αv)), (56)

where R can be treated as a constant matrix, since the spatial location (and hence the
normal) is not changing. Since we know that l = Ru and m = Rv, this simply becomes

Ls
u =

∂
∂α

L(x,Rω +αl) = Ll(x,Rω) Ls
v =

∂
∂α

L(x,Rω +αm) = Lm(x,Rω), (57)

so that the angular gradients behave much like in the 2D case, without transformation.
For the spatial gradients, we write

Ls
t =

∂
∂α

L(x+αt,R[n(x+αt)]ω) Ls
b =

∂
∂α

L(x+αb,R[n(x+αb)]ω), (58)

where we must now also account for the change in the rotation matrix. We will only
consider Ls

t , with the other term being similar. It can be expanded as

Ls
t = Lt (x,Rω)+

∂
∂α

L(x,R[n(x+αt)]ω), (59)

where the first term is simply the spatial gradient of the original light field, as in 2D.
The second term, that corresponds to curvature and directional variation in 2D, is more
interesting to extend to 3D.

We now choose t and b to be the maximum and minimum curvature directions, or
those directions that diagonalize the shape operator from differential geometry. Using
a general set of directions is also possible, but makes the algebra messier. We also
define κ as the leading eigenvalue of the shape operator, or principal curvature.

The rotation matrix is simply a projection into the coordinate frame at n. Its rows
are therefore simply t, b and n. The change of the rotation operator can be shown to be

R[n(x+αt)] ≈





t+ακn
b
n−ακt



 = R[n(x)]+ακP P =





n
0

−t



 . (60)

Therefore,
L(x,R[n(x+αt)]ω) = L(x,Rω +ακPω). (61)

It can be easily verified by directly taking dot-products that Rω and Pω are orthog-
onal. Therefore, Pω lies in the tangent space to Rω , and we can define l = Pω/ ‖Pω ‖,
with a corresponding definition for m using the P derived from b instead of t. By ex-
tension, we can define u = R−1l and v = R−1m. Finally, let µ =‖ Pω ‖.

With these judicious choices for directions and tangent frames, the algebra becomes
simple without loss of generality, and

∂
∂α

L(x,R[n(x+αt)]ω) = µκLl(x,Rω). (62)

The 3D case now becomes very close to 2D or flatland, with

Ls
t = Lt + µ1κ1Ll Ls

b = Lb + µ2κ2Lm, (63)

where we have explicitly written the two principal curvatures as κ1 and κ2. The final
inverse rotation in step 4 can be treated in the same way.
Reflection (step 2): If R is a (now fixed, independent of x) reflection, it simply negates
the tangents u and v, so those gradients (and evaluation location) should be negated, as
in 2D, with Lm

u = −Ls
u and Lm

v = −Ls
v.

Convolution (step 3): Unlike in the 2D flatland case, we must differentiate the BRDF
kernel, rather than the more elegant approach of considering gradients of the lighting.
Briefly, the 3D convolution equation for a 1D radially symmetric BRDF is

Bs(x,θ) =
∫

Ω
Lm(x,ω)ρ(θ ·ω)dω = Lm ⊗ρ. (64)

The spatial gradients can proceed as in 2D, with for example

Bs
t (x,θ) =

∫

Ω
Lm

t (x,ω)ρ(θ ·ω)dω = Lm
t ⊗ρ. (65)

For the angular gradients, as before we have to define tangent frames, with

Bs
u(x,θ) =

∂
∂α

Bs(x,θ +αu) =
∂

∂α

∫

Ω
Lm(x,ω)ρ(θ ·ω +αu ·ω)dω, (66)

which can easily be simplified, using the derivative ρ ′ of the 1D BRDF ρ to

Bs
u(x,θ) =

∫

Ω
Lm(x,ω)ρ ′(θ ·ω)(u ·ω)dω . (67)

Appendix C: Second Order Light Field Analysis
We differentiate Equation 25 directly. One tricky issue is that θr = 2n(x)−θ depends
on both x and θ . Therefore,

h(x,θ) = f (x,θr) ⇒ hx(x,θ) = fx(x,θr)+2 ·nx · fθ (x,θr) hθ (x,θ) =− fθ (x,θr).
(68)

Using this relation, we can differentiate the convolutions,

[(Lx ⊗ρ)(x,θr)]x = (Lxx ⊗ρ)(x,θr)+2nx(Lxθ ⊗ρ)(x,θr)

[(Lx ⊗ρ)(x,θr)]θ = −(Lxθ ⊗ρ)(x,θr)
[

(Lθ ⊗ρ)(x,θr)
]

x = (Lxθ ⊗ρ)(x,θr)+2nx(Lθθ ⊗ρ)(x,θr)
[

(Lθ ⊗ρ)(x,θr)
]

θ = −(Lθθ ⊗ρ)(x,θr) (69)

Now, it is easy to derive the result in Equation 29 by (somewhat laborious) differ-
entiation, where we have omitted the parameters (x,θr) of evaluation for brevity.

Appendix D: Visibility Analysis
We first elaborate on the curved surface flatland case in Fig. 9b. Assume the blocker
object has an instantaneous radius of curvature r. In this case, if we move a distance dx
on the surface, the point of tangency will also move. In general, if the original tangent
point was (0,d), the new point will be (−r sinαdα,d + r cosαdα). This is derived
from trigonometry, noting that the length of the arc is r dα . Now, the coordinates of
the new surface point are (x+dx,0), and we also know that x = d tanα . Hence,

tan(α +dα) =
(x+dx)− (−r sinαdα)

d + r cosα
=

d tanα +dx+ r sinαdα
d + r cosαdα

. (70)

We can simplify, multiplying by the denominator, and keeping only first order terms,

d tanα +d sec2 αdα + r sinαdα = d tanα +dx+ r sinαdα, (71)

which, upon subtracting d tanα + r sinαdα from both sides, can be simplified to ex-
actly the same form as Equation 36. This result is also confirmed by the 3D derivation
for αu (which is essentially the flatland 2D case) in Equation 45.

We now consider Sec. 7.1, extending the curved surface derivation to polygonal
blockers. For a polygonal blocker, the occlusion is defined by an extremal line with unit
vector k (the 3D generalization of the extremal point in 2D). Our expression also works
for mesh approximations of curved surfaces, where k can be considered a tangent in
the local frame (k, n and w form an orthonormal coordinate frame).

For αu, we are essentially considering the 2D case with a point blocker. Therefore
dp = 0 in Equation 42, and by equating components along c (since w is orthogonal to
c and u = cosαc+ sinαw), we obtain αu = −cosα/D as expected.

For αv, dp must lie along k. In this case, c, w and v form a coordinate frame.
Hence, we can consider the coordinates of dp in this frame, requiring the condition
that (dp ·c)/(dp ·v) = k ·c/k ·v. From Equation 42, since c, w and v form a coordinate
frame, dp · c = Ddα and dp ·v = dv. Therefore,

Ddα
dv

=
k · c
k ·v ⇒ αv =

1
D

k · c
k ·v . (72)

Interestingly, this result reduces to Equation 46, if k is orthogonal to both n and w,
such as for a polygonal approximation to a curved object. In that case, k · c = −n · v
and k · v = n · c. This indicates that we obtain a consistent result, whether we use an
actual curved object, or a polygonal approximation to it.


