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Abstract

Relating the intrinsic Laplacian to the mean curvature normal, we arrive at a model for bending of inextensible
surfaces. Due to its constant Hessian, our isometric bending model reduces cloth simulation times up to three-fold.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Computation of curvature-based energies and their deriva-
tives is a costly component of many physical simulation and
geometric modeling applications. Typically the energy den-
sity is expressed in terms of elementary symmetric func-
tions of the principal curvatures of the mesh [Cia00,YB02,
CDD∗04,BS05,TW06,GGRZ06]). In general the resulting
expressions are nonlinear in the positions of mesh vertices,
and the attendant numerics involve costly evaluations of en-
ergy gradients and Hessians. Our contribution is to consider
the class of isometric surface deformations, arriving at an ex-
pression for bending energy which is quadratic in positions.
Such quasi-isometric deformations are typical,e.g., for inex-
tensible plates and shells where membrane (stretching) stiff-
ness is greater than bending stiffness by four or more orders
of magnitude, hence we focus on cloth simulation as a pri-
mary application area.

Figure 1: Final rest state of a cloth draped over a sphere,
for (left) the proposed isometric bending model and(right)
the widely-adopted nonlinear hinge model.

Continuous setting. Consider the bending energy of a de-
formable surfaceS:

Eb(S) =
1
2

Z
S

H2dA , (1)

whereH is mean curvature and dA is the differential area.
Eb(S) is closely related to the Willmore energy of a surface,
and the Canham-Helfrich energy of thin bilipid membranes.
Note the invariance ofEb(S) under (i) rigid motions and
(ii) uniform scaling of the surface: (i) is required for conser-
vation of linear and angular momenta (Nöther’s theorem);
(ii) affects the characteristic size of folds and wrinkles.

We may rewrite (1) by the following argument. Ifx : S→
R3 denotes the embedding of the surface, the mean curva-
ture normalH of S can be written as the Laplace-Beltrami,
∆, induced by the Riemannian metric ofS, applied to the
embedding of the surface:H = ∆x. Thus we write (1) as

Eb(S) =
1
2

Z
S
〈∆x,∆x〉R3dA, (2)

where〈·, ·〉R3 denotes the standard inner product ofR3.

Central observation. The Laplace-Beltrami,∆, remains
unchanged under isometric deformations of the surface—
therefore, for inextensible surfaces,Eb(S) is quadratic in
positions. Equation (2) together with the assumption of iso-
metric deformation is henceforth called theisometric bend-
ing model(IBM). Our contribution is to present an analo-
gousdiscreteIBM that is quadratic in positions. Its linear
gradient and constant Hessian present an economic model
for computing bending forces and their derivatives, enabling
fast time-integration of cloth dynamics.
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2. Discrete IBM

Our guiding principle for discretization is to maintain the
core properties of the smooth isometric bending model. We
say that a triangulated surfacedeforms isometricallyif its
inner metric does not change,i.e., if all edge lengths remain
invariant. Denoting the surface’s vertex position vector by
x = (x0,x1, ...,xn−1)T ∈ R3n, we require our discrete IBM
to provide a bending energyEb(x) which is (i) quadratic inx
under isometric deformations, (ii) invariant under rigid mo-
tions of the mesh, and (iii) invariant under uniform scaling.
Observing conditions (i) and (ii) we writeEb as

Eb(x) =
1
2

xTQx =
1
2 ∑

i, j
Qi j 〈xi ,x j〉R3 ,

with quadratic form Q, invariant under isometric deforma-
tions, hence depending only on intrinsic mesh properties
such as connectivity, edge lengths, inner angles, or area.
Since Eb is an energy, Q must be positive semi-definite.
In [BWH∗06] we show that condition (ii) is satisfied if and
only if ∑i Qi j = ∑ j Qi j = 0. Condition (iii) says that Q must

scale with 1/s2 if the whole mesh is scaled by a global fac-
tor s. We can then write Q= LT M−1 L, where L is invariant
under scaling and∑ j Li j = 0, whereas M is symmetric posi-

tive definite and scales withs2. Like Q itself, both L and M
are assumed to only depend on intrinsic mesh properties. A
discrete IBMis then any energy of the form

Eb(x) =
1
2

xT(LT M−1 L)x =
1
2

xTQx . (3)

The quadratic form Q= LT M−1 L corresponds to thecon-
stant energy Hessian.

One way to obtain a suitable M and L is to discretize the
smooth Laplacian,∆, using the finite element (FE) method,

L i j =
Z

S
〈∇Φi ,∇Φ j〉dA , M i j =

Z
S

Φi ·Φ jdA ,

where{Φi} is some FE basis, the FE stiffness matrix L is the
discrete Laplacian, the FE mass matrix inverse M−1 simpli-
fies to division by area in a lumped mass matrix approxima-
tion [ZT00], and Lx is the discrete analogue of the smooth
mean curvature vector,∆x.

One possible FE basis is induced by the usual linear
Lagrange elements [PP93, CDD∗04]. For cloth simulation,
where isometric deformations are associated with bend-
ing about edges, we prefer non-conforming (edge-based)
Crouzeix-Raviart [CR73] elements. As observed by Hilde-
brandt and Polthier [HP04], in this setting the mean cur-
vature vector, Lx, is associated to edges by construction;
in [BWH∗06] we show that this version of Lx corresponds
to thelinearizationabout the flat (planar) rest state of com-
mon mean curvature models used in computer graphics: The
models of Bridsonet al. [BMF03], Cohen-Steiner and Mor-
van [CSM03], Grinspun et al. [GHDS03, GGRZ06], and
Bobenko and Schröder [BS05] fall into this category.

Implementation. We present the implementation tools
for the Crouzeix-Raviart IBM; for the derivation
see [BWH∗06]. In a one-time precomputation step,
the constant Hessian, Q, is assembled in the usual
manner [ZT00], i.e., by considering contributions from

e0

e2 e4

e3e1

x0

x2

x1

x3

t0

t1

eachlocal matrix, Q(ei), centered about
interior edgeei with stencil consisting of
the triangles,t0, t1, incident toei and their
vertices,x0, x1, x2, x3. With reference
to the illustrated labeling convention, we
build Q(e0) by

Q(e0) =
3

2(A0 +A1)
KT

0 K0,

whereAi is the area of trianglesti , andK0 is the row vector

K0 = (c03+c04,c01+c02,−c01−c03,−c02−c04),

where c jk = cot∠ej ,ek. The local energy is obtained by
Eb(ei) = (x0,x1,x2,x3)Q(ei)(x0,x1,x2,x3)T . Theglobal (to-
tal) energy of the system is obtained by summing over all
local contributions corresponding to interior edges.

3. Application to the bending of cloth and plates

We apply the discrete IBM to efficient simulation of cloth-
ing and thin plates, which is important for feature film pro-
duction, fashion design, and manufacturing (see the recent
surveys [CK05, MTV05, ZJFP04, NG96]). While resistance
to bending is much weaker than to stretching, it is the inter-
play between the two modes that gives cloth its characteris-
tic folds and wrinkles [TW06,Cia00]. Most models of cloth
consider separately the bending and in-plane energies:

E(S) = Eb(S)+Ep(S) .

Since any good model of in-plane response (e.g., [TPBF87,
BW98]) satisfies the assumption of small in-plane strains,
we view the in-plane model as a mechanism (in the spirit of
penalty forces) that enforces isometry. Henceforth, we as-
sume that some in-plane model has been chosen, and we
focus on presenting our bending model in the context of a
complete cloth solver.

Bending models have been extensively studied in graph-
ics; see Thomaszewski’s recent survey [TW06]. To our
knowledge, all popular models are inherently nonlinear in
positions,e.g., they may involve expressions in terms of edge
lengths or dihedral angles. Some models are linearized every
time step, resulting in the lack of Euclidean-motion invari-
ance. The discrete IBM overcomes both of these disadvan-
tages. As a comparison to our IBM, we implemented a “non-
linear hinge” model similar to [BW98,BMF03,GHDS03].

Elastic and damping forces.Our elastic and dissipative
forces depend on the energy gradient and Hessian, respec-
tively. Elastic behavior is governed by the conservative force

fe(x(t)) =−∇xE(S) . (4)
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Figure 2: Snapshots from our simulation of a billowing flag. The accompanying movie demonstrates that despite its economy
of cost, the proposed bending model achieves qualitatively the same dynamics as popular nonlinear models.

We model dissipation using the Rayleigh model,

fd(V(t)) =−(α1M +α2∆E(S))V(t) , (5)

whereV(t) = ẋ(t) is the velocity, and the damping coeffi-
cientsα1 andα2 govern the decay of low and high frequen-
cies, respectively [ZT00,Hug87]. In implementing IBM, the
matrix−α2∇2Eb(S) =−α2Q in (5), corresponding to bend-
ing, is precomputed once. Similarly, for (4) we compute
bending forces via the matrix-vector product−∇xEb(S) =
−Qx. In contrast, the nonlinear hinge requires a relatively
expensive computation for both equations.

Dynamics.The time evolution of the cloth is governed by a
a coupled system of first order initial value problems (IVPs):(

ẋ(t)
V̇(t)

)
︸ ︷︷ ︸

q̇(t)

=
(

Id 0
0 M−1

)
︸ ︷︷ ︸

A

(
V(t)

fe(x(t))+ fd(V(t))

)
︸ ︷︷ ︸

b(q(t))

,

givenq(0) and the physical mass matrix M.

Numerical treatment. Time discretization of the above sys-
tem is a well-studied problem (see [Hau04, BWH∗06] and
references therein).Explicit methods adopt the formqk+1 =
qk +hAbk; herek is discrete time andh is the time step,i.e.,
t = hk, andbk = b(qk). Implicit methods search for the root
of

g(qk+1) = qk+1−qk−hAb(qk+1) = 0 .

We solve this nonlinear system inqk+1 with a Newton

solver. Lettingq(0)
k+1 be the initial guess forqk+1, each New-

ton iteration improves on the guess,

q(i+1)
k+1 = q(i)

k+1− (∇qg)−1g(q(i)
k+1) ,

until convergence. This method requires evaluation of both
the energy gradient (to computeg) and energy Hessian (to
compute∇qg), and the IBM provides an efficient way to do
so. Finally, it is often desirable to treat some forces explicitly
and others implicitly, using IMEX methods [Hau04].

Results.In an evaluation of two solvers, two problem sce-
narios, two mesh types, and resolutions ranging from 400
to 25600 vertices, we observe a typical two- to three-fold
speedup in simulation times compared to the nonlinear
hinge. Figures1-2 and the accompanying movie provide a

visual point of comparison, and Table1 summarizes our per-
formance measurements. We observe a seven- to eleven-fold
speedup in bending force computation. Since IBM’s Hessian
is precomputed, we can report only the negligible time re-
quired to add it to∇qg; in contrast, the repeated computa-
tion of the nonlinear hinge Hessian is costly. Overall speedup
will depend on the fraction of total computation associated to
bending; to estimate this we conducted several experiments:

Experimental setup. We implemented the implicit solver
framework of [BW98] as well as the explicit Euler method.
The test framework incorporates (i) the constant strain linear
finite element for in-plane response [ZT00,Hug87]; (ii) col-
lision detection using k-DOP trees [KHM∗98] and response
using Bridson’s framework [BFA02]; (iii) the PETSc solver
library [BGMS96].

Draping cloth. We simulated heavily-damped draping of a
square sheet over a sphere (see Figures1, 3 and the movie).
The draped cloths are qualitatively similar in their final con-
figuration and distribution of folds. Only the final draped
shape is important, therefore we used large Rayleigh coef-
ficients thus allowing larger time steps [Hug87].

Billowing flag. We simulated the dynamics of a flag under
wind (refer to the movie and Figure2). The billowing mo-
tion of the IBM and nonlinear flag are qualitatively simi-
lar. We found no need to readjust material parameters when
switching from the nonlinear to the IBM model; as discussed
in [BWH∗06] the carryover of parameters is expected. We
modeled wind by a constant homogeneous velocity field,
with force proportional to the projection of the wind velocity
onto the area-weighted surface normal.

Conclusion. By restricting our attention to isometric
deformations—the natural family of deformations for in-
extensible thin plates—we obtained a bending energy that
is quadratic in positions. We demonstrated the consequent
performance benefits and the simplicity of implementation
in the context of cloth simulation. In [BWH∗06] we con-
sider extensions of the theory to anisotropy and curved un-
deformed configurations (thin shells).

Finally, in [BWH∗06] we apply the IBM to fast surface-
fairing Willmore flows (see Figure4). Isometry is a poor
assumption in this setting, yet IBM proves effective in the
context of inexact-Newton methods.

c© The Eurographics Association 2006.



M. Bergou, M. Wardetzky, D. Harmon, D. Zorin & E. Grinspun / A Quadratic Bending Model for Inextensible Surfaces

Draping problem regular mesh (resolution, in no. vertices) irregular mesh (resolution, in no. vertices)
400 1600 6400 25600 450 2100 6500 22500

Gradient nonlinear hinge 0.937 3.45 16.4 66.6 1.10 5.43 17.6 67.8
cost (ms) quadratic IBM 0.081 0.338 2.19 9.15 0.098 0.494 2.32 9.68
Hessian nonlinear hinge 12.8 54.2 218    890. 15.2 77.2 246    888    
cost (ms) quadratic IBM 0.237 0.963 3.87 15.7 0.266 1.28 3.99 13.6
Explicit step nonlinear hinge 3.81 6.64 27.5 112. 2.16 9.53 31.4 140.
cost (ms) quadratic IBM 2.63 2.90 11.9 48.8 0.964 4.35 15.2 76.5
Implicit step nonlinear hinge 28.6 138    470. 1730    33.9 219    557    1880    
cost (ms) quadratic IBM 11.0 62.7 168    505    13.6 103    219    612    

Flag problem regular mesh (resolution, in no. vertices) irregular mesh (resolution, in no. vertices)
400 1600 6400 25600 450 2100 6500 22500

Gradient nonlinear hinge 0.975 3.99 16.0 64.0 1.10 5.43 17.8 68.7
cost (ms) quadratic IBM 0.085 0.341 2.14 8.75 0.099 0.490 2.31 9.28
Hessian nonlinear hinge 13.4 54.8 212    849    15.2 77.4 247    887    
cost (ms) quadratic IBM 0.251 0.974 3.79 14.99 0.267 1.30 3.96 13.7
Explicit step nonlinear hinge 1.73 7.05 27.7 112. 1.97 9.80 32.7 134    
cost (ms) quadratic IBM 0.780 3.26 13.3 53.4 0.900 4.54 16.1 70.0
Implicit step nonlinear hinge 27.6 106    420. 1680    33.5 155    513    1880    
cost (ms) quadratic IBM 9.53 32.9 127    490    12.5 50.4 166    608    

Table 1: Computational cost per time step for two solvers, regular- and irregular-meshes, and multiple resolutions, comparing
IBM to the nonlinear hinge, as measured on a Pentium D 3.4GHz, 2GB RAM. Time step cost includes collision handling.

Figure 3: The quadratic bending model is valid over the
full range of bending to in-plane stiffness ratios,e.g., (left to
right) 10−5 : 1, 10−3 : 1, and10−2 : 1.

Figure 4: Willmore flow smoothes a dino, a hand and an icosahe-
dron (44928, 24192, and 5120 triangles, respectively). Smoothing
requires 7.47s, 4.42s and 120ms, after one-time Hessian factoriza-
tion costing 8.77s, 5.31s and 200ms, respectively. Flat shaded.
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