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Abstract
Relating the intrinsic Laplacian to the mean curvature normal, we arrive at a model for bending of inextensible
surfaces. Due to its constant Hessian, our isometric bending model reduces cloth simulation times up to three-fold.

Categories and Subject Descriptscording to ACM CCS) |.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction Continuous setting Consider the bending energy of a de-

. ) . . formable surfac&:
Computation of curvature-based energies and their deriva-

tives is a costly component of many physical simulation and Ep(S) = 1 / H2dA @
geometric modeling applications. Typically the energy den- 2Js ’

sity is expressed in terms of elementary symmetric func-
tions of the principal curvatures of the mes2id0Q YB02,
CDD*04,BS05 TW06, GGRZ0§). In general the resulting
expressions are nonlinear in the positions of mesh vertices
and the attendant numerics involve costly evaluations of en-
ergy gradients and Hessians. Our contribution is to consider
the class of isometric surface deformations, arriving at an ex-
pression for bending energy which is quadratic in positions.
Such quasi-isometric deformations are typleaj;, for inex- We may rewrite 1_) by the f0||owing argument. Ik:S—
tensible plates and shells where membrane (stretching) stiff- R3 denotes the embedding of the surface, the mean curva-
ness is greater than bending stiffness by four or more orders tyre normalH of Scan be written as the Laplace-Beltrami,
of magnitude, hence we focus on cloth simulation as a pri- A, induced by the Riemannian metric 8f applied to the
mary application area. embedding of the surfacet = Ax. Thus we write {) as

whereH is mean curvature andAdis the differential area.

Ep(S) is closely related to the Willmore energy of a surface,

and the Canham-Helfrich energy of thin bilipid membranes.
" Note the invariance oE,(S) under (i) rigid motions and
(ii) uniform scaling of the surface: (i) is required for conser-
vation of linear and angular momenta (N6ther's theorem);
(i) affects the characteristic size of folds and wrinkles.

En(S) = % /S (%, AX) s dA, @)

where(-,-)z: denotes the standard inner produckot

Central observation. The Laplace-BeltramiA, remains
unchanged under isometric deformations of the surface—
therefore, for inextensible surfaceS,(S) is quadraticin
positions. Equation?) together with the assumption of iso-
metric deformation is henceforth called tisemetric bend-

ing model(IBM). Our contribution is to present an analo-
gousdiscretel|BM that is quadratic in positions. Its linear
gradient and constant Hessian present an economic model
for computing bending forces and their derivatives, enabling
fast time-integration of cloth dynamics.

Figure 1: Final rest state of a cloth draped over a sphere,
for (left) the proposed isometric bending model gnight)
the widely-adopted nonlinear hinge model.
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2. Discrete IBM

Our guiding principle for discretization is to maintain the
core properties of the smooth isometric bending model. We
say that a triangulated surfadeforms isometricallyf its
inner metric does not changeg, if all edge lengths remain
invariant. Denoting the surface’s vertex position vector by
X = (xo,xl,...,xn_l)T € ]RS”, we require our discrete IBM

to provide a bending enerdyy(x) which is (i) quadratic irx
under isometric deformations, (ii) invariant under rigid mo-
tions of the mesh, and (iii) invariant under uniform scaling.
Observing conditions (i) and (ii) we writé, as

EolX) = X' QX =33 Qy (4.Xj)zs
]

with quadratic form Q, invariant under isometric deforma-
tions, hence depending only on intrinsic mesh properties
such as connectivity, edge lengths, inner angles, or area.
Since Ey, is an energy, Q must be positive semi-definite.
In [BWH™06] we show that condition (ii) is satisfied if and
only if 3; Qjj = ¥ ; Qij = 0. Condition (jii) says that Q must
scale with J/sz if the whole mesh is scaled by a global fac-
tors. We can then write @& LT ML, where L is invariant
under scaling anqj Lij = 0, whereas M is symmetric posi-
tive definite and scales witf. Like Q itself, both L and M

are assumed to only depend on intrinsic mesh properties. A
discrete IBMis then any energy of the form

1

Eo(x) = 3

®)

xT(LTMflL)x = %XTQX.

The quadratic form Q= LT M~1L corresponds to theon-
stant energy Hessian

One way to obtain a suitable M and L is to discretize the
smooth Laplacian), using the finite element (FE) method,

Lij :/S<V(‘Di7v¢j>dA, Mij :/Squ‘(DjdA,

where{®; } is some FE basis, the FE stiffness matrix L is the
discrete Laplacian, the FE mass matrix inverséll\simpli-

fies to division by area in a lumped mass matrix approxima-
tion [ZT0OQ], and Lx is the discrete analogue of the smooth

mean curvature vectahx.

One possible FE basis is induced by the usual linear
Lagrange elementP93CDD*04]. For cloth simulation,
where isometric deformations are associated with bend-
ing about edges, we prefer non-conforming (edge-based)
Crouzeix-Raviart CR73 elements. As observed by Hilde-
brandt and PolthierHP04, in this setting the mean cur-
vature vector, K, is associated to edges by construction;
in [BWH*06] we show that this version ofxt.corresponds
to thelinearizationabout the flat (planar) rest state of com-
mon mean curvature models used in computer graphics: The
models of Bridsoret al.[BMF03], Cohen-Steiner and Mor-
van [CSM03, Grinspunet al. [GHDS03 GGRZ04, and
Bobenko and SchrodeBB09 fall into this category.

Implementation. We present the implementation tools
for the Crouzeix-Raviart IBM; for the derivation
see BWH*06]. In a one-time precomputation step,
the constant Hessian, Q, is assembled in the usual
manner ETOQ], i.e, by considering contributions from
eachlocal matrix, Q'g), centered about
interior edges with stencil consisting of
the trianglestg, t1, incident tog and their
vertices,Xp, X1, X2, X3. With reference
to the illustrated labeling convention,
build Q(ep) by

3
qwzﬂgg@

whereA is the area of trianglets, andKg is the row vector

2

Kg Ko,

A3

Ko = (Cos -+ Coa, Co1 + Co2, —Co1 — Co3, —Co2 — Coa),
where cjx = cotZej,ec. The local energy is obtained by
Ep(6) = (X0, X1,%2,X3)Q(& ) (X0, X1, X2, X3) " . Theglobal (to-
tal) energy of the system is obtained by summing over all
local contributions corresponding to interior edges.

3. Application to the bending of cloth and plates

We apply the discrete IBM to efficient simulation of cloth-
ing and thin plates, which is important for feature film pro-
duction, fashion design, and manufacturing (see the recent
surveys CK05, MTV05, ZJFP04NG96]). While resistance

to bending is much weaker than to stretching, it is the inter-
play between the two modes that gives cloth its characteris-
tic folds and wrinklesTWO06, Cia0J. Most models of cloth
consider separately the bending and in-plane energies:

E(S) = Ey(S) +Ep(S) -

Since any good model of in-plane responsg( [TPBF87
BW093g]) satisfies the assumption of small in-plane strains,
we view the in-plane model as a mechanism (in the spirit of
penalty forces) that enforces isometry. Henceforth, we as-
sume that some in-plane model has been chosen, and we
focus on presenting our bending model in the context of a
complete cloth solver.

Bending models have been extensively studied in graph-
ics; see Thomaszewski’s recent survéy\06]. To our
knowledge, all popular models are inherently nonlinear in
positionse.g, they may involve expressions in terms of edge
lengths or dihedral angles. Some models are linearized every
time step, resulting in the lack of Euclidean-motion invari-
ance. The discrete IBM overcomes both of these disadvan-
tages. As a comparison to our IBM, we implemented a “non-
linear hinge” model similar tog W98 BMF03, GHDSO03.

Elastic and damping forces.Our elastic and dissipative
forces depend on the energy gradient and Hessian, respec-
tively. Elastic behavior is governed by the conservative force

fe(x(t)) = =VxE(S) . 4)
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Figure 2: Snapshots from our simulation of a billowing flag. The accompanying movie demonstrates that despite its economy

of cost, the proposed bending model achieves qualitatively the same dynamics as popular nonlinear models.

We model dissipation using the Rayleigh model,

fa(V(t)) = — (a1M + 028E(S)) V(1) ®)

whereV(t) = x(t) is the velocity, and the damping coeffi-
cientsa1 anday govern the decay of low and high frequen-
cies, respectively4T00,Hug87. In implementing IBM, the
matrix —a, V2Ep(S) = —a»Q in (5), corresponding to bend-
ing, is precomputed once. Similarly, fo#)(we compute
bending forces via the matrix-vector produe¥xEy(S) =
—Qx. In contrast, the nonlinear hinge requires a relatively
expensive computation for both equations.

Dynamics. The time evolution of the cloth is governed by a
a coupled system of first order initial value problems (IVPs):

( 5(8 ):< Ig MO*1 ) ( fe<x<t>>v +(tf)d<v<t>> ) ’
q(t) A b(q(t))

givenq(0) and the physical mass matrix M.

Numerical treatment. Time discretization of the above sys-
tem is a well-studied problem (seeldu04 BWH*06] and
references thereinfexplicit methods adopt the foriy 1 =
gk -+ hAby; herek is discrete time and is the time stepi.e.,

t = hk, andby = b(qk). Implicit methods search for the root
of

9(Ak+1) = Okt+1 — Ak — hAb(ai4+1) = 0.

We solve this nonlinear system igx1 with a Newton

solver. Lettingq<k0+)1 be the initial guess foyy, 1, each New-

ton iteration improves on the guess,

1) = s~ (Vag) taaely)

Okr1” = Okf1—
until convergence. This method requires evaluation of both
the energy gradient (to compugg and energy Hessian (to
computeVqg), and the IBM provides an efficient way to do
so. Finally, it is often desirable to treat some forces explicitly
and others implicitly, using IMEX methodsipu04.

Results.In an evaluation of two solvers, two problem sce-
narios, two mesh types, and resolutions ranging from 400
to 25600 vertices, we observe a typical two- to three-fold
speedup in simulation times compared to the nonlinear
hinge. Figuresl-2 and the accompanying movie provide a

(© The Eurographics Association 2006.

visual point of comparison, and Taklessummarizes our per-
formance measurements. We observe a seven- to eleven-fold
speedup in bending force computation. Since IBM’s Hessian
is precomputed, we can report only the negligible time re-
quired to add it toVqg; in contrast, the repeated computa-
tion of the nonlinear hinge Hessian is costly. Overall speedup
will depend on the fraction of total computation associated to
bending; to estimate this we conducted several experiments:

Experimental setup. We implemented the implicit solver
framework of BW98] as well as the explicit Euler method.
The test framework incorporates (i) the constant strain linear
finite element for in-plane respons&T[00, Hug87; (ii) col-
lision detection using k-DOP treekIHM *98] and response
using Bridson’s frameworkHFA02]; (iii) the PETSc solver
library [BGMS94.

Draping cloth. We simulated heavily-damped draping of a
square sheet over a sphere (see Figliy8sand the movie).
The draped cloths are qualitatively similar in their final con-
figuration and distribution of folds. Only the final draped
shape is important, therefore we used large Rayleigh coef-
ficients thus allowing larger time stepdiig87.

Billowing flag. We simulated the dynamics of a flag under
wind (refer to the movie and Figui®. The billowing mo-

tion of the IBM and nonlinear flag are qualitatively simi-
lar. We found no need to readjust material parameters when
switching from the nonlinear to the IBM model; as discussed
in [BWH*06] the carryover of parameters is expected. We
modeled wind by a constant homogeneous velocity field,
with force proportional to the projection of the wind velocity
onto the area-weighted surface normal.

Conclusion By restricting our attention to isometric
deformations—the natural family of deformations for in-
extensible thin plates—we obtained a bending energy that
is quadratic in positions. We demonstrated the consequent
performance benefits and the simplicity of implementation
in the context of cloth simulation. IRBWH*06] we con-
sider extensions of the theory to anisotropy and curved un-
deformed configurations (thin shells).

Finally, in [BWH™*06] we apply the IBM to fast surface-
fairing Willmore flows (see Figurd). Isometry is a poor
assumption in this setting, yet IBM proves effective in the
context of inexact-Newton methods.
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Draping problem regular mesh (resolution, in no. vertices irregular mesh (resolution, in no. vertices)

400 1600 6400 25600 450 2100 6500 22500
Gradient nonlinear hinge 0.937 3.45 16.4 66.6 1.10 5.43 17.6 67.8
cost (ms) quadratic IBM 0.081 0.338 2.19 9.15 0.098 0.494 2.32 9.68
Hessian nonlinear hinge 12.8 54.2 218 890. 15.2 77.2 246 888
cost (ms) quadratic IBM 0.237 0.963 3.87 15.7 0.266 1.28 3.99 13.6
Explicit step nonlinear hinge 3.81 6.64 27.5 112. 2.16 9.53 31.4 140.
cost (ms) quadratic IBM 2.63 2.90 11.9 48.8 0.964 4.35 15.2 76.5
Implicit step nonlinear hinge 28.6 138 470. 1730 33.9 219 557 1880
cost (ms) quadratic IBM 11.0 62.7 168 505 13.6 103 219 612
Flag problem regular mesh (resolution, in no. vertices irregular mesh (resolution, in no. vertices)

400 1600 6400 25600 450 2100 6500 22500
Gradient nonlinear hinge 0.975 3.99 16.0 64.0 1.10 5.43 17.8 68.7
cost (ms) quadratic IBM 0.085 0.341 2.14 8.75 0.099 0.490 2.31 9.28
Hessian nonlinear hinge 13.4 54.8 212 849 15.2 77.4 247 887
cost (ms) quadratic IBM 0.251 0.974 3.79 14.99 0.267 1.30 3.96 13.7
Explicit step nonlinear hinge 1.73 7.05 27.7 112. 1.97 9.80 32.7 134
cost (ms) quadratic IBM 0.780 3.26 13.3 53.4 0.900 4.54 16.1 70.0
Implicit step nonlinear hinge 27.6 106 420. 1680 33.5 155 513 1880
cost (ms) quadratic IBM 9.53 32.9 127 490 12.5 50.4 166 608

Table 1: Computational cost per time step for two solvers, regular- and irregular-meshes, and multiple resolutions, comparing
IBM to the nonlinear hinge, as measured on a Pentium D 3.4GHz, 2GB RAM. Time step cost includes collision handling.
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