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Abstract
It is well established that in certain domains, noisy inputs
can be reliably combined to obtain a better answer than any
individual. It is now possible to consider the crowdsourc-
ing of physical actions, commonly used for creative expres-
sions such as drawing, shading, and singing. We provide al-
gorithms for converting low-quality input obtained from the
physical actions of a crowd into high-quality output. The
inputs take the form of line drawings, shaded images, and
songs. We investigate single-individual crowds (multiple in-
puts from a single human) and multiple-individual crowds.

Introduction
The wisdom of crowds (Surowiecki 2004) suggests that it
can be advantageous to aggregate information from many
“low-quality” sources rather than relying on information
from a single “high-quality” source. There may be several
advantages: it may be difficult or impossible to access a
high-quality source; it may be cheaper to obtain informa-
tion from many low-quality sources; perhaps most surpris-
ing, aggregation may consistently produce higher-quality
output. Galton (1907) presented one of the earliest exam-
ples of this surprising result, when he calculated the median
of a crowd’s estimates of the weight of a bull and found it to
be within 1% of the truth.

We propose to draw on the wisdom of crowds to produce
a single higher-quality output from a set of lower-quality in-
puts. We consider the scenario where many individuals con-
tribute a single input, as well as the scenario where a single
individual contributes many inputs. We focus on creative
tasks such as drawing, painting, and singing.

Our approach may be framed in terms of crowdsourcing
and aggregation. Technology makes it possible to crowd-
source physical actions, e.g., using a touch-screen or micro-
phone. To harness this data, we must address the question
of how to meaningfully aggregate creative works. Unlike
many examples of the wisdom of crowds, our input and out-
put data are more complex than a single number or a vote
from among a small finite set of choices.

Yu and Nickerson (2011) employed genetic algorithms
and tournament selection to iteratively aggregate and im-
prove the quality of a set of drawings; the algorithm assumes
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that a human is able to combine the best aspects of two cre-
ative pieces. By contrast, we consider settings in which this
assumption does not hold.

We treat the case of inherently low-quality (ILQ) input.
We assume that the initial human input is “as good as can be
expected” for the available input hardware and software, and
for the skill, level of focus, and allotted time of participating
humans.

ILQ input can arise from multiple trials by single indi-
viduals (Vul and Pashler 2008), such as when a person with
limited fine motor coordination makes repeated attempts to
draw, write, or sign their name; the limitation may be due
to disease (e.g., Parkinson’s) or simply due to the limited
form factor of the input device (finger-writing on a small
screen). In another variation, the input may be reasonable,
but an even better output is desired, such as when an average
person sings or draws, but wishes they could do so better.

ILQ input can also arise from single trials across multiple
individuals. For example, can we produce a great painting,
if the humans and tools at our disposition limit us to only
mediocre paintings? Even when we have humans and tools
capable of painting expertly, economic conditions might fa-
vor participation of multiple less-skilled participants. Under
a tight deadline, there may not be sufficient time for an ex-
pert to produce a great piece, but there may be sufficient time
for a multitude of participants to produce mediocre pieces,
or ILQ.

To explore this setting, we consider crowdsourcing and
aggregation to produce better drawings, paintings, and songs
from ILQ. We first analyze “smiley faces” sketched many
times by the same individuals, we then aggregate similar
paintings created by many individuals, and finally we ana-
lyze the same song sung many times by the same individu-
als.

Related Work
Crowdsourcing has been applied to algorithms and
data collection in a variety of domains, including
databases (Franklin et al. 2011), natural language process-
ing (Snow et al. 2008), song identification (Huq, Cartwright,
and Pardo 2010), and computer vision.

The problem of aggregating input from many (human)
sources has been studied in the literature. This includes
collaborative filtering (Goldberg et al. 1992; Adomavicius



and Tuzhilin 2005), in which the preferences of many indi-
viduals are aggregated to generate reviews and recommen-
dations (Goldberg et al. 1992; Adomavicius and Tuzhilin
2005). In computer vision, several projects (von Ahn and
Dabbish 2004; von Ahn, Liu, and Blum 2006; Sorokin and
Forsyth 2008; Spiro et al. 2010) have collected redundant
input from many humans in order to ensure high-quality im-
age labels or video annotations. Notably, Law and von Ahn
(2009) also collected data on music. Typically, these ap-
proaches either filter the human input to select one output,
concatenate it, or, for low-dimensional input such as a scalar
quantity or a direction, average it. Dow et al. (2012) dis-
cuss feedback mechanisms to improve the quality of crowd-
sourced product reviews. Ipeirotis et al. (2010) estimate
worker quality in classification tasks. Little et al. (2010) di-
vide the process of writing image descriptions, brainstorm-
ing company names, and deciphering blurry text into cre-
ation and decision tasks. Karger et al. (2011) present an
algorithm for efficiently assigning tasks to workers and ob-
taining reliable answers in a binary classification task.

In computer graphics, several works have collected large
quantities of data with the goal of aggregating them to
achieve a “ground truth” benchmark (Cole et al. 2008;
Chen, Golovinskiy, and Funkhouser 2009). Gingold et al.
(2012) aggregated input from many users in order to enable
image editing tasks.

Rohwer (2010) considered the question of aggregation for
the creation of creative works in the context of fiction writ-
ing. He reported on unsuccessful attempts of a crowd to self-
organize a fiction novel via wiki, contrasted with a success-
ful process whereby an editor iteratively selected the next
sentence among twitter-submitted candidates. In the edito-
rial process, individual contributions were retained or dis-
carded in whole, and those retained were concatenated.

Drawing
In this section, we study the question of whether multiple
line drawings of the same object average to a better drawing.
Note that two line drawings of the same object may contain
a different number and arrangement of strokes. Finding a
correspondence between two line drawings’ strokes is an ex-
tremely challenging problem, unsolved in the general case.

Related work
The photographic average of human faces was first exam-
ined by Galton (1878), who commented on the effect of av-
eraging but did not empirically evaluate attractiveness. More
recently, Langlois and Roggman (1990) were the first to
empirically evaluate averages of human faces; they report
that average faces composed of 16 or more individuals were
rated as more attractive than all but a few (≈ %5) of the in-
dividual faces. While photographic averages of human faces
smooth away blemishes and asymmetries, line drawings of
general objects depict only what their creator chose to in-
clude, so we cannot assume that there are undesired blem-
ishes or asymmetries to be smoothed away.

“The Sheep Market” (Koblin 2008) collected drawings of
sheep from 1000 individuals on Amazon Mechanical Turk,
though no aggregation or analysis was performed.

EV (iPhone) YG (iPhone)YG (iPad)HH (iPad)

Averages

Figure 1: In each column: four of the 20 smiley faces drawn
by a participant, as well as the average of all 20.

Cole et al. (2008) asked art students to draw line drawings
of 3D models and used the data to evaluate computational
line drawing algorithms. In the course of the evaluation,
pixel-wise average images were created of the artists’ line
drawings. These do not depict averages of the drawings’ in-
dividual lines; rather, they depict all drawings’ lines together
in one image.

Protocol
To sidestep challenging correspondence problems, we focus
on simple “smiley faces” composed of four strokes: a head,
two eyes, and a mouth. Three subjects, EV, HH, and YG,
each drew a collection of 20 smiley faces using a vector-
based drawing application for the iPhone (EV, YG) and iPad
(HH, YG). Several input smiley faces are shown in Figure 1.

Averaging
To average a collection of smiley faces, we first resample
all strokes at 100 evenly spaced locations, and then aver-
age the Cartesian coordinates of corresponding points along
each curve. This produces the smiley faces shown in Fig-
ure 1, bottom row, and in Figure 2.

Evaluation
To evaluate the attractiveness of smiley faces, we conducted
surveys asking evaluators to “Choose the most beautiful im-
age” from among a gallery of smiley faces. The order of
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Figure 2: Average smiley faces over all possible multiple-
subject combinations of EV-iPhone (EV), HH-iPad (HH),
YG-iPad (YGd), and YG-iPhone (YGn).
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Figure 3: Vote share of each subject’s individual smiley
faces versus the average.

smiley faces in the gallery was randomized across subjects.
Experimental conditions (galleries) were: HH-iPad smiley
faces and their average; EV-iPhone smiley faces and their
average; YG-iPad smiley faces and the average; YG-iPhone
smiley faces and the average; average faces over all possible
combinations of EV-iPhone, HH-iPad, YG-iPad, and YG-
iPhone; all smiley faces from the other experimental condi-
tions (“all”). 100 evaluators were drawn from Amazon Me-
chanical Turk for each experimental condition, except for
the “all” experiment, where 200 evaluators were used.

Discussion
In all experimental conditions, the most popular smiley faces
were the ones computed by averaging (Figures 3 and 5).
All results were statistically significant (EV-iPhone χ2 =
648.66, p < 0.001; HH-iPad χ2 = 431.52, p < 0.001; YG-
iPad χ2 = 322.40, p < 0.001; YG-iPhone χ2 = 215.17,
p < 0.001; “all” χ2 = 534.03, p < 0.001).

In the “all” experimental condition, we cannot say with

Averages Only
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EV HH, YGn
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Figure 4: Vote share among average faces over all possible
combinations of EV-iPhone (EV), HH-iPad (HH), YG-iPad
(YGd), and YG-iPhone (YGn).
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Figure 5: Vote share among all smiley faces from the exper-
imental conditions.

confidence that the set of averages of multiple subjects’ smi-
ley faces performed better than the set of averages of single
subjects’ smiley faces (χ2 = 2.48, p = 0.116).

Averaging smoothes away noise and jitter from individual
smiley faces. And while multiple-subject averages smooth
away subjects’ individual styles (Figure 4), averaging a sin-
gle individual’s smiley faces appears to preserves stylistic
attributes, such as the elliptical shape and non-closedness of
EV smiley faces’ heads (Figure 1). Interestingly, HH smi-
ley faces were quite popular (Figures 5); they were present
in the smiley faces that received a combined 64% of the
votes in the “all” experimental condition (χ2 = 101.99,
p < 0.001), and the average of the HH smiley faces alone
received 10% of those votes (χ2 = 142.32, p < 0.001).

Finally, because each subject drew 20 smiley faces, we
investigated whether the repeated drawing itself led to an
aesthetic improvement in the resulting smiley faces (a train-
ing bias). Figure 6 plots the fraction of votes received by
the first 10 smiley faces drawn by each subject versus the
fraction of votes received by the second 10 smiley faces.
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Figure 6: The share of votes received by the first half of
an individual’s drawn smiley faces versus the share of votes
received by the second half.

We found that while YG exhibits a training bias (YG-iPad
χ2 = 6.33, p = 0.012; YG-iPhone χ2 = 12.25, p < 0.001),
HH exhibits a reverse training bias (χ2 = 7.08, p = 0.008),
and EV does not exhibit any training bias (χ2 = 0.22,
p = 0.639). Thus, we conclude that an individual cannot, in
general, obtain a smiley face of comparable aesthetic quality
to an average by training.

Shading
A naive human is physically able to apply paint to a canvas,
yet, without practice, is unlikely to paint a pleasing portrait.
In this section, we address the question of whether paintings
of the same object created by multiple naive humans can
be composited to create a better painting. (Specifically, we
focus on greyscale paintings, which is perhaps more similar
to drawing with charcoal than oil painting.)

Related Work
The photographic averaging of human faces (Galton 1878;
Langlois and Roggman 1990) is more closely related to av-
eraging paintings than drawings (previous section). In con-
trast to the domain of faces, where irregularities and blem-
ishes are asymmetric, it is not a priori obvious that averag-
ing paintings will produce better paintings.

The previously mentioned work of Cole et al. (2008) com-
posited line drawings created by many skilled humans in a
pixel-wise fashion. Neither the inputs nor the composited
output resemble painting.

In “Ten Thousand Cents” (Koblin and Kawashima 2008),
the image of a US dollar bill was divided into ten thousand
squares and shown to individuals on Amazon Mechanical
Turk, who were asked to digitally paint their own interpreta-
tion of the square. Each painting was arranged in a quilt-like
fashion; no averaging or compositing was performed.

Protocol
A pool of 50 subjects were recruited using Amazon Mechan-
ical Turk. Subjects accessed a web page which displayed a
photograph of a still life (a pear). Subject were also given a
canvas containing the outline of the pear and asked to “paint
the object from the photograph into the canvas” using a paint
brush tool with adjustable brush diameter and grey level

(Figure 7, left). By initializing the canvas with the outline
of the pear, we hoped to avoid the need to register subjects’
paintings during analysis.

Aggregation and Discussion
A representative selection of paintings created by the sub-
jects is shown in Figure 7, middle. 23 of the 50 subjects
filled the entire pear with a single shade of grey (13 chose
black). All but one subject generally adhered to the outline
of the pear.

Assuming that subjects’ paintings are already registered
(due to the outline of the pear), it is natural to apply pixel-
wise aggregation operations. The pixel-wise average and the
pixel-wise median can be seen in Figure 7, right. As with
drawing, aggregation has produced a result that is clearly
superior to any of the inputs. The average is perhaps overly
smoothed and produces paint outside the outline of the pear.
The median is higher-contrast and has no such painting-
outside-the-line artifacts.

Singing
The average person does not sing perfectly on key, but a
chorus of such people can sound pleasing even when an in-
dividual solo would not. Singing is thus another domain
where we might expect to produce higher-quality output
from many low-quality inputs by applying some kind of
averaging—in particular, by averaging base frequencies.

Related Work
“Bicycle Built for Two Thousand” (Koblin and Massey
2009) collected 2088 recordings of humans imitating unrec-
ognizably small pieces of the song “Daisy Bell” via Ama-
zon Mechanical Turk. The result is a chorus (typically 36
humans at once), rather than an aggregate that resembles a
single human singing.

Methodology
Each subject recorded himself singing “Happy Birthday To
You” ten times, while simultaneously listening to a MIDI
rendition of the song on headphones so that the tempo was
the same accross recordings. From each recording, we ex-
tracted the F0 pitch frequency every 0.01 seconds using the
software package Praat (Boersma and Weenink 2012). By
inspecting the MIDI, we also determined the ground truth
frequencies of each of the song’s notes (which correspond
to the song being played in F major). From this data we can
compare how close any individual recording is to being on
tune (see Figure 8, top-left).

To find the average frequency, we compute the geometric
mean of each of the ten frequencies at each time sample, ig-
noring recordings for which Praat was unable to find an F0
frequency at that time. These pitches, for the set of record-
ings by subject EG, are plotted against the true pitches in
Figure 8, top-middle. We also generated the average of all
thirty recordings by all three subjects (Figure 8, top-right).

For each subject, we arbitrarily chose one recording to
pitch-shift using the averaged frequencies. For this record-
ing, we computed ratios rt = at/ft at each time sam-
ple t, where at is the averaged F0 frequency at time t



Figure 7: The Amazon Mechanical Turk interface for shading (left), and nine randomly selected generated shadings (middle).
The average (near right) and median (far right) of all of the shadings are visually pleasing despite the low quality of any
individual shading.

and ft is the recording’s original F0 frequency. We then
took the short-time Fourier transform of the recording using
non-overlapping rectangular windows of size 0.01 seconds
(equal to the F0 frequency sample rate), scaled all frequen-
cies by rt, and took the inverse transform to produce a retar-
geted recording that is more on-key. The new recording does
contain some chirping artifacts, particularly at phrase tran-
sitions where the input recordings do not align temporally;
we hope to address these artifacts in the future, perhaps by
incorporating matching of the recordings in time (Dixon and
Widmer 2005).

We quantify the improvement to the pitch gained by av-
eraging input recordings as follows. We compute, for each
note i of the song, the root mean squared error E of fre-
quency:

Ei =

√
1
N

∑
(ft − fi)2,

where the sum is taken over all F0 frequency samples ft

whose times fall within the duration of the note (actually, the
middle third of this duration—shown in red), N is the total
number of such samples, and fi is the frequency of the note.
We also calculated the root mean squared frequency error
using the averaged frequencies at instead of ft (Figure 8,
bottom).

Discussion
Interestingly, across all three subjects and for most of the
notes, the averaged frequency is as close or closer to being in
tune than even the best individual recording. In other words,
the same singer singing the same note tended to be flat about
as often as sharp, instead of singing systematically off-key
in the same direction.

Conclusion
The Internet has made it easier than ever to quickly and effi-
ciently marshal a crowd, and to assign them simple, creative,
physical actions like drawing, painting, or singing. We have
shown ways to harness a crowd as a crucible for refining in-
herently low-quality input into higher-quality output. More-

over, we have shown that a single individual is capable of
outperforming themself by generating a crowd’s worth of
data.

In all of our examples, the registration of inputs was cru-
cial. Averaging drawn strokes works when the number and
placement of strokes is consistent; this is the case for simple
smiley faces, but not the case in general. Multiple line draw-
ings of, for example, an apple are likely to be composed of
different numbers and placements of strokes. We have in-
vestigated averaging line drawings at the pixel level, but it
is difficult to output strokes from pixel-wise averaged draw-
ings.

In our singing experiments, subjects sang “karaoke” while
listening to the song on headphones, so that all recordings
were more or less on tempo. We hope to explore whether
more sophisticated notions of averaging music might yield
pleasing results even in the presence of misalignment in time
or systematic pitch bias. One possible approach to finding a
mapping between pairs of recordings is by performing non-
rigid image registration between their spectrograms; the “av-
erage deformation” can then be computed.

In the future, we hope to find more powerful and sophisti-
cated averaging schemes capable of refining even more com-
plex inputs: sketches of complex objects, drawn using arbi-
trary strokes; paintings of entire scenes, in color; and songs
sung by several different people, at different tempos.
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Figure 8: F0 frequency of subject EG singing “Happy Birthday To You” (top-left), with ground truth pitches marked in red.
Taking the geometric mean of these frequencies and the F0 frequencies of nine other recording by the same subject yields
pitches that are closer to being on key (top-middle); also including 10 recordings by each of two additional subjects further
improves the accuracy of the average (top-right). We quantitatively measure the improvement by plotting the root mean square
frequency error for each note (bottom). For each subject, different colors represents different recordings. The RMS error of the
averaged frequencies is plotted in black. Notice that the average pitch is often better than the best individual pitch for that note,
and, overall, the averaged pitches are closer to on-tune than any individual recording (color).
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