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1. Introduction

The purpose of this chapter is both to review the current state of the art in robotics and to
identify some of the challenges that the field has yet to face. This is done and illustrated by
following an imaginary roboticist, Rob, who is currently designing a new humanoid robot
from scratch. Rob’s ultimate vision is that this robot will be humanoid in the sense that it
possesses the abilities of a human being. Therefore, his initial aim is to identify relevant work
as well as areas in which innovations are still needed.
Research in robotics has come a long way in the last few decades, whether one considers
humanoids specifically or just any type of architecture. The world is increasingly moving
away from being confined to industrial robots with precisely programmed movement plans
and is beginning to include adaptive robots that can robustly operate in a variety of scenarios
as well as robots that show increasing levels of cognitive abilities and intelligence. We have
witnessed an increasing collaboration between research areas that, previously, had very little
in common. Nowadays, it is not difficult to find research groups uniting neuroscientists,
engineers, psychologists, linguists, even philosophers and musicians, all coming together to
study the human body as well as the human mind. There is thus plenty of previous work that
Rob can build upon when designing his robot. At the same time, it is clear that the field is
still a long way from creating truly human-like machines and that there are thus significant
challenges to overcome.
In this chapter, we first provide a brief history of humanoid robotics research since it sets the
background to Rob’s work. We then present the state of the art in the different components
of a robot, hardware as well as software, discussed in contrast with Rob’s requirements
and highlighting particular areas in which further research is needed before Rob’s robot can
become reality.

2. A brief history of humanoid robotics research

Our fellow roboticist Rob goes back in time in order to trace the roots of his passion. He
finds out that attempts to create automated machines can be traced back to the first century
of our era with the inventions of Hero of Alexandria, a Greek mathematician and engineer
from Roman Egypt. Among the first human-like automata he found one created by another
polymath inventor from Mesopotamia in the 12th century known as Al-Jazari. His group of
“robots” used water to drive their mechanisms and play four different instruments.
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Among others who designed and/or created human-like machines he discovers that:

• Leonardo Da Vinci designed a mechanical knight at the end of the 15th century. This
machine was able to sit up, wave its arms and move its head and jaw.

• Hisashige Tanaka, a Japanese craftsman in the 19th century, created several extremely
complex toys able to serve tea, fire arrows and paint kanji characters.

• In 1929, Japanese biologist Makoto Nishimura designed and created Gakutensoku, a robot
driven by air pressure that could move its head and hands.

Rob also comes across some interesting information about the word “robot”. It has its origins
in the 1921 play “R.U.R.” (Rossum’s Universal Robots) created by the Czech writer Karel
Capek, although he later credited his brother Josef Capek as the actual person who coined
the word. In Czech, the word “robota” refers to “forced labor”; in this sense a robot is a
machine created to perform repetitive and expensive labor. In 1942 Isaac Asimov introduces
the word “robotics” in the short story "Runaround". His robot stories also introduced the
idea of a “positronic brain” (used by the character “Data” in Star Trek) and the “three laws of
robotics” (later he added the “zeroth” law).
However it wasn’t until the second half of the 20th century that fully autonomous robots
started being developed and used in greater numbers. Following the rhythm of a demanding
industrial revolution the first programmable (autonomous) robot was born. Unimate was
used to lift and stack hot pieces of die-cast metal and spot welding at a General Motor
plant. From then on, other single arm robots were created to cope with larger production
requirements. Nowadays industrial robots are widely used in manufacturing, assembly,
packing, transport, surgery, etc.
Humanoid robotics, as a formal line of research was born in the 1970s with the creation
of Wabot at Waseda University in Japan. Several projects around the world have been
developed since then. The next section will briefly describe the current state-of-the-art in
anthropomorphic robots.

2.1 State of the art
This section starts by presenting HONDA’s project ASIMO, Fig. 1(a). HONDA’s research
on humanoid robots began in 1986 with its E-series, a collection of biped structures that
developed, without doubt, the most representative example among state of the art humanoid
robots (Hirose et al., 2001). Today’s ASIMO has 34 degrees-of-freedom (DOF), weights 54kg
and has a total height of 130cm. This robot is able to walk and run in straight or circular paths,
go up or down stairs and perform an always increasing set of computer vision routines like
object tracking, identification, and recognition, localization, obstacle avoidance, etc.
A joint project between the University of Tokyo and Kawada Industries gave birth to the
Humanoid Robot "H6" and ended up with HRP-3 in 2007 (Kaneko et al., 2008). The National
Institute of Advanced Industrial Science and Technology (AIST) continued this project and
developed today’s HRP-4, Fig. 1(c), a 34 DOF walking robot weighting 39kg and measuring
151cm in height. This light-weight full size robot was designed with a reduction of production
costs in mind, thus allowing access to the average robotics research group around the world
to a pretty advanced research tool.
Korea’s Advanced Institute of Science and Technology (KAIST) started working on humanoid
platforms in 2002 with KHR-1. Today’s KAIST humanoid is known as HUBO2 (KHR-4) and
has a total of 40 DOF, a height of 130cm and weight of 45kg, Fig. 1(b). HUBO2 is also able to
walk, run and perform an increasing set of sensor-motor tasks (Park et al., 2005).
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(a) ASIMO (b) HUBO2 (c) HRP-4

(d) iCub (e) Robonaut2 (f) Twendy-One

Fig. 1. Some state of the art humanoid platforms.

The RobotCub Consortium formed by 11 European institutions created iCub, a child sized
humanoid robot which until 2010 was only able to crawl, Fig. 1(d). This robot has 53 DOF,
weights 22kg and has a height of 104cm (Tsakarakis et al., 2007). A remarkable feature of this
project is that everything developed within it was made available as open source, including
the mechanical design and software products. This move has created a growing community
that actively collaborates at all levels of research.
General Motors joined NASA for the second version of NASA’s project Robonaut (Ambrose
et al., 2000). This upper body humanoid robot (Fig. 1(e)) is a very dexterous robotic platform
with 42 DOF, 150kg and 100cm (waist to head). Another upper-body robotic platform
worth including as state-of-the-art is Waseda University’s TwendyOne, a very dexterous and
high-power robot with 47 DOF, 111kg and 147cm height, Fig. 1(f).
One common characteristic of all the above mentioned platforms is the use of electric torque
motors in their joints. There have been, however, new attempts to use hydraulic and
pneumatic actuators such as the ones in Anybots’ biped Dexter which is also able to jump
(Anybots, 2008); or Boston Dynamics’ PetMan which introduces a much faster and more
human-like gait (Petman, 2011). These two examples make use of pneumatic and hydraulic
actuators respectively but there is also a growing interest around the use of pneumatic
artificial muscles or air muscles. Shadow Robot’s pneumatic hand (Shadow Robot Company,
2003) performing highly dexterous movements and Festo’s use of artificial muscles (Festo,
2011) are also worth mentioning as state-of-the-art due to the high accuracy of these otherwise
difficult to control kind of actuators.
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3. Mechanical requirements and engineering challenges

It is a matter of philosophical discussion how far it is possible to discuss hardware and
software separately. Section 4.2 in particular will discuss theories from cognitive science
which indicate that in the human, body and mind are intrinsically intertwined and that
some of the hardware can in fact be considered to fulfill certain roles of the software too.
However, entering into such a debate in detail is beyond the scope of this chapter. Therefore,
when considering the different components of Rob’s robot, we will largely separate hardware
and software in the sense that we will discuss purely mechanical requirements first and
computational requirements next. Since hardware can fulfill computational requirements
and mechanical requirements can impose software requirements as well, there may be some
natural overlap, which in a sense already illustrates the validity of some of the ideas from
embodied cognition (to be discussed in section 4.2.1).
First then, Rob needs to identify mechanical and engineering requirements for the creation
of his humanoid robot. He is interested in particular in the state of the art of components
like sensors and actuators, and must consider how close these elements are to his ambitious
requirements and what major challenges still need to be addressed before his vision can
become reality. The remainder of this section is dedicated to answering these questions.

3.1 Sensors
Throughout the history of humanoid robotics research there has been an uneven study of the
different human senses. Visual, auditory and tactile modalities have received more attention
than olfactory and gustatory modalities. It may not be necessary for a robot to eat something
but the information contained in taste and odor becomes important when developing higher
levels of cognitive processes. Thinking about the future of humanoid robots we should be
careful not to leave behind information that may be helpful for these machines to successfully
interact with humans.
In this section Rob studies some of the devices that are either currently being used or are under
development in different robotic platforms; they are categorized according to the human sense
they relate to the most.

3.1.1 Vision
Humanoid robots arguably pose the largest challenge for the field of computer vision due
to the unconstrained nature of this application. Rob’s plans for his autonomous humanoid
involve it coping with an unlimited stream of information changing always in space, time,
intensity, color, etc. It makes sense for Rob that among all sensory modalities within robotic
applications, vision is (so far) the most computationally expensive. Just to have an idea of how
challenging and broad the area of computer vision is, Rob remembers that in 1966 Marvin
Minsky, considered by many to be the father of artificial intelligence (AI), thought one master
project could “solve the problem of computer vision”. More than 40 years have passed and
the problem is far from solved.
In robotic applications, a fine balance between hardware and software is always used when
working with vision. During the last decade, Rob witnessed an increasing interest on
transferring some software tasks to the hardware side of this modality. Inspired by its
biological counterpart, several designs of log-polar CCD or CMOS image sensors (Traver
& Bernardino, 2010) (Fig. 2(b)) and hemispherical eye-like cameras (Ko et al., 2008) (Fig.
2(c)) have been proposed. However, the always increasing processing power of today’s
computers and specialized graphical processing units (GPU) have allowed many researchers
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to successfully tackle different areas of vision while keeping their low cost Cartesian cameras
(Fig. 2(a)) and solve their algorithms with software. Nonetheless, Rob welcomes the
attempts to reproduce the high resolution area at the center of the visual field, fovea, with
hardware and/or software. He thinks that nature developed this specific structure for our
eyes throughout evolution and it may be wise to take advantage of that development.

(a) Cartesian (b) Log-Polar (c) Hemispheric (d) Microsoft’s Kinect

Fig. 2. Samples of different configurations for image sensors.

Rob identifies several challenges for the hardware component of vision sensors. Potentially
the most important is the need to widen the field of view of current cameras. Normal limits
for the human field of view are approximately 160 degrees in the horizontal direction and
135 degrees in the vertical direction. A typical camera used in robotic applications has a
field of view around 60 degrees for the horizontal direction and 45 degrees for the vertical
direction. Important information is lost in those areas where current cameras can not reach
in a single stimulus. Adaptation to changes in light conditions is also a complex and difficult
process for artificial vision, especially when working within a dynamic environment. Rob is
considering a few options from the video security market based on infra-red and Day/Night
technology that could be adapted for use in humanoid robots. Finally, the robotics community
has experienced a growing interest on using RGB-D (Red-Green-Blue-Depth) cameras after
the release of the low-cost motion capture system Kinect by Microsoft (Shotton & Sharp, 2011),
Fig. 2(d). This technology combines visual information and high-resolution depth, opening
therefore new possibilities for overcoming the challenges of 3D mapping and localization,
object identification and recognition, tracking, manipulation, etc.

3.1.2 Tactile
Even though touch sensors are being used on few specific points of humanoid platforms
(e.g. tip of fingers, feet, head), Rob thinks that an efficient solution to acquiring information
from large surfaces is needed in order to be able to exploit the richness of textures, shapes,
temperatures, firmness, etc. Therefore he argues the importance of developing skin-like
sensors as another future challenge for humanoid robotics.
In robotic applications, Rob has used his imagination to create solutions for detecting objects
in the path of an arm, finger or leg. One of these solutions has been the detection of
peaks of current in their electric motors or using torque and force sensors. This approach
could be considered tactile sensing as well but within the area of proprioception since
measurements are made as relative positions of neighbouring parts in static and dynamic
situations. In humanoid robots, exteroceptive sensors include dedicated pressure sensors
placed on points of interest. The technology used in most pressure sensors so far include:
resistive, tunnel-effect, capacitive, optical, ultrasonic, magnetic, and piezoelectric. Resistive
and capacitive sensors are certainly the most common technology used not only in robotic but
in many consumer electronic applications (Dahiya et al., 2010).
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Advances in nano-materials are making it possible to integrate a large amount of sensors in
flexible and stretchable surfaces (Bao et al., 2009; Peratech, 2011; Takei et al., 2010). Rob finds
the approach taken by Prof. Zhenan Bao very interesting since it includes not only a sensitive
resolution that surpasses that of human skin, but also the possibility to sense chemicals or
biological materials (Bao et al., 2009). In addition, they are also working on embedding solar
cells within the same films (Lipomi et al., 2011), which is an outstanding innovation since it
would help to solve another major challenge for humanoid robots, i.e. energy.
Rob remembers that human skin is composed of two primary layers: epidermis and dermis.
The dermis is located beneath the epidermis and contains all sensors for temperature and
touch. He thinks about this because the dermis helps also to cushion the body from stress and
strain, a task that is augmented by the morphological interaction of muscles, water, bones,
etc. This dynamic plays an important role in tasks such as manipulation and locomotion.
Therefore the design of Rob’s future humanoid robot’s skin should include not only a large
amount and various types of sensors, but also an inner mechanism that provides similar
dynamics like those found in human bodies.

3.1.3 Sound
Rob knows that microphones are the standard tools for acquiring sound information from
the environment in a robotic platform. They can be installed in different configurations and
detect/regulate sound in ways that surpass human abilities. But detecting a sound is just
the starting point of a more complex challenge. Once a sound has been detected, it is time
to localize the origin or source of that sound. Humans’ remarkable ability to detect, localize
and recognize sound can be exemplified using the cocktail-party effect. This term describes the
ability of a person to direct his/her attention on the source of a sound amidst other sound
sources which makes possible, for example, to talk to another person in a noisy, crowded
party (Haykin & Chen, 2005).
It has been shown in humans that a continuous interaction between auditory and visual cues
take place in the brain (Cui et al., 2008). In humanoid robots the localization of a sound
source is mainly done by computing the difference in times and levels of signals arriving to
the different sensors, in this case microphones (Keyrouz, 2008). Attempts to integrate sensor
information from visual with auditory modalities has also been done in humanoid platforms
(Ruesch et al., 2008).
Rob trusts that at least from the hardware point of view, he will not have many problems. The
real challenge for the future is to improve the way different sensor modalities can be merged to
replicate or surpass the abilities found in humans. However this point belongs to the mindware
of his platform, so he will focus on working in optimized configurations of microphones.

3.1.4 Odor and taste
Rob gets a strange feeling at this point and thinks, “Should I even consider spending time
thinking about a robot with these two senses? After all, robots do not need to eat anything
as humans do, they just need a power cable and will have all the energy they need. And
electricity has no smell, right?” But then he starts thinking in more holistic terms– maybe
robots will need to somehow recognize smells and flavors; moreover, they will need to
associate that information with visual, auditory and tactile cues. Otherwise it is going to
be difficult, if not impossible, to interact with humans using more or less the same language.
Artificial noses and “tongues” have already been developed and they are also overmatching
those of humans (Mahmoudi, 2009). Artificial noses are able to detect and classify thousands
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of chemical molecules ranging from biological agents to wine and perfume. As in the case of
sound, it does not seem difficult to trust that in the near future Rob will have access to a device
that gives his robot information about odor and taste, at the very minimum at human levels.

3.2 Actuators
In the case of actuators, Rob illustrates the current state of the art of active components,
although he is lately more biased towards approaches which make use of spring-damper
components. He knows that the right choice of these components forms one of the critical
challenges for his future humanoid robot. Rob’s preference for non-linear components
comes from the fact that the human body is made, from an engineering perspective, almost
exclusively of spring-damper type elements: cartilages, tendons, muscles, fat, skin, etc. whose
interaction results in stability, energy efficiency and adaptability.

3.2.1 Whole-body motion
Humans have a large repertoire of motor actions to move the whole body from one point to
another. Walking could be considered the most representative behavior in this repertoire but
we learn to adapt and use our bodies depending on the circumstances. Humans are also able
to run, crawl, jump, climb or descend stairs, and if using the arms, then we can squeeze our
bodies between narrow spaces or if in water we can learn to swim.
Rob realizes that researchers in whole body motion for humanoid robots have focused most,
if not all their attention in walking only. The most common approach to control the walking
behavior and balance of a humanoid robot is called Zero Moment Point (ZMP) and it has
been used since the beginning of humanoid robotics research (Vukobratovic & Borovac, 2004).
This approach computes the point where the whole foot needs to be placed in order to have
no moment in the horizontal direction. In other words, ZMP is the point where the vertical
inertia and gravity force add to zero. Most state of the art humanoid platforms like ASIMO,
HRP-4, and HUBO2 make use of this approach. The main drawbacks of ZMP arise from the
need to have the whole foot in contact with a flat surface, and it assumes that this surface has
enough friction to neglect horizontal forces.
Passive-dynamic walkers are an alternate approach to humanoid locomotion (Collins et al.,
2005). These platforms try to exploit not only the non-linear properties of passive
spring-damper components but the interaction of the whole body with the environment. The
result is, in most cases, a more human-like gait with a heel-toe step in contrast to the flat steps
seen in ZMP-based platforms. State of the art passive-dynamic walkers use dynamic balance
control (Collette et al., 2007) which provides them with robustness to external disturbances
and more human-like whole-body motor reactions. Examples of this approach can be found
in platforms such as Dexter (Anybots, 2008), PetMan (Petman, 2011), and Flame (Hobbelen
et al., 2008).
Rob also found out that running and jumping have already been implemented in a few of
the current humanoid platforms (Anybots, 2008; Niiyama & Kuniyoshi, 2010), although there
is still much work to do to reach human-like levels. Once humanoid robotics started to
become the meeting point of different scientific groups such as developmental psychologists,
neuroscientists and engineers, interesting topics emerged. One of them was the study of infant
crawling, its implementation in a humanoid platform was done using the iCub robot (Righetti
& Ijspeert, 2006), Fig. 1(d).
For our roboticist Rob, the challenge of making humanoid robots replicate the different types
of motor behaviors found in humans is just one part of a larger challenge. An equally
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interesting project will be the design of a decision making control that allows the agent to
switch between the different motor behaviors. Switching between walking to crawling and
vice versa, from walking to trotting or running and back. Those changes will need to be
generated autonomously and dynamically as a response to the needs of the environment. The
traditional way of programming a robot by following a set of rules in reaction to external
stimuli does not work and will not work in dynamic, unconstrained environments. Rob
is thinking about Asimo tripping over a step and hitting the floor with his face first. Rob
knows that a more dynamic, autonomous and adaptive approach is needed for the future of
his humanoid robot.

3.2.2 Manipulation
It is now time for Rob to think about manipulation. He looks at his hands and starts thinking
about the quasi-perfection found in this mechanism. He realizes that there is no other being
in the animal kingdom that has reached similar levels of dexterity. His hands are the result
of an evolutionary process of thousands of years which got them to the sophisticated level
of manipulation the enjoy today. This process could have gone "hand-in-hand" with the
evolution of higher cognitive abilities (Faisal et al., 2010). Considering human hands only,
there is an even larger repertoire of motor actions that range from simple waving and hand
signals to complex interactions such as manipulating a pen or spinning a top or shooting
a marble (see Bullock & Dollar (2011) for a more detailed classification of human hand
behaviors).
Rob is aware of the particular engineering challenge presented by interacting with objects
in the real world. Trying to replicate as close as possible the human counterpart, current
state of the art humanoid hands (Fig. 3) have four (Iwata et al., 2005; Liu et al., 2007) and five
(Davis et al., 2008; Pons et al., 2004; Shadow Robot Company, 2003; Ueno & Oda, 2009) fingers,
sometimes under-actuated through a set of tendons/cables as in the case of iCub’s hands (Fig.
1(d)). However three-finger hands are also being used for manipulation, the most remarkable
case being the work done at the Ishikawa-Oku Lab at the University of Tokyo (Ishikawa &
Oku, 2011),Fig. 3(d). Through the use of high-speed cameras and actuators they have showed
that it is possible to perform complex actions like throwing and catching or batting a ball,
knoting a flexible rope with one manipulator, throwing and catching any type of objects with
the same hand, or manipulating tools of different shapes.
The interaction between skin and bones in a human hand creates a dynamic balance between
sensing and acting capabilities. By including skin-like materials into the design of robotic
end-effectors it will be possible to re-create the optimized functionality of human hands. Skin
that includes soft materials in its construction will add spring-damping properties to grasping
behaviors. Accurate control of the hardware is transferred to the physical properties of the
materials thus saving energy, time and resources. The future humanoid manipulator should
be capable of interacting at a minimum with the same objects and displaying similar active
and passive properties as human hands.

3.3 Interim summary 1
Rob realizes that the technology necessary to design and build a humanoid platform seems to
be reaching a very mature level. In many cases the biggest obstacle is the lack of resources
to put together state of the art sensors and actuators in the same project. We have seen
remarkable innovations in the area of nano-materials which can help to overcome current
obstacles in the acquisition of tactile, visual, and olfactory/taste information. At the same
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(a) Shadow Hand (b) TwendyOne’s hand

(c) ELU2’s hand (d) Ishikawa-Oku’s Lab
manipulator

Fig. 3. Samples of different state of the art manipulators.

time, the exponential growth of computational power gives enough freedom to integrate all
this information.
In terms of actuators, Rob is impressed by the results from the use of spring-damper
components. Previous attempts to control this kind of materials gave many researchers
(especially to those working with traditional control theory) several headaches. However
current implementations for whole-body motion and manipulation have shown the feasibility
of this approach, thanks most likely to the use of alternative methodologies, e.g. nonlinear
dynamical systems.

4. Computational requirements

Having considered his mechanical requirements, Rob now turns to computational
requirements for his robot. In his mind, this means anything that could be needed to make
the hardware perform interesting behaviors. This includes, but is not limited to, learning
how to solve (not necessarily pre-defined) tasks in uncertain environments under changing or
undefined conditions and interacting with humans in a non-trivial manner.
Within robotics, Rob has distinguished two main approaches of interest to him: one which
we shall call the traditional symbolic approach (also known as Cognitivism) and one that we
will name embodied approach (also known as Emergent Systems). Although both approaches
can sometimes use the same technologies (neural networks are a prime example of that),
they differ philosophically in the sense that symbolic is first and foremost an AI approach
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with its roots in computer science, whereas the embodied approach has its roots in the
cognitive sciences. An important consequence is that the traditional symbolic approach
sees computations as fundamentally disassociated from any specific hardware and therefore
operating in an abstract, amodel level while this is not true for the embodied approach. This
section therefore begins by briefly discussing some examples of the symbolic approach and
its limitations before moving on to embodiment and its relevance to robotics in general and
Rob’s robot in particular.

4.1 Traditional symbolic approaches
The symbolic paradigm sees cognition as a type of computation between any information
that can be represented in code and the outcome of the operations carried out on those
codes (Vernon, 2008). In other words, symbols are manipulated through a set of rules. This
determines that the way an artificial system sees the world around it is only through the eyes
of the designer/programmer of that system. All its freedom and limitations will be dependent
on the amount of symbols and rules that the person who created this model wrote in code.
Symbolic approaches make use of mathematical tools that help them select the best response
within a specific goal. Among the most important are probabilistic modeling and machine
learning techniques. Both of these have been relatively successful in solving task specific
problems. Hundreds if not thousands of commercially available products for character, voice,
and face recognition are on the market right now. Classification and regression problems
are easily solved by this approach. Nonetheless, the dependency of the system to the
programmer’s view of the world challenges symbolic approaches in solving problems such as
the symbol grounding problem, the frame problem, and the combinatorial problem (Vernon,
2008).
Rob has seen Asimo tripping and falling a couple of times without any reaction to protect
itself from the fall. This gives Rob a clue about the limitations of the symbolic approach for
controlling unexpected situations. At some point a group of engineers devised the most likely
situations that Asimo would encounter when climbing or descending a number of stairs given
that they would be flat, non slippery and nobody else would be around. So they knew about
the symbols present in an specific sequence of events, they knew the constraints needed and
imposed and finally, they wrote enough rules to fulfill the task.
Rob starts thinking about those events that cannot be foreseen and therefore cannot be
calculated. What if a pebble is in the wrong place or at the wrong time? What if a cat crosses
my robot’s path? What if a person pushes my robot? After all, my robot will be moving around
in places where any other human moves around, and we encounter these types of situations
all the time. Rob has already considered the importance of a good design for both actuators
and their wrapping materials. This would help by transferring some of the problems from
the digital control part into the physical interactions with the environment. Yet a symbolic
approach does not seem to be as open as needed in the unconstrained environments that
humans work and live.

4.2 Embodied and cognitively inspired approaches
Rob thus comes to the realization that the traditional symbolic approaches do not fulfill his
requirements. In this part, he therefore discusses embodied approaches. In a nutshell, this
class of approaches sees the particular body of an agent as intertwined with its mind: the
cognitive abilities of an agent is a consequence of both and cannot be understood by studying
one in the absence of the other.
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In the simplest form, the embodiment can provide a solution to the symbol grounding problem
(Harnad, 1990), namely the problem of attaching a real meaning to symbols. For example,
the sequence of symbols to grasp has no meaning by itself; it only becomes meaningful
when an agent can associate it with the corresponding sensory perceptions and motor
actions. In a more advanced form, the embodiment of a particular agent can actually
reduce the computations necessary by a controller in the traditional sense by what is called
morphological computing (Pfeifer et al., 2006).
The remainder of this section thus first briefly introduces the core concept of embodied
cognition as relevant to roboticists such as Rob. We then consider examples of research which
uses embodiment in the sensory-motor grounding sense as well as examples of morphological
computing as such. Finally, we briefly discuss dynamic field theory, a particular modeling
approach explicitly built on ideas from embodied cognition.

4.2.1 Embodied cognition
Thill (2011) provides a brief introduction of embodied cognition as relevant to the design
of artificial cognitive systems in general (rather than the specific case of robots). The brief
introduction here follows this discussion, albeit adapted to suit the needs of roboticists in
particular.
The basic claim within embodied cognition (Anderson, 2003; Chrisley & Ziemke, 2003;
Gallagher, 2005), as mentioned before, is that the body intrinsically shapes the mind. A
simple illustration of this influence comes from an early study by Strack et al. (1988), who
showed that people rate cartoons as more funny when holding a pen between their teeth
(activating smiling muscles) than when holding a pen between their lips (activating frowning
muscles). Another example is the SNARC (Spatial-Numeric Association of Response Codes)
effect (Fischer, 2008, see Pezzulo et al. 2011). In essence, people respond to smaller numbers
faster with the left hand than with the right hand and vice versa for large numbers. Similarly,
when asked to produce random numbers while simultaneously shaking their heads left to
right, people are biased towards smaller numbers during left turns than during right ones.
A further illustration of the body’s influence on mental processes can be seen in language
processing, particularly when involving action verbs. Such processing (for instance while
reading a sentence) can be shown to activate motor regions within the brain and lead to either
facilitation of or interference with executing an action (involving the same end-effector as the
sentence, see Chersi et al., 2010, for a review and a more thorough discussion).
Although examples such as those above and several more not discussed in detail here (but see
Pezzulo et al., 2011, for additional ones) clearly show that body and mind are intertwined, it is
still an open debate how intricate the relationship is. While researchers like Pfeifer & Bongard
(2007) or Pezzulo et al. (2011) argue strongly in favor of such an intertwined relationship,
Mahon & Caramazza (2008), for instance, are amongst those who favour a view that sees
mental processes operating at an abstract symbolic representation, with concepts that are
merely grounded by sensory-motor information. In other words, in this view (also related to
Harnad, 1990), cognition does not require a body as such, although the latter may be necessary
to ground the symbols used.
The relevance of embodied cognition to robotics in general is thus clear: when designing the
controller for a robot, one faces decisions as to how much the higher-level cognitive abilities
of the machine need to involve the particular embodiment and sensory features. Thus the
relationship between robotics and the study of embodied cognition is mutually informative:
on one hand, a robot provides cognitive scientists with a real body in which to test their
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theories and computational models thereof (Pezzulo et al., 2011) while on the other hand,
insights from embodied cognition can allow the better design of robots. For Rob’s robot, the
latter is clearly the most interesting aspect and hence the focus of the remainder of this section.

4.2.2 Mirror neurons and the social robot
One of the key requirements for Rob’s robot is the ability to be social in the sense that it can
interact with human beings in a sensible, autonomous manner. Such an interaction can take
many forms. One example is learning by imitation, which would allow the robot to learn novel
tasks by observing a human demonstrating the desired behavior. It could also take the form
of cooperation, in which Rob’s robot has to solve a task together with a human. Or it could be
verbal interaction, which may be required in all social scenarios involving robots.
What is common to all these scenarios is first and foremost the requirement that Rob’s robot
be able to understand the actions of a human and related concepts, whether shown to the robot
by demonstration or given via verbal labels. In other words, these scenarios can benefit from
the embodied theories on sensory-motor grounding in order to facilitate this understanding.
Within this context, the discovery of mirror neurons –neurons that are active both when an
agent executes a (goal-directed) action and when he observes the action being executed by
another (Gallese et al., 1996) –is attracting Rob’s attention. Indeed, one of the most prominent
hypotheses on the functional role of mirror neurons is that they form the link between action
perception and action understanding Bonini et al. (2010); Cattaneo et al. (2007); Fogassi et al.
(2005); Rizzolatti & Sinigaglia (2010); Umiltà et al. (2008), which appears highly relevant for
Rob’s robot. Even so, it is always worthwhile to remember that this claim remains a hypothesis,
not a proven fact, and does not come without criticism (Hickok, 2008).
It is further thought that mirror neurons may play a role in learning by imitation (Oztop
et al., 2006) as well as in the sensory-motor grounding of language (see Chersi et al. (2010)
for a discussion). Although these are again hypotheses rather than facts (, for instance rightly
points out that most of the neurophysiologic data supporting the theories come from macaque
monkeys, which neither imitate nor use language), they have inspired some robotics research
(see for instance Yamashita & Tani (2008) for an example of learning by imitation and Wermter
et al. (2005) for an example of language use). Overall, it thus comes as no surprise that mirror
neurons are also of high interest to the field of humanoid robotics, since they may provide the
key to grounding cognition in sensory-motor experiences. For this reason, Rob is interested
in some of the work within the field of robotics that is based on insights learned from mirror
neurons.

4.2.3 Mirror neuron based robots
Oztop et al. (2006) provides a general review of computational mirror neuron models
(including models that can be seen to have components which function similarly to mirror
neurons rather than being explicitly inspired by mirror neuron research), together with a
proposed taxonomy. Not all of these are relevant to robotics, but we will briefly mention a
few controllers that are examples of early mirror-neuron related work in robotics.
One of the first such examples is the recurrent neural network with parametric bias (RNNPB)
by Tani et al. (2004), in which “parametric bias” units of a recurrent neural network are
associated with actions, encoding each action with a specific vector. Then the system may
then either be given a PB vector to generate the associated action, or it may be used to predict
the PB vector associated with a given sensory-motor input. As such, these PB units can be
understood as replicating some of the mirror functionality. Tani et al. (2004) demonstrate the

290 The Future of Humanoid Robots – Research and Applications



Rob’s Robot: Current and Future Challenges
for Humanoid Robots 13

utility of the overall architecture in three tasks. First, they show that the architecture enables
a robot to learn hand movements by imitation. Second, they demonstrate that it can learn
both end-point and cyclic movements. Finally, they illustrate the ability of the architecture to
associate word sequences with the corresponding sensory-motor behaviors.
Yamashita & Tani (2008) similarly use a recurrent neural network at the heart of their robot
controller but endow it with neurons that have two different timescales. The robot then
learns repetitive movements and it is shown that the neurons with the faster timescale encode
so-called movement primitives while the neurons with the slower timescale encode the
sequencing of these primitives. This enables the robot to create novel behavior sequences by
merely adapting the slower neurons. The encoding of different movement primitives within
the neural structure also replicates the organization of parietal mirror neurons (Fogassi et al.,
2005), which is at the core of other computational models of the mirror system (Chersi et al.,
2010; Thill et al., In Press; Thill & Ziemke, 2010).
While the RNNPB architecture encodes behavior as different parametric bias vectors, Demiris
& Hayes (2002); Demiris & Johnson (2003) propose an architecture in which every behavior
is encoded by a separate module. This architecture combines inverse and forward models,
leading to the ability to both recognize and execute actions with the same architecture.
Learning is done by imitation, where the current state of the demonstrator is received and
fed to all forward modules. These forward modules each predict the next state of the
demonstrator based on the behavior they encode. The predicted states are compared with
the actual states, resulting in confidence values that a certain behavior is being executed. If
the behavior is known (a module produces a high confidence value), the motors are then
actuated accordingly. If not, a new behavioral module is created to learn the novel behavior
being demonstrated. A somewhat similar model of human motor control, also using multiple
forward and inverse models has been proposed by Wolpert & Kawato (2001), with the main
difference being that in this work, all models (rather than simply the one with the highest
confidence value) contribute to the final motor command (albeit in different amounts).
Finally, Wermter et al. (2003; 2005; 2004) developed a self-organizing architecture which
“takes as inputs language, vision and actions . . . [and] . . . is able to associate these so that it
can produce or recognize the appropriate action. The architecture either takes a language
instruction and produces the behavior or receives the visual input and action at the particular
time-step and produces the language representation” (Wermter et al., 2005, cf. Wermter et al.,
2004). This architecture was implemented in a wheeled (non-humanoid) robot based on the
PeopleBot platform. This robot can thus be seen to “understand” actions by either observing
them or from its stored representation related to observing the action. This is therefore an
example of a robot control architecture that makes use of embodied representations of actions.
In related work on understanding of concepts/language in mirror-neuron-like neural robotic
controllers (Wermter et al., 2005) researchers use the insight that language can be grounded in
semantic representations derived from sensory-motor input to construct multimodal neural
network controllers for the PeopleBot platform that are capable of learning. The robot in this
scenario is capable of locating a certain object, navigating towards it and picking it up. A
modular associator-based architecture is used to perform these tasks. One module is used for
vision, another one for the execution of the motor actions. A third module is used to process
linguistic input while an overall associator network combines the inputs from each module.
What all these examples illustrate is that insights from mirror neuron studies (in particular
their potential role in grounding higher-level cognition in an agent’s sensory-motor
experiences) can be useful in robotics. In terms of using insights from embodied cognition,
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these are relatively simple examples since the main role of the body in these cases is to enable
the grounding of concepts. For instance, a robot would “know” what a grasp is because it can
relate it to its own grasping movements via the mirror neurons.
However, from Rob’s perspective, there is still substantial work that needs to be done in
this direction. In essence, what the field is currently missing are robots that can display
higher-level cognition which goes beyond simple toy problems. For example, most of the
examples above dealing with learning by imitation understand imitation as reproducing the
trajectory of, for instance, the end-effector. However, imitation learning is more complex than
that and involves decisions on whether it is really the trajectory that should be copied or the
overall goal of the action (see e.g. Breazeal & Scassellati, 2002, for a discussion of such issues).
Similarly, while there is work on endowing robots with embodied language skills (e.g.
Wermter et al., 2005), it rarely goes beyond associating verbal labels to sensory-motor
experiences (Although see Cangelosi & Riga (2006) for an attempt to build more abstract
concepts using linguistic labels for such experiences). Again, while this is a worthwhile
exercise, it is not really an example of a robot with true linguistic abilities.

4.2.4 Morphological computation
Closely related to embodiment is the concept of morphological computation (Pfeifer & Iida,
2005; Pfeifer et al., 2006). This explicitly takes into account that the body can do more than
just provide a grounding for concepts; it can actually, through its very morphology, perform
computations which no longer need to be taken care of by the controller itself.
The classic example of this is the passive dynamic walker (McGeer, 1990), a pair of legs that
can walk down a slope in a biologically realistic manner with no active controllers (or indeed
any form of computation) involved at all. Pfeifer et al. (2006) offer additional examples: the
eye of a house-fly is constructed to intrinsically compensate for motion parallax (Franceschini
et al., 1992) and a similar design can facilitate the vision of a moving robot. Another example is
the “Yokoi hand” ((Yokoi et al., 2004)), whose flexible and elastic material allows it to naturally
adapt to an object it is grasping without any need for an external controller to evaluate the
shape of the object beforehand.
A completely different type of gripper that fulfils a similar role as the Yokoi hand (namely the
ability to grasp an object without the need to evaluate its shape beforehand) is presented by
Brown et al. (2010). This gripper is in the shape of a ball filled with a granular material that
contracts and hardens when a vacuum is applied. When in contact with an object, it reshapes
to fit the object and can lift it. Here, the morphology of the hand goes as far as removing the
need for any joints in the gripper, thus significantly reducing the computational requirements
associated with it.
From the perspective of Rob’s robot, the key insight from the examples given here is that a
suitably designed robot can reduce the computations required within the controller itself by
offloading them onto the embodiment. At the same time, he also identifies a shortcoming,
namely that there are no examples of humanoids that take this into account to a significant
degree. Rather, the demonstrations mostly focus on small robots with a very limited
behavioral repertoire designed solely to illustrate the utility of the particular embodiment
in that specific case. Although Rob finds the approach itself promising, he feels that it still
needs to overcome the restrictions in form of the focus on limited behavioral repertoires.
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4.2.5 Dynamic Field Theory
Dynamic Field Theory (DFT) is a mathematical framework based on the concepts of
Dynamical Systems and the guidelines from Neurophysiology. A field represents a population
of neurons and their activations follow continuous responses to external stimuli. Amari (1977)
studied the properties of these networks as a model of the activation observed in cortical
tissue. Fields have the same structure of a recurrent neural network since their connections
can have, depending on the relative location within the network, a local excitation or a global
inhibition, Fig. 4.

Fig. 4. Typical activations in a dynamics field, from Schöner (2008).

Fields are used to represent perceptual features, motion or cognitive decisions, e.g. position,
orientation, color, speed. The dynamics of these fields allow the creation of peaks which
are the units of representation in DFT (Schöner, 2008). Different configurations of one or
more fields are possible, being the designer responsible for creating a proper connectivity and
tuning of parameters. The result of activating this type of network is a continuously adaptive
system that responds dynamically to any change coming from external stimuli.
Rob has learned about the different properties and potentials of dynamic fields for using
it as part of a robust cognitive architecture. Some of the most attractive features of this
approach include the possibility of having a hebbian-type of learning by exploiting the
short-term memory features implicit in the dynamics of this algorithm. Long-term memory,
decision making mechanism and noise robustness (also implicit in the dynamics of fields),
and single-shot learning are all important tools that can and must be included in any cognitive
architecture. Several applications modeling experiments on human behavior (Dineva (2005);
Johnson et al. (2008); Lowe et al. (2010)) and robotic implementations (Bicho et al. (2000);
Erlhagen et al. (2006); Zibner et al. (2011)) have demonstrated DFT’s potential.
Nonetheless, from Rob’s perspective, the current work with dynamic fields still needs to
overcome a number of challenges. Dynamic field controllers are currently designed by hand,
through elaborate parameter space explorations, to solve a very specific problem. Although
these models nicely illustrate that decision-making can be grounded directly in sensory-motor
experiences, their learning ability is limited and any particular model does not generalize
well to other tasks, even though modular combinations of different models each solving a
particular task seems possible (Johnson et al. (2008); Simmering et al. (2008); Simmering &
Spencer (2008)).
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4.3 Interim summary 2
To summarize, it seems likely that embodied approaches are the future, both from a theoretical
perspective (given insights in the cognitive sciences about the functioning of the human mind)
and practically speaking (given the numerous examples of the associated benefits in robotic
applications) and thus, this is the approach that Rob would prefer when designing his robot.
However, he thinks about the successful applications of symbolic approaches and leaves open
the door to possible interactions between both approaches. It could be possible to use dynamic
tools to face unexpected circumstances and once that information looks stable let a symbolic
algorithm work with it and give some feedback to the body.
There are significant challenges still to overcome for embodied approaches as well. Most of
the existing work (while demonstrating that an embodied approach is indeed viable) currently
focuses on proof-of-concept solutions to specific problems. These limitations go hand-in-hand
with the development of physical platforms to test new models.

5. Discussion

Rob has completed his brief study of the current state of the art in humanoid robotics. Along
the way he has found very interesting developments for both hardware and software. In
almost all fields he found technology that oftentimes exceeds the abilities found in humans.
However, there are several questions that come to his mind: why is it so difficult to create
human behavior? Or is it intelligence? Or maybe cognition? From his analysis it seems that
the most important parts are there, but still something is missing in the overall picture.
The field of humanoid robotics was formally born when a group of engineers decided to
replicate human locomotion. This work is more than 40 years old and we are still unable
to replicate the simplest walking gait found in humans. In section 3 Rob found several state
of the art platforms that are showing signs of improvement for locomotion. He is confident
that in the near future a more robust and stable human-like walking gait will be available
for biped platforms. However, he does not feel so positive about other forms of motion
and the transitions between them. Rob picks the embodied approach, and more specifically
the dynamical systems approach, as the best option for handling instabilities and transitions
between stable states such as walking, running, crawling, jumping, etc.
In Rob’s opinion, grasping and manipulation do seem to be close to be maturing as well.
In hardware terms, several platforms are progressing thanks to the integration of state of
the art technology in skin-like materials. The addition of this component to the traditional
“naked” robotic hand has improved substantially the results of grasping and manipulation.
Rob is convinced that the same strategy should be applied in the lower limbs of his humanoid
platform. A large part of controlling balance and motion can be transferred to the interactions
between materials and environment as it has been showed by morphological computation in
section 4.2.4.
There are however several challenges that worry Rob. He is still not sure about the best way
to go regarding his cognitive architecture. He is not worried about the quantity or quality of
the information collected through state of the art sensors; his study showed that sensors are
not the problem. The problem is how to merge all that information and make some sense out
of it. The missing piece seems to be finding the right way of creating and then recovering
associations. Finally, a proper way of interacting with humans is needed, e.g. language.
The biggest challenge for the area of humanoid robotics right now is the design and
implementation of a large project with the collaboration of an equally large number of
researchers. If we continue doing research in pieces, then the development of cognitive
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abilities in humanoid robots will be very slow and the use of humanoids in the future very
limited. The above mentioned mega-project should have as common goal the construction
of a humanoid robot with state of the art sensors and actuators. If anything can be learned
from the embodiment approach 4.2, it is that a complete and sophisticated body like this
is needed mainly because of the biggest challenge for the future of humanoid robotics,
i.e. the development of cognitive abilities through dynamic interactions with unconstrained
environments.
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