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Abstract 
 

In class, students participated in a demo of a Fetch robot performing a grasping task on a 
stationary object, but one problem that kept occurring was, given the position of the robot 
relative to the object, there was no reachable grasp. We work around this possibility by having 
the robot locate an object on a table/counter, and then strategically position itself so that the 
object is reachable. This capability would be very useful for a household humanoid robot, in 
particular one that would work in a kitchen and might have to locate and grasp objects all around 
a table or counter. The robot should also deliver the object to some goal location around the edge 
of the table (e.g. to a customer). Furthermore, the robot should be able to navigate a cluttered 
environment to get to the object, and then navigate through the environment once more to deliver 
it to another table. We optimize the total amount of time it takes to assume a suitable position to 
grasp the object, to grasp the object, and then to deliver the object. At first, we approximate this 
only by minimizing the distance traveled to the suitable position in addition to the distance 
traveled to the goal afterward. Then, we also take into account for the differing amounts of time 
that any given grasp itself may take by precomputing some simulations of the various possible 
grasps the robot will encounter. We also turn the robot into a “waiter” which finds the shortest 
path among obstacles, such as tables in a restaurant, in order to pick-up and then finally deliver 
an object somewhere else. 
 
Introduction 
 

This report addresses optimal path finding and object delivery problems for a humanoid 
robot that has to find and collect an object of a predefined shape and move it to a desired position 
in minimum time. We use Fetch, a mobile humanoid robot with a 7 degrees of freedom arm that 
comes equipped with a variety of sensors that empower it to work well in home and lab 
environments, to accomplish our tasks. Leveraging grasp capabilities and head camera sensors of 
the Fetch robot, Team 4 presents Fetch Waiter. Fetch Waiter is a delivery time optimization 
system that automatically estimates the least-time-consuming path to deliver a predefined object 
from one location to another. Deliverables of this path optimization project extends beyond 
object detection and grasping; our path planning and delivery pipeline caters to Fetch by forming 
a set of collision-free candidate paths and picking the best route by optimizing distance through 
Dijkstra’s algorithm as well as grasp time through precomputation. 

 



We demonstrate Fetch Waiter in a real-life application through a simulation environment 
of a restaurant. Traditional graph search and path finding algorithms account for just distance as 
the cost to optimize; although we also use such a path-finding algorithm, such an approach from 
the human-movement perspective overlooks the considerable amounts of time spent during the 
grasp planning and execution stage. We propose that optimizing an objective function over grasp 
time as well as distance is more effective and realistic for a humanoid robot rather than 
calculating just the shortest collision-free path. Although the simulation was targeted for a 
restaurant environment, the same system is applicable and appropriate for assisting immobile 
patients or the elderly who require timely responses. 

 
We add our contributions to existing functionalities from Fetch’s demo code. Existing 

code demonstrates how Fetch is flexible enough to map and navigate its environment with 
SLAM and also plan grasps with inverse kinematics. While the features are extensive, we sought 
to augment the Fetch robot demo in three ways.  

 
Approach 1: 
 

We first present a vision-driven solution for automatic object detection for a specific 
situation where the customer sitting at a large table wishes to grab an object on that same table 
without informing the robot of the exact location of the object. Based on position space 
discretization around the table, Fetch uses his vision system to locate, grasp, and deliver the 
object to the customer in minimal time. The vision-driven solution enables the Fetch robot to 
autonomously navigate within a generalized bounding area (a single table) in search of its target 
object without human teleoperation. 

 
Approach 2: 
 

Due to the high computational cost and completion time of this solution, we alternatively 
propose a precomputed-time-driven approach based on robot position adjustment. Given the 
coordinates of the object, we use the precomputed list of grasp times at numerous discretized 
robot positions around the object to navigate the robot to the optimal grasp location. This 
precomputed-time-driven solution empirically estimates efficient and reliable grasps that can be 
performed by the robot to minimize time lost on unsuccessful or inefficient grasps to offer task 
completion in shorter time. The robot then delivers the object to another location on the table, 
just as in Approach 1. 
 
Approach 3: 
 

The first two approaches are constrained to simply picking up an object and delivering it 
to another location on the same, possibly very large, table. In order to account for a “restaurant” 
type setting, the third augmentation to the demo code picks up an object at one table and 
delivering it to another table. It involves constructing a visibility graph of obstacles in the 
environment (in our case, rectangles representing tables), and performing Dijkstra’s algorithm to 
determine the shortest path, using Euclidean distance between points as edge weights [4].  

 



Objective Function 
 

Our path planning algorithm optimizes the following objective function, taking into 
consideration both the distance and time: 
 

Distance from robot to s + distance from s to goal + time it takes for a grasp at s 
The variable s in the function is a specified location around the object where the robot 

should be to perform the grasp. This location is calculated by searching through our precomputed 
grasp time vectors. We optimize the function by reducing each term independently. The shortest 
path from robot’s initial position to s and the shortest path from s to the customer/delivery 
location are found independently. 
 
Vision-Driven Solution and Delivery Around Single Table (Approach 1) 
 

In our project, we used a blue cube as our target object. In order for the Fetch robot to 
autonomously identify a target object, we used the vision system from Fetch’s head camera to 
survey the scene and segment the resultant point cloud. Due to the Fetch robot's close integration 
with the ROS operating system, it was possible to perform this segmentation using existing 
libraries. The result of such a segmentation is a list of clustered points, with each cluster 
belonging to the same physical object. The Fetch robot then decides which clusters of points 
represented objects that were of interest. In order to detect the location of the cube on the table, 
we received data from Fetch’s nodes. From “head_camera” node, we are able to subscribe to 
obtain point cloud data objects from “FindGraspableObjects” contained in “grasping_msgs.msg” 
rosmsg. This allows us to identify the target cube. To demonstrate automatic object detection, 
Fetch moves around discretized locations around the table and checks if the cube is present in a 
while loop. Once the cube is found, our baseline Waiter algorithm computes the shortest path 
from the robot’s location s to the customer. We simulate this elementary solution in a simple 
environment to gauge the success of object detection and our initial object delivery method. The 
path finding algorithm used in this vision-driven solution grows the table and finds the shortest 
collision-free path around a single table. The single-table path finding algorithm in this approach 
is the same as the one in Approach 2, where it is described in more detail. 
 
Precomputed-Time-Driven Solution and Delivery Around Single Table (Approach 2) 
 

We ran the simulation repeatedly to sample the average grasping times for various 
positions of the robot and object. We saved these grasping times as values corresponding to the 
vector between the base of the robot and the position of the cube. During the experiment, we 
used these precomputed times to decide the ideal position to attempt the grasp from. This 
approach captured some of the variability in grasp success rates since a failed grasp added 
significantly more time to the whole process. This penalty increased the cost associated with 
grasping from that position. 

 
After the robot moved into place, the Fetch robot planned a grasp and moved its arm into 

position to execute the grasp. This was accomplished using the MoveIt! ROS library and GraspIt 
planner. [1] Once the object was attached to the robot via a grasp, the robot moved to the goal 



position by using the MoveIt! ROS library. To avoid some cases where the default MoveIt 
trajectory would become stuck or route inefficiently, we decomposed the path between the robot 
and its destination. This decomposed path consisted of one to three intermediate points, which 
guided the robot to its final destination along a direct route. Our method was to use some basic 
assumptions about the layout of the environment to calculate in constant-time the path. The 
geometry of the setup allows us to determine the shortest path by comparing the coordinates of 
the robot and customer with the width and length of the table and determining which corners of 
the table to navigate around in order to most quickly move to another location around the table. 
The corners of the table are “grown” out from the original table to account for the width of the 
robot. 
 

 
Figure 1: Visibility graph on grown obstacles shown, with Dijkstra’s shortest path in green. 
 
Precomputed-Time-Driven Solution and Delivery Among Several Tables (Approach 3) 
 

This approach involves constructing a visibility graph of the obstacles, and growing the 
obstacles by the width of the robot to ensure the robot does not collide with any of them. The 
corners of the grown obstacles are used as vertices of the graph, as well as the robot start location 
and the robot goal location. Dijkstra’s algorithm is then run on the graph, using Euclidean 
distance between vertices as edge weights, from the start to goal in order to find the shortest 
collision-free path, as seen in Figure 1. Dijkstra’s algorithm is run twice in our implementation. 
First, the goal location is determined by using our precomputed grasp vector file to find the best 



location to perform a grasp on the object around the table that contains the object (same as in 
approach 2), and then Dijkstra’s algorithm is run from the robot start point to this pick-up 
location. Then, once the object has been grasped, the goal point becomes whatever 
predetermined delivery destination the user wants, and Dijkstra’s is run once again on the 
visibility graph with the new start and goal points (from pick-up location to delivery location). 
 
Challenges 
 
System/infrastructure: We initially met a lot of challenges in setting up and getting used to the 
ROS environment. We also ran into various CLIC machine issues after having struggled to set 
things up on our own machines, such as ROS logs building up so much that the CLIC disk quota 
would be exceeded. The Gazebo simulation failed to run remotely through CLIC, as well as on 
an Ubuntu VM, so we eventually settled on working physically in the CLIC lab. 
 
Grasp planning: Our method of precomputing grasps only took into account the relative position 
of the robot to the object. However, the grasp planning provided by moveit is nondeterministic, 
and there are many other factors that go into a planned grasp that we could not account for. 
Therefore, our method still experiences failed grasps on around 50% of runs. According to the 
Fetch Gazebo documentation, the simulated grasp planning may perform even less ideally than 
in real-life due to a less well-tuned arm and fingers [3]. Ideally, in the future we would be able to 
have more control over grasp planning and precompute more aspects of the ideal grasp given a 
predetermined object in order to better ensure a fast, successful grasp. Also, we would have 
loved to test our code on a real-life robot and environment, but could not due to time constraints. 
 
Path planning: Our use of a visibility graph on grown obstacles in Approach 3 helped Fetch 
navigate the environment very smoothly. However, the moveit library also has some strange 
behaviors when navigating the robot, as it often determines that the robot is stuck even when it 
clearly is not in collision with any obstacles. Therefore, we decided to grow the obstacles 
conservatively by growing them by a little bit more than the robot width, as well as growing 
around the obstacles uniformly. This helped ensure the robot takes a smoother path that involves 
less of the collision recovery behavior that moveit often encounters when navigating Fetch 
around the environment. Even so, the nondeterministic nature of navigating with moveit makes it 
so that randomly on certain runs the robot will take a trajectory from one point to another that is 
not ideal, which then causes the robot to take a little extra time to recover before moving on to 
the next point in the planned path. 
 
Proposal modification: Our initial proposal involved tracking and grasping of a moving object. 
After initial research, we devised an interesting hypothesis that if the moving object and the 
trailing humanoid robot are moving at the same speed, the relative positions of the object and the 
robot must remain the same. Therefore, the robot should be able to perform grasp planning and 
execution in motion successfully. Upon discussions with the TAs, we diverted from this proposal 
and resubmitted a revised version with our current objectives for several reasons. The TAs raised 
concerns that the tracking and grasping task may be very difficult and unrealistic. Firstly, Fetch’s 
hand is restricted to only pick up small objects. Detecting and tracking a small object moving on 
the ground in a cluttered environment would be difficult, and even impossible with Fetch’s 



camera/sensor specifications. Secondly, there are limits due to Fetch’s specifications including 
arm length, speed, and processing capabilities of conducting object tracking and grasping 
concurrently. 

 
Results 

 
Both vision and time based methods introduced in this experiment lead to successful pick 

and deliver pipelines. The first attached video shows the Fetch robot moving to a location 
calculated by our relative vector approach. As mentioned in our challenges, due to fortuitous 
uncontrollable Fetch sensor performance, the block slips from the robot's grasp just before the 
placing of the object is completed, but the video demonstrates an otherwise successful 
completion of the entire pick and deliver task. In the second video the Fetch robot moves directly 
to the optimal location from which our precomputed vectors predict a rapid grasp. From there it 
completes the rest of the pick and deliver task similarly to before. Finally, in the third video, 
Fetch navigates through a cluttered environment of tables in order to reach a pick-up location 
determined by our precomputed grasp vectors, grasps the object, and then finally navigates 
through the environment once again to another table where to places the object. 
 
Conclusion 

 
Three approaches to accomplish humanoid delivery optimization have been addressed. 

We demonstrated that our three contributions were reasonable ways of improving the Fetch 
robot's ability to autonomously complete a pick-and-deliver task while minimizing the time 
spent. Our group divided the responsibilities as follows: 
 

- Daniel Hong: pipeline implementation, research 
- Antong Liu: algorithm development, research 
- Calvin Li: ROS integration, algorithm development, testing 
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