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Abstract 
Robotic human interaction systems are typically designed around the use of one or more well 

defined skills but do not allow for custom, user-defined tasks. We have implemented a system 

that can take several primitive actions and allow the user to build up these actions into complex 

aggregate tasks. We have established a baseline of actions and commands that can be easily 

built upon. This system uses voice recognition to allow users to interact with a robot either 

visually, through a web interface using robot web tools, or entirely through voice. We have 

written an interface for the Fetch robot and created an easily extensible interface for additional 

robots such as the Mico and the PR2. This system as designed can implement complex functions 

defined by the user as a function of several primitive actions. The major contribution of this 

work is the ability to easily support multiple robots using a variety of simple primitives that 

each robot should be able to support 

Description 
We introduce several primitive actions that are all supported by the Fetch robot, and some of 

which that are supported by more stationary robots. The idea behind these primitives is that 

they are abstract enough to be useful to any users (for example, someone who may need 

assistance) but specific enough that a robot will be able to implement them. We have divided 

the primitives into movement, grasping, and posing. This allows us to determine whether a 

robot can take advantage of any of these specific modules and potentially will allow for future 

interfaces to be designed around such a system.  

 

 

Figure 1 A list of valid primitive actions that a robot can complete and the user can specify 



 

Primitives 

When deciding how we wanted the robot to behave we discussed what primitive actions and 

commands would need to be supported for the user to more easily understand what the 

system was doing and performing. As such we considered operations such as grasp, place, 

move to, etc. to be complex enough to be useful to the user but simple enough that chaining 

the actions together made sense. This creates a sort of language for executing a robotic process 

and could pave the way for creating a language to describe robotic actions. For movement we 

wanted to make sure the user could define a location and specify the robot to move to that 

location. For grasping we decided that grasping the object and placing the object would fit well 

into this category. For the vision category we wanted to make sure the robot could recognize 

and segment objects for later use in the grasping pipeline. Finally the robot can save different 

poses and execute them later on.  

 
Figure 2 The different robotic modules for the Fetch, Mico, and Pepper robots. Each robot has a different set of capabilities 

which means it would subscribe to a different set of package.  

We wanted to make sure that the system was flexible enough for multiple robots - so we 

divided the primitives into different categories. The categories that are currently supported 

depend mostly on the robot we are using. We have only implemented this system for the Fetch, 

but it could be easily extended to a different robot by implementing the same packages for it 

instead.  

Commands  

In order to allow  a user to record locations, objects, and poses, we defined a series of 

commands that the interface is able to understand. Recognize is a keyword for recognizing the 

point cloud of an object as some named entity. This allows the system to then refer to that 

object later in tasks. The system will also support the Execute keyword, which will task in one or 

more tasks, where a task is defined as a primitive or aggregate action, and execute them 



 

sequentially. Record will allow the user to define a sequence of tasks as an aggregate. This will 

allow the user to define a series of tasks with custom names to give a more semantically 

convenient expression. For example, the user may have the following interaction with a robot: 

“Record grasp apple and then move up for 0.5 meters and then move right for 0.5 meters and 

then move down for 0.5 meters and then place apple as pick and place apple”. This will define a 

task “pick and place apple” that moves an apple up, right, and down on a table. Apple would 

need to have been defined using the recognize command or defined in the database upon 

startup. A task list would need to be separated by “and then” to indicate another task. A user 

can also define the robot’s location using the command “You are in location X”. We also want 

the ability to, during an execution, adjust the course of a command by some amount of 

movement in the case that the arm is behaving undesirably.  

The full list of commands are: 

● Recognize object as <id> 

Recognize an object in front of the camera for later recall as id 

● Execute <task_list> 

Execute a set of primitives in order 

● Record <task_list> as <id> 

Record a set of primitives for later recall through a referred id 

● You are in pose <id> 

Define a pose for the robot 

● You are in location <id> 

Define a location for the robot 

● Adjust course by moving <direction> by <n> meters 

Cartesian transformation of the end effector 

● Pause 

Pause the current action 

● Stop 

Stop the current action 

● Switch to robot <id> 

Hot swap the robot interface currently being used for actions 

● Record trajectory 



 

Unlock the arm and record the motion from a user 

● Playback 

Play back any movement recorded from the record trajectory action 

System Architecture 
The system was designed with a pythonic focus in mind. There were four main modules: 

AlexaServer, CommandManager, ParaphraseDetector, and RobotInterface, as well as the 

existing repository of Fetch and Mico code. These modules each have a specific responsibility 

but none of them need to enforce their implementation, but rather need to communicate 

through a series of predefined messages in the system to ensure their integrity.  

 

Figure 3 The overall structure of the system was to emphasize the flexibility of any one of the systems. All of these modules can 
be swapped out for something that uses the same interface.  

AlexaServer 

This server was written using the flask_ask module and supported several different command 

intents. This was the bulk of the command parsing from the user - beyond this a system that 

performed additional parsing at the task level was required, however that is discussed in a later 

section. The intents allowed the system to conveniently decide which command was being 

issued, however we frequently ran into a problem where the language model for the 

commands was not producing the correct intent to be called. In the future we will look to use a 

different pipeline that is more reliable for speech to text.  



 

 
Figure 4 The Alexa and Command Parser modules should be separated so a new voice recognition system could be utilized rather 

than be tied to the system using it.  

CommandManager 

This system used python’s PLY library which allows the user to build a simple context free 

grammar and parse text into a series of commands. This is the same architecture one would use 

if they were building a compiler in python. This system would take the intent responses from 

Alexa and then send the commands to the robot interface. It also stored information about 

robot poses, objects that were recognized, locations of the robot, as well as aggregate tasks. 

Because Alexa could not recognize arbitrary tasks, we relied on it as a speech to text tool where 

we then took the text and paraphrased it for both the execute and record commands. We 

found that this was very reliable at giving the correct task during our development process, 

however the Alexa server would very frequently not pass the correct result. This system would 

likely benefit from being able to store its state in a database later on.  

RobotInterface 

The robot interface is a simple template used to specify what a robot should either have 

defined or reject for commands. These commands include getCurrentLocation, getCurrentPose, 

playback, recordTrajectory, etc. By creating this interface we can easily add more robots and 

the same commands will be callable for those robots as well - even if they don’t implement 

them.  

ParaphraseDetector 

The paraphrase detector module would take in a string and find another string that best 

represented the most likely sequence of tasks that is parsable using the PLY context free 

grammar. This system, discussed later, is what allowed us to approximate commands. It was 



 

built using a flask web server that we communicated with through the user interface - which 

allowed us to have an always running paraphrase detector server and made it easier for 

development.  

Design 
We designed the system using ROS, robot web tools, and the basic fetch libraries. For each 

command, we require a different set of tools to be designed that will allow us to interact with 

the robot in the desired fashion.  

Voice Recognition 

We set up a server that listens for user commands and then responds by sending the registered                 

sequence of tasks to a command server which will interpret each command dynamically.  

Detection of paraphrases of commands 
Use of the Echo voice interface was made difficult by its inability to accept commands if their 

wording was at all different from how Alexa expected them. Even filler words such as “well…” 

and “umm” would lead to a command’s not being recognized. To alleviate the need for a user 

to remember the exact phrasing of commands, we implemented a paraphrase detection system 

so that the system could understand input which did not exactly match what it expected.  

We initially investigated the possibility of breaking up command sentences into individual 

words and allowing flexible user vocabulary at the word level. We discovered, however, that 

word-level synonym detection presented unnecessary difficulties. For example, a user may say 

several words which together have a meaning similar to the expected one word command, but 

attempts to discover this focusing on the word level may not succeed. We determined that a 

more robust approach was to deal with entire command sentences.  

Determining whether two sentences have similar meaning is not a trivial problem. Fortunately, 

we were able to make use of some recent progress made in the field. A team at the University 

of Toronto (Kiros et al 2105) created an algorithm to embed sentences in a high dimensional 

vector space by training a recurrent neural network to learn how to represent sentences in such 

a way as to maximize its ability to output the sentences which preceded and followed the given 

sentence. Two sentences with similar meaning will be mapped to similar places in vector space 

because their context sentences (those before and after it) would be expected to be similar.  

In order to learn to map sentences to a meaningful vector space, a large amount of training 

data and training time is required. Kiros et al used the BookCorpus dataset (Zhu et al 2015) 

which contains 74 million sentences in unpublished novels. In many ways this is not an ideal 

dataset; sentences in novels are unlikely to closely match our robot task-oriented commands. 

However, the sheer number of the training sentences means that the approach generalizes well 



 

even to sentences not necessarily found in the training set. However, the less than ideal corpus 

used in training means that a more command- and robot-task- oriented training set could lead 

to better understanding paraphrases of commands than our current system. 

We initially divide up the possible commands which can be given by the user into three types:  

• Pose commands (e.g. “move hand to “ X) 

• Object commands (e.g. “grasp object “ X) 

• Place commands (e.g. “go to “ X) 

We have the option of beginning a session with a user with some of these command sentences 
already in place (e.g. “grasp object apple”). This could be useful if the robot operates in an 

already defined environment with known objects. Whether or not that is the case, we can then 

add to those sentences as a result of user interaction. For example, a user might show an object 

to the robot and say: “Define object mug.” We will parse this command and add “mug” to the 

database of objects, along with its associated commands. When a new object such as this is first 

introduced, we compute the sentence vector representations for all possible commands that 

can involve that object, for example “place object mug” and “grasp object mug.” We use the 

model by Kiros et al to output the vector representation of the sentence. We find this vector at 

the time an object is introduced, which takes a small amount of time, because to wait until we 

search for a paraphrase could lead to a long delay if these vectors were not precomputed. In 

addition to the three types of command sentences mentioned above, we allow the user to 

introduce an entirely new command of a different type. In such cases we map the entire 

command sentence to vector space without trying to break it down into smaller elements. 

Then, when a user later says a command, that command is sent to the paraphrase detection 

algorithm system. It then: 

1. Maps the new command into the vector space of the known commands 

2. Computes the cosine distance between the new command and all known commands 

3. Returns the known command closest in vector space to the user’s utterance 

Cosine distance is the most commonly used metric in natural language processing  applications 
involving the distance between two representational vectors (Coccaro and Jurafsky, 1998). We 

experimented with other distance metrics (e.g. cartesian distance) and found no improvement 

in subjective measures of paraphrase accuracy for the limited number of command sentences 

in our repertoire.  

This system helps when a user may say something different than the list of commands  that are 
expected. It can also help if Alexa misunderstands a word - if it is only one word in a longer 

utterance, it is possible that the whole sentence will still be mapped to its correct expect 

command. For example, if Alexa misunderstood “enact pose home” as “enact poise home”, it is 



 

likely that this would be mapped to a location near the correct command. However, the system 

does have its limitations. Because the training set was such a different domain from our use 

case, sentences which would be quite similar from the perspective of the original corpus could 

have quite different meanings within our narrowly focused space. We have found that this can 

be addressed by slightly increasing the number of core, built-in commands that are known. This 

gives the paraphrase detection system more vectors in the sentence vector space and increases 

the chances that fine-grain differences between commands will be respected. 

 

Object Recognition 

We are currently using marching cubes based on the partial point cloud of the object to 

recognize the object. After getting the partial mesh of the object, we load it into Graspit! to 

plan grasps. This method is easy to use but can generate grasps with good qualities for simple 

objects. 

We plan to add a pipeline which enable users to pick up an object and show this object to the 

camera of the robot. Then the object recognition system and remember this specific object 

mesh and add this mesh into the database by subtracting the point cloud of human hands. The 

system could benefit from additional research in grasping objects out of a person’s hand by 

subtracting the point cloud of the person’s hand when initially learning the object, however we 

intend to implement this kind of system at a later date. For now, we can generate a completed 

3D object mesh using the code base provided by this paper .  Users can rotate the object in 
1

front of the camera, and an sensor fusion algorithm will be applied on point clouds generated 

from different viewpoints. By using color detection, the human hand can be detected easily. 

Evenmore, we can detect where is the contact location of different fingers on the bottle by 

applying kd tree detection on two pieces of the point cloud (human hand point cloud and 

object point cloud).  By far, we have all these functions up and running. However, there is a big 

limitation of this method: it takes about 20 mins to generate a 3D complete mesh. Thus, we 

may consider to use the partial mesh directly. We do not integrate this part into our system for 

now because of limitation of time. 

The major benefits to such a system is that a user does not really have to be aware of the 

system or how it is storing the object meshes in order to recognize the object later. Novel 

objects can be directly added into our database, so that Graspit! can plan grasps based on this 

generated mesh. 

We also attempted to fit an object-detection algorithm into our system, but ultimately did not 

finish integrating it with ROS in time. When completed, it will allow for the detection and 

1 Lending A Hand: Detecting Hands and Recognizing Activities in Complex Egocentric Interactions 



 

naming of objects in the robot’s field of view. 

 

Figure 5 Hand segmentation example where they were able to color the hand in the scene  

Robot Interface 

We want this system to be as flexible and universal as possible. In an effort to do this we will be 

utilizing a fixed interface that each robot will need to implement. Which robot is currently 

interacting with the system will depend on the startup scheme, however for the purposes of 

this paper we will be implementing solely for the Fetch. If we have time we will then look at 

implementing this for the Mico.  

Movement Interface 
This interface is only relevant for the Fetch. The movement of the Fetch uses SLAM and is 

incredibly easy to use. We wrote an interface that allows us to acquire the current position and 

go to a position defined previously. When users drive the robot to different locations, robot can 

also remember the name of the location by using the word provided by users through speech 

recognition system. Later, through the name saved before, robot can go to specified location 

directly. 

Grasping Interface 
We use Graspit! commander to define the grasping interface which will be a simple utilization 

of existing grasp software. We will be using the version that uses shape completion so as to get 

a more accurate grasp on the point cloud in the scene rather than the marching cubes based on 

partial point cloud provided by the depth sensor on the robot. But for now, our current version 

works robust for simple objects and can pick up the object successfully. 



 

Placing Interface  
Users can specify the place location after robot picking up the object successfully. After 

deciding a place location, robot will use Moveit! to plan a arm trajectory to move the arm to 

place location. 

Cartesian Interface  

Previously, there is no code base provided online for Fetch robot to do cartesian 

transformation. Here in this project, we provide a cartesian transform for Fetch with the help of 

Moveit! library. Users can also specify the direction and distance they want the robot end 

effector to move to through speech recognition system. Then, our cartesian interface will take 

in the relative position and orientation and make changes based on current position of end 

effector. However, we currently decide the direction based on the current /approach_tran 

frame. Thus, the end effector might not move to the same direction specified by users. One 

way we will solve this is to change the parent frame of the next end effector as robot /base_link 

instead of the palm. This “global” coordinate system configuration should fix this problem. 

Record and Play-back arm Trajectory Interface 
After sending “start recording ” command line into robot through speech recognition system, 

users can move the robot arm manually to different pose, for instance, closer to an object and 

pick it up. This is realized by adding a gravity compensation on the arm controllers, or all the 

arm controllers are locked up and users cannot move them around manually. The key joint 

values of the arm joints will be recorded into a list as long as they are different from the joint 

values of previous step. With Moveit!, we can send the joint value lists into it and get a set of 

arm trajectories from Movie! 



 

 

Figure 6 Pipelines for the record trajectory and playback commands 

 

 

Task Interface 
The task interface will be a interpreter sitting on the ROS network listening for sequences of 

tasks to be executed. It will control blocking and preempting of the network as well as any 

adjustments that may need to occur. Adjustment mostly affect grasping and posing commands 

so it will need to be able to splice together commands.  

Conclusion & Future Directions 
We have built an extensible platform for users to interact with robots using natural language 

and a web interface. We have addressed the most significant limitation of natural language 

interfaces, i.e. the ability to understand paraphrases of known commands. We have built a 

command parsing framework able to take user input and carry out functions, including 

accepting newly defined user objects and tasks.  

Our system was significantly hobbled by its dependence on the Amazon Echo tool for accepting 

verbal input. The immediate next step to improve the system would be to switch to a better 

functioning application for transcribing spoken commands. 
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Videos 

Pick up pringles: 

https://drive.google.com/open?id=0B6Y-RTOHkfaZbGpQX1NfeEF0S1U 

 

Playback Trajectory: 

https://drive.google.com/open?id=0B6Y-RTOHkfaZRjFuNzNZR0M0TlU 

 

Link to source 
https://github.com/CURG/InteractiveAggregateCommands 

Contribution discussion 
Chad did research and coding on our initial idea that we then determined was too ambitious for 

the class project. He then researched different approaches to semantic similarity detection and 

implemented our paraphrase detection system and its associated server.  

 

Bo designed different robot interfaces and exposed these interfaces as independent 

submodules so that other applications could use them directly. Bo also helped with the 

integration between robot platform and speech system. In addition, he also did research on 

object mesh 3D reconstruction and implement the code base provided by the paper mentioned 

above into our system. 

https://drive.google.com/open?id=0B6Y-RTOHkfaZbGpQX1NfeEF0S1U
https://drive.google.com/open?id=0B6Y-RTOHkfaZRjFuNzNZR0M0TlU
https://github.com/CURG/InteractiveAggregateCommands


 

 

David was responsible for building the frontend of the application - specifically equipping Alexa 

with the necessary functionality to support parsing commands and building a system to pass 

these messages to the robot interface. He also defined the primitive functions and commands 

for the system to use in conjunction with Bo’s available and potential input into the system. 

Finally, the system that takes in raw text from the Alexa controller and converts it into a 

command that could then be executed by the robot interface.  


