
Distributed Vocal Control of Robot Sets

Alan Gou and Jared Greene

E-mail:

Abstract

Using a client-server model, we construct a system that allows multiple users to

control multiple robots using natural language. The robots are able to both respond

to and execute on user requests in individualized manners through the use of API.AI

agents. Through this architecture, vocal interaction can be incorporated into any ROS

node by building a light-weight vocal interaction interpreter, interpreter specific action

id, and intent on API.AI atop our system.

Introduction

The fields of Natural Language Processing (NLP) and cloud-based web infrastructure have

made enormous gains in the past decade. Alongside these advances is the proliferation of

Internet connections for devices and objects from microwaves to toothbrushes to even cars,

such as Tesla’s Model S class of vehicles.

This has spawned a new category called the Internet of Things, which encompasses

connecting everyday devices such as thermostats, loudspeakers, and responsive assistants

such as Amazon’s Alexa and Echo. We believe that as NLP improves, the Internet of Things

trend continues, and as robots become more capable, there will be an ever-greater need to

build applications that can interact with these robots through the Internet.

1



Our Vision

Our long-term vision is a platform that unifies the locally-installed software that powers a

robot with a cloud-based Application Programming Interface (API). This will allow robot-

side developers to develop nodes in ROS that will expose APIs conforming to the standards

specified by the platform so that developers that lack experience with ROS and robot-side

development can build applications that can still interact with them in a meaningful manner.

This platform will abstract away the more involved aspects of NLP, instead providing an

easy way for developers with little or no experience in implementing NLP to define queries,

commands, and build up conversational flows with their robots. In the case of robots that are

connected to the Internet, we can rely on the luxuries of cloud-based infrastructure to offload

NLP processing to machines tailor-made for those tasks, instead of trying to implement it

on a robot that must also implement grasping, movement, localization, and all manner of

truly vital functionality to even have a working robot.

Related Previous Work

There has been extensive work in these areas. Voice control for robotics systems has been

worked on rather extensively.1 Natural language processing for robotic systems has moved

from simplistic keyword parsing and mapping,2 to approaches that utilize more robust nat-

ural language processing.3 These new approaches include context understanding. citeWil-

liams3 In addition, the control of multiple robot systems and the selection of individualized

robots cover many of the same issues addressed in our work. These include selecting in-

dividual robots within a multi-robot system,4 commanding multiple robots through ROS,5

and using natural language for distributed control.6 Important to note is that our system

is not a multi-robot system in the the robots do not necessarily (though could in a future

iteration) have discrete awareness of one another. Commands, in their current form, do not

involve coordination between robots within the system.

2



Additionally, there has been work done and investigation performed on ROS systems

that allow for the easy implementations of systems that include these aspects.7

Implementation Details

Overview

The implementation utilizes a wake-up-word paradigm for the command trigger, a client/server

model for the query transmission, and the publisher/subscriber model already available

through the ROS architecture. The general flow is as follows:

Wake-up phase [Client-side]

The client, which can be runnning on any device and is not a ROS node, loops in a listening

state constantly attempting to locally resolve recorded sound to a dynamic set of keywords.

These keywords map to an (ip address, port number) pairing which is the address of the

server.

Note: Keywords work best when they are 3 syllables or more. For this reason, we used ”fetch

the robot” rather than ”fetch” when deciding on a keyword for demoing fetch functionality.

Wake-word resolution [Client-side]

Upon a successful match, the client resolves the keyword to a subset of robots using its map

of known robots. This often results in one robot, as is the case when a specific name is used,

but can also be a subset of the larger group of robots or the whole group included in the list

of robots that the client possesses. For example, if a client has the following robot dictionary

"’baxter’:(’160.43.23.16’, 8080), ’fetch the robot’: (’160.43.23.24’, 9000) then,

in response to a match on keyword ’everyone’ the client would say "You are commanding

3



the following robots: Baxter, and Fetch the Robot" and proceed to send the fol-

lowing query identically to both servers.

Query resolution [Client-side]

Once the robots in focus are determined, the client enters another listening phase to receive

the query from the user. This phase does not timeout and will continue to listen until it

no longer detects speech. Once this occurs, it sends the sound data to the cloud for sound

recognition. This text is then sent to the ip/port pair for each robot in the previously de-

termined subset.

Note: This Utilizes UDP sockets which do not guarantee transmission. No client-side vali-

dation is performed.

Query resolution [Server-side]

On the ROS system exists a vocal interaction node which acts as the server, constantly

listening on the designated IP/Port for client queries. Upon receipt, the server sends the

plain text to API.AI using its own client-key. This is where the resolution of natural language

to structured data occurs. Using an established client-key which maps to an agent on API.AI,

the query is resolved to a structured JSON format. This client-key structure allows for each

server to have it’s own agent which it queries if this is preferred. Different agents on the

separate server would mean that identical (and potentially simultaneous) queries to two

different servers from a single client would be understood with respect to that specific agents

previously heard requests and established intents. Returned VerbalInput message is then

published to the /verbal request topic.

Mapping the resolved query [Server-side - Publisher]

The returned structured JSON is then mapped to a Spoken Interation/VerbalInput.msg.

Currently, this is an extremely lightweight ROS message:

4



[spoken interaction/Verbal Request.msg]

string timestamp

SocketInfo clientInfo

string phrase

string action id

KeyValue[] parameters

string user id

The a VerbalRequest message is constructed from the API.AI response and published to

the /verbal input ROS topic.

Query to action [Server-side - Subscriber]

Any node that wants to allow for verbal interactions simply has to

1. Create a lightweight verbal interaction interface that

• subscribes to the verbal input topic

• listens for requests that contain an action id which the given node cares about

• parses the parameters included in the request

• maps the requests to functions that should be triggered on receipt

• publish any responses to the /verbal response ROS topic as VerbalResponse

message which will be sent to the original requester

2. If implementing a new action, then the developer may need to create an intent for the

given agent on API.AI and any new entities involved in the requests

5



Responses [Server-side - Publisher]

The publisher also subscribes to the /verbal response ROS topic. Whenever a new message

is public, it sends that message to the client at the port/id indicated in the message

Responses [Client-side]

When started, the client establishes a listening udp socket bound to user-specified address

that it includes in the sent query messages. A separate thread is run which constantly listens

for responses from the server and vocalizes these responses upon receipt.

Processing Textual Queries

We use API.AI to process text queries into a JSON data format that contains detailed

information on the parameters, context, and intent of the query. API.AI lets you define

Intents, Entities, as well as Contexts and follow-up conversations. We will go into Entities

and Intents in more detail. API.AI offers a set of RESTful API endpoints for clients to

use to perform queries on text, create Intents and Entities, as well as a Webhook service to

integrate query requests with third-party tools.

Intents

API.AI lets you define Intents, which are a way of training a machine learning model on

a set of text queries. The user can annotate parts of each query, specifying user-defined

parameters such as location, time, object, etc. An example of a query could be ”Tell me

what the weather is like today.” The user could define an Intent called ”information-request”,

which specifies parameters ”request-type” and ”timeframe”. The user could then annotate

the word ”weather” as the value for the parameter ”request-type” and the word ”today” as

the value for the parameter ”timeframe”. In the resulting JSON that API.AI sends out, it

would contain the parameter names and their values in a key-value map.

6



Entities

Entities are the objects that Intents act on. These parameter types previously specified,

such as ”request-type” and ”timeframe”, are actually something called Entities. They can,

as already seen, be any kind of abstract concept. Furthermore, API.AI lets the user define

synonyms for these entities. This lets developers easily add new objects and abstractions.

Speech to Text

In our proof of concept, we have two phases in which the user interacts with the robot -

Activation and Querying. In these scenarios, the user must speak to the interface, which is

just our computers running a Python client. These spoken interactions must be turned into

text, since API.AI only interacts natively with text.

Activation is the default phase the client is in. The client is listening for keywords. We

use the Pocketsphinx library, built by Carnegie Mellon University, for keyword recognition.

When the client recognizes that a keyword has been said, it moves into the Querying phase.

This set of keywords is defined by the application developer - for our purposes, it is a list of

the names of the robot agents that the client can interact with. For example, saying ”Fetch,

the robot” will be recognized by our client as an attempt to wake up and start interacting

with the robot whose identifier is Fetch. If the user said ”Baxter”, then the client would

recognize that we are trying to interact with Baxter, and adjust the context accordingly.

This context is used in the Querying phase to determine which robot to send the query

to. In the Querying phase, the client listens for users to speak out complete commands.

Depending on which robot was activated in the Activation phase, this query will then be

parsed into text, sent to API.AI, and the result from API.AI will be sent to the vocal interface

node over a Websocket. An example of a command is ”Can you go to coordinates 1, 5?”

7



Conclusion

We were able to wake up our robot, perform voice commands to move, save a location as a

landmark, and make the robot travel back and forth between various landmarks. This was

done on the backbone of our vocal interface nodes and topics, as well as our API.AI account.

The landmark functionality itself was contained purely within the landmark resolution node

that we built. Everything else, from the client to the vocal interface nodes to the web server

node, was in accordance with our vision of a platform that would enable rapid and pain-free

application development.

For example, to add functionality for grasping, a developer would need to do two things.

1. Add the Intents and Entities necessary to turn a natural language text query into

actionable data. If a query takes the form ”Please grab the object in front of you”,

we could define three Entities. First is the action - ”grab”. Second could be the

target, which, in this case, is simply ”object”. Last could be orientation, or

relative-position, which would be the ”in front of you” part. After giving API.AI a

few training examples for the Intents and defining synonyms for these various Entities,

the developer could move on to the second part, which is building the ROS node.

2. Build to ROS node that handles the actionable data JSON that API.AI creates. This

would be a ROS node that reads from the vocal request topic that our vocal interface

node publishes to. If it receives an action that it is compatible with - perhaps they are

identified by a key called action-type - then it will process that action and interact

with the necessary nodes responsible for grasping and visualization.

In this way, we remove the need for the developer to learn all of NLP and handling

Websockets and speech-to-text - they can concentrate solely on their specialty and area of

interest. To move further towards this ideal, we would like to improve the robustness of

the client right now. Ours is a Python interface - however, future applications will likely

be built on smartphones or personal home devices such as Amazon’s Alexa, rather than our

8



computers. If we could provide an API or some form of ready-made solution for building a

client on the most important platforms (iOS and Android, for example), we could further

simplify the lives of developers who want to build on ROS.

References

(1) Byoung-Kyun Shim, K.-w. K. IEEE Std. 1516-2000 2012,

(2) Laengle, T.; Lueth, T. C.; Stopp, E.; Herzog, G.; Kamstrup, G. Intelligent Autonomous

Systems: IAS-4 1995,

(3) Thomason, J.; Zhang, S.; Mooney, R.; Stone, P. Learning to Interpret Natural Lan-

guage Commands Through Human-robot Dialog. Proceedings of the 24th International

Conference on Artificial Intelligence. 2015; pp 1923–1929.

(4) Alex Couture-Beil, R. T. V.; Mori, G. Twenty-Ninth AAAI Conference on Artificial

Intelligence

(5) Remmersmann, T.; Tiderko, A.; Langerwisch, M. Communications and Information Sys-

tems Conference (MCC), 2012 Military 2012,

(6) Remmersmann, T.; Schade, U.; Schlick, C. M. Systems, Man and Cybernetics (SMC),

2014 IEEE International Conference 2014,

(7) Andre, T.; Neuhold, D.; Bettstetter, C. Globecom Workshops (GC Wkshps), 2014 2015,

9


