
PICASSO
Beatrice Liang (bsl2127), Jake Kwon(jk3655), Tonye Brown(tb2553)

Project description
Our goal was to use the PR2 to produce drawings on an arbitrary plane within the reach of the
right arm of a stationary PR2 robot. Our main challenge was to produce an image that is drawn
in a convincing artistic style. Moreover, it must be generalizable to a wide variety of images.
Since we used MoveIt! to manipulate the PR2 by inputting cartesian coordinates, we had to
ensure that we could appropriately convert image points that are two dimensional to three
dimensional points within the bounds of a given piece of paper that is placed within the reach of
the stationary PR2. Finally, we wanted to improve the style of the image by segmenting the
input image into different color channels and allowing the robot to draw using the three primary
colors in the subtractive color model: cyan, magenta, and yellow.

Implementation details
Extracting Lines from an Image
First, we must extract lines from an input image. To do so, we first convert the image to
grayscale, perform Canny Edge Detection to extract edges from the image, and then transform
those edges into lines using the Hough Line Transform. An example of the result can be seen
below in Fig 1.

Fig 1. Original Pipeline
Original Image Grayscale Canny Edge Detection Hough Line Transform

Unfortunately when we try to use the same pipeline for other images besides the apple,
especially images with more complexity, the resulting line drawing was not recognizable. This
is particularly noticeable in Fig 2, for the image of the PR2 in a party hat. While there are
enough lines to represent the apple, there are too few lines to represent the PR2 in a party hat.
We also tried tuning the parameters to allow for more lines in the line drawing. However, it was
difficult to extract a meaningful image with a minimal number of line segments. We decided to
extract contours for the image instead, and the result was more representative of each of the
image we extracted lines from.

Fig 2. Comparing Canny Edge Detection
Original Image Canny Edge Detection Larger max distance between points Contours

In choosing to use contours instead of edges, we had to add another step to the pipeline.
Contours are curves that join continuous points along the boundary of an object which have the
same color or intensity. We want the contours of the image to be drawn, so after converting the
image to grayscale, we threshold the grayscale image to achieve a binary image. On this binary
image, we can find the contours of the image to be drawn. Additional preprocessing before
thresholding, such as changing the contrast or brightness, can be applied depending on the
artistic direction.

Fig 3. Final Line Extraction Pipeline
Grayscale Threshold Contour Hough Line Transform

Image Segmentation by Color
Next, we want to segment the image into three primary colors of a subtractive color model: cyan,
magenta, and yellow. We want the primary colors of the subtractive model, because we are
drawing using ink on a piece of paper, much like a printer. Computer images use the additive
model, since each pixel is a set of lights. As such, we need to convert the RGB channels to CMY
channels.

, , yan c = 1 − red
255 ellow 1y = − 255

green agenta 1m = − 255
blue

We create separate images for each color channel and extract lines from them using the method
outlined in the previous section. When the PR2 draws the lines, the three images are
superimposed to create the full drawing.

Fig 4.
Yellow(Y) Channel Y Thresholded Y Contour Y Hough Line Transform

Magenta(M) Channel M Thresholded M Contour M Hough Line Transform

Cyan(C) Channel C Thresholded C Contour C Hough Line Transform

Note: Some color channels appear very faint before thresholding.

Drawing Path
We want to minimize the time spent drawing this image, so we should draw the lines in order of
how close the next line is to the current line. We choose an arbitrary first line and then find an
undrawn line with the closest midpoint to the current line’s midpoint and draw that line. Next,
we find the an undrawn line with the closest midpoint to the current line and continue until all
lines have been drawn.

Transforming the 2D Image onto a Given Plane
One of the most challenging components of this project for us was to determine how to draw on
an arbitrary plane within reach of the stationary PR2. We accomplished this by putting the PR2
in mannequin mode, so that we can manipulate the robot by hand. We then place the end
effector on the top left (point a), bottom left (point b), and bottom right (point c) corners of plane
we want to draw on.
First, we scale the image by , so that the image stays within the bounds ofmin(||c−b||,||a−b||)

max(image , image)w l

defined plane. Although we had originally planned on doing a projective transformation we
decided that given the images we would be feeding in an orthographic projection suited our
needs well so we used the scaling method.
Next, from the collected points, we can construct a rotation matrix as follows:

, , i = c−b
||c−b|| j = a−b

||a−b|| k = i × j ⇒ otationMatrix r = i j k []
where:

 is the unit vector along the -axis composed of the bottom left and bottom right points,i x
is the unit vector along the -axis composed of the top left and bottom left points, andj y
is the unit vector along the -axis, the normal to the planek z

We rotate the input image, which is a matrix of points, by multiplying the input image matrix by
the rotation matrix.

otatedMatrix nputImage otationMatrixr = i · r
After rotating the matrix, we need to translate the image from the origin of the PR2 to the plane
by adding the origin of the plane to each column of the rotated matrix.

inal rotatedMatrix b ... b]f = + [
We then add the final transformed image points to a list of waypoints that the MoveIt! cartesian
path planner must plan a path through. MoveIt! then uses Inverse Kinematics to solve for joint
angles such that the end effector moves through the waypoints and it returns which percentage of
the waypoints are reached in the resulting path. As the plane is already within the robot’s reach
with a set end effector orientation and the waypoints are fed in by nearest neighbor, if the
coordinate system is correct, we get 100% reachable.

Robot Pipeline

First, we open the right gripper, give the PR2 the yellow brush pen, and close the gripper. We
close the gripper and place the PR2 into mannequin mode. In mannequin mode, we move the
arms to touch three corners of the paper(top left, bottom left, and bottom right) the robot will
draw on. Next, we exit mannequin mode and have the robot draw the yellow lines. After the
robot completes drawing the yellow lines, we release the pen, give the PR2 the magenta pen, and
close the gripper. The robot then draws the magenta lines. We repeat the same process for cyan.
Results
Without lifting the pen, without colors, using Canny Edge Detection
https://youtu.be/HkANLR1iUf8

Lifting pen, without colors, using Canny Edge Detection
https://youtu.be/TpESsMnF3bc

Lifting pen, with colors, using Contours
https://www.youtube.com/watch?v=y2d0L4QZN1o

Lifting pen, with colors, using Contours
https://www.youtube.com/watch?v=OvfEbuyI69I

https://youtu.be/TpESsMnF3bc
https://www.youtube.com/watch?v=OvfEbuyI69I
https://www.youtube.com/watch?v=y2d0L4QZN1o
https://youtu.be/HkANLR1iUf8

Lifting pen, with colors, using Contours, allow for shorter lines
https://www.youtube.com/watch?v=5LxJoHq1EQQ

Lifting pen, with colors, using Contours, allowing for even shorter lines
https://www.youtube.com/watch?v=hyQL34nPw84

https://www.youtube.com/watch?v=5LxJoHq1EQQ
https://www.youtube.com/watch?v=hyQL34nPw84

Division of labor
While each of us contributed to every aspect of the project, we divided the work so that Beatrice
was in charge of image processing, namely converting a given image into three series of line
segments in three dimensional space. Jake and Tonye largely focused on moving from simulation
space to the real world and manipulating PR2 to produce straight lines onto mounted paper. They
accomplished this by creating a method to extract the plane on which the robot draws and to
ensure that the coordinate systems were aligned.

Related previous work
We used work from the following papers to get a sense of possible challenges while developing
our methods.

Calinon, S., Epiney, J., & Billard, A. (2005, December). A humanoid robot drawing human
portraits. In Humanoid Robots, 2005 5th IEEE-RAS International Conference on (pp. 161-166).
IEEE.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1573562

Agarwal, S., Rawat, S. S., & Sumathi, V. (2014, February). A drawing robotic hand based on
inverse kinematics. In Information Communication and Embedded Systems (ICICES), 2014
International Conference on (pp. 1-5). IEEE.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7034005

Chang, H. H., & Yan, H. (1998). Vectorization of hand-drawn image using piecewise cubic
Bezier curves fitting. Pattern recognition, 31(11), 1747-1755.
http://www.sciencedirect.com/science/article/pii/S0031320398000454

Aguilar, C., & Lipson, H. (2008, December). A robotic system for interpreting images into
painted artwork. In International conference on generative art (Vol. 11).
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.531.8792&rep=rep1&type=pdf

Tresset, P., & Leymarie, F. F. (2013). Portrait drawing by Paul the robot. Computers &
Graphics, 37(5), 348-363.
http://doc.gold.ac.uk/~ma701pt/patricktresset/wp-content/uploads/2015/03/computerandgraphics
tresset.pdf

Lau M., Baltes J. , Anderson J. & Durocher S. (2012). A Portrait Drawing Robot Using a
Geometric Graph Approach: Furthest Neighbour Theta-Graphs. In International Conference on
Advanced Intelligent Mechatronics (AIM). IEEE.
http://www.cs.umanitoba.ca/~durocher/research/pubs/lbadAIM2012.pdf

http://www.sciencedirect.com/science/article/pii/S0031320398000454
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.531.8792&rep=rep1&type=pdf
http://www.cs.umanitoba.ca/~durocher/research/pubs/lbadAIM2012.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1573562
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7034005
http://doc.gold.ac.uk/~ma701pt/patricktresset/wp-content/uploads/2015/03/computerandgraphicstresset.pdf
http://doc.gold.ac.uk/~ma701pt/patricktresset/wp-content/uploads/2015/03/computerandgraphicstresset.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6257544
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6257544

