
1

DOBBY: A Desk Organizing Bot BassicallY
Aayush Mudgal

Columbia University
New York, NY, 10027
am4590@columbia.edu

Mehul Kumar
Columbia University
New York, NY, 10027
mk3916@columbia.edu

F

Abstract—Humans are remarkably competent at processing cluttered
spaces. Usually, once we have identified an object in the clutter, we
use our arms and fingers to pick, grasp, push, slide, stack, etc, i.e. to
manipulate the object in 3D space. In this paper, we introduce Dobby
- our conceptualization of an object arrangement bot. It can identify
and arrange work-spaces to reduce clutter. Our approach is extensively
focused on integrating vision with grasping, utilizing mobility if available.
For the same, we have adapted algorithms and developed our own
heuristics to get to the final requirement. We also provide a survey of
tools used.

Keywords - Humanoid; Robots; Motion Planning;
Grasp planning; Computer Vision; Move-It; Fetch; ROS;

1 INTRODUCTION

Dobby 1 - a desk organizing bot basically, is a robot that
clears work-spaces. In particular, our goal is to create
an autonomous machine that can evaluate a scene and
reduce clutter. This entity is built on top of existing
frameworks like Moveit [SC13], Graspit [MA04] and
agile grasping [Gua+16] that allows basic functionality
required to work on a robot without dealing with all the
complex structure and planning problems. We have also
designed and described the algorithms for clearing the
work-space. For demonstration purposes, we use Fetch
[RBH15] as our Dobby model.

We decided to go for a breadth-first approach that
allowed us to explore, understand and use numerous
supporting libraries and packages. The task to reduce
clutter is mechanical enough for an autonomous robot
to achieve without assistance or training, while broad
enough to fully use capabilities of industrial robots

1. Link to GitHub Repository

available today. A lot of the support programs are written
as separate packages. Using these open source libraries,
we built a program for a fetch robot to autonomously
see, find and move objects in a 2D space as per strategies
for packing the work-space. Since we use a fetch robot
[RBH15], our code is grasp oriented and optimized for a
mobile base with high (seven) degrees-of-freedom and at
least one robotic arm.

The basic outline of the current project covers the
following topics

• Identify objects in the work-space
• Plan movement of graspable objects into a compact

space
• Clean up the working space using different algo-

rithms

Figure 1. Task Progression for organizing a 2D-space autonomously

https://github.com/aayushmudgal/dobby

2

The concept itself is a lot more flexible and broader
than the scope of a course project, we propose the follow-
ing ideas as addendum to our work.

• Organizing 3D spaces
Going beyond 2D work-spaces will require more
efficient algorithms as the degrees of freedom in-
crease exponentially with dimensions of search
space. But the generality of the concepts allows
constraints to be mapped to a larger space using
statistical optimization and filtering techniques,
which are being developed now [3d].

• Transform objects
Stack, rotate, transform objects for improved pack-
ing in 3 or less dimensions.

• Irregular / connected objects
Better vision algorithms and sophisticated choice
of camera angle and location can help us distin-
guish and/or change grasps to handle such a case

• Feedback from vision cues
Vision could help in providing a feedback in case
of failed grasps

2 RELATED PREVIOUS WORK

Though lot of work has been done in the field of object de-
tection [Ren+15], and grasping [MA04], and manipula-
tion [Dis+01], [DWB06]. There has recently been a surge
of interest in the field of autonomous grasping [Amo+14].
On detailed discussions with Iretiayo Akinola 2, we came
up with this proposal of autonomously grasping objects to
clear the clutter in a domestic work-space. This involved
using existing algorithms for object detection, grasping
and manipulation in a modified manner so as to full fill
the task of better work-space arrangement. We found that
this application of a humanoid robot is quite interesting,
as everyone faces the issue of cluttered work-spaces, and
having a robot to autonomously help with that is very
motivating.

3 PERCEPTION OF WORK-SPACE

This involves finding the boundaries of the work-space
i.e. the area where the objects are placed, and also iden-
tifying the objects in the work-space. We utilize a simple
hough transformed based line segment finding algorithm
[DH72] to find the rectangular boundaries of the table,
using the image captured by the head camera of the robot.
This can be further extend it to more complex ways of
finding the work-space based on the RGB-D images of
the scene. To identify the objects on the work-space, we
perform image segmentation on the parts of the image
that lies within the boundaries of the table.

2. LinkedIn Profile: Iretiayo Akinola

4 DESK ORGANIZING BOT

Dobby is a desk organizing bot. In this proof of concept,
we programmed a Fetch robot in a simulator to analyze
and arrange a 2D space autonomously. In the present
setting the work-spaces consists of a table, and the objects
are randomly placed on the table. The aim of the packing
algorithm is to increase the amount of free space. Or in
other words, the packing algorithms minimizes the total
area surrounding all the objects. This could also be viewed
as minimizing the area enclosed by a rubber released from
infinity which capsulates the work-space. Following is the
detailed discussion of the workflow, divided into namely
the algorithms for packing.

4.1 Packing Algorithms

These algorithms and heuristics are a subset of solutions
to ’Bin-packing’ [KV12] and ’Knapsack problem’. We have
focused on algorithms that require low computation and
depend on information about the work-spaces. Such algo-
rithms fit the bill for robots since a robot can gather huge
amount of information using its sensors. This approach is
different from using increasingly computation intensive
learning methods.

• Randomized 2-bin algorithm
In this algorithm, we pick a random object and
try to place it to the designated region of interest.
This region of interest is initially an area the size
of the largest object in the work-spaces, with some
tolerance factor to handle error and uncertainty in
measurement. As objects are added, the region is
updated. We discovered that stacking of simple
objects (cubes) is easier than we expected, as it
only requires to adjust the height from which the
grasped object should be dropped, taking care it is
never too high, otherwise the cube would topple
off.

• Greedy algorithm
Greedy algorithm is the same In this algorithm,
we pick a random object and try to place it to
the designated region of interest. This region of
interest is initially an area the size of the largest
object in the work-spaces, with some tolerance
factor added in practice. As objects are added,
the region is updated. We discovered that stacking
objects is easier in practice than we expected, only
requiring us to toggle the z-coordinate in region of
interest, taking care it is never too high.

4.2 Dobby Workflow

This section describes the work-flow of the program i.e.
the sequence of instructions and modular actions that
form the desk arrangement solution. This

https://www.linkedin.com/in/ireti-akinola-a9957517/?ppe=1

3

Result: output : Object to be grasped
objs : List of objects and positions
returned by vision processor
roi : Region of interest i.e. the part
of work-spaces left to arrange

objs, roi = input;
output = [];
if !objs.isEmpty() then

o = random object(objs);
if o.grasps() 6= None then

output = o.grasps[0];
end
else

updated obj = obj.remove(o);
output =
Randomized 2bin partition(updated obj);

end
end
return output;

Algorithm 1: Randomized 2 Bin Partition

Result: output : Object to be grasped
objs : List of objects and positions
returned by vision processor
roi : Region of interest ie the part
of work-spaces left to arrange

objs, roi = input;
output = [];
if !objs.isEmpty() then

o = largest movable object(objs);
if o.grasps() 6= None then

output = o.grasps[0];
end
else

updated obj = obj.remove(o);
output =
Randomized 2bin partition(updated obj);

end
end
return output;

Algorithm 2: Greedy Algorithm

• Build a map with gazebo
This requires looking around the surroundings
and creating a depth map based on head camera
input. Motion planning is a well studied prob-
lem and we use PlanningPlaceInterface and poses
from moveit python package for mapping the
surroundings. This phase is crucial in real world
example, but has been removed from the demo.
For the sake of clarity of goal, we start with a table
in an empty environment with clutter, which we
designed and then manipulated in gazebo simula-

tor.
• Initialize Dobby

Initialization involves two major steps. The First is
loading the robot model. Improving these models
corresponds directly to robot performance. Next
is calibration. Although calibration is tightly cou-
pled with robot model, calibrate robot command
in fetch ros packages allows correcting errors in
frames and transforms caused by accumulation
of errors or the randomness involved in a high
degrees-of-freedom setting. Calibration is also sug-
gested in cases where robot runs into non-fatal
errors.

• Setup Clients
A lot of components need to be initialized before
the robot/simulation can work. ROS packages pro-
vide the underlying functionality for most chal-
lenges involved. The packaged used are listed and
described below

– rospy
– moveit
– video stream opencv
– graspit
– agile

In a physical environment like the robotics
lab, we can use the tools from the Humanoid
Robotics course, specifically HW1. Using the
fetch navigation package and SLAM, we can load
the map of the region and run the simulation in
real world setting. However, the navigation has
not been tested extensively, hence not included in
the demo.

– MoveBaseClient()
– FollowTrajectoryClient(”torso controller”,

[”torso lift joint”])
– PointHeadClient()
– GraspingClient(
– CameraClient(”/head camera/rgb/image raw”)

• Take position
Based on the position of the table, move the robot
and initialize the robot

• Assess work-spaces
Identify objects through the pointcloud returned
by camera sensors. Create object queue with orig-
inal and target location. Choose an algorithm for
packing, by default set to randomized. Pass object
queue to the algorithm

• Figure out grasp
Once we know the object of interest, the ob-
ject properties and the grasps are passed to the
Moveit’s Pickplace Interface. The robot tries to
pick the object. It is not always necessary that
the Pickplace interface would return in a success.

'https://github.com/HumanoidRobotics/HW1/blob/master/part1.md'

4

Thus, for error handling in this case, state of the
robot is reset (if it fails 3 times) by tucking its arms
and repeating the steps again. The object and the
and grasps are passed to the Moveit grasp planner.
Let the robot try to pick the object.

• Place object
Use the region of proposal defined by the algo-
rithm to select a place. Usually, it would be next to
previous objects, with a tolerance gap between the
objects. If stacking is allowed, the neighborhood
can also be z-dimension, i.e. objects on top of
previously placed objects.

• Update the work-space
Update the region of interest. If stacking isn’t al-
lowed, unmark area already used.

• Repeat until clean
Until all the objects lie inside the region, reassess
the workspace and repeat previous three steps, in
order.

• Error handling
Since the agile planner [??] is stochastic and still
under work, it has bugs that cause it to collide or
miss the grasp. We faced numerous such issues
while debugging. The robot has safety measures
built-in which can also be triggered through rospy.
After slight brushes or operating for a long time,
the robot can be recalibrated, given it hasn’t shut-
down on unexpected events. If the system reports
that there are no objects in the scene, the first step
that is taken is to tuck the robots arms, and slightly
change the field of view. This helps at times the
robot’s arms themselves occludes its view.

• Know your limits Identify if the space is unman-
ageable. This includes objects beyond capability,
too small or too large

•

4.3 Tools Used

We use

4.3.1 ROS Framework

ROS [Qui+09] - Robot Operating System is an adaptable
framework for writing robot software. This is, to some
level, an analogue to android for mobile devices. Since
the robots have much diverse structures and features,
flexibility and scalability are major requirements. The ROS
packages used in the project are described briefly here, to
put the complexity into context.

• Gazebo
• MoveIt
• Tele-op
• fetch ros This is the parent package that provides

most functionality for the Fetch robot using ROS.

This includes the calibration, kinematics and other
fundamental functionality.

• AGILE grasp
• RVIZ interface

4.3.2 video stream opencv
4.3.3 Vision
Detected lines using filters and opencv in python De-
tected objects in a scene using opencv in python

4.3.4 Moveit
[SC13] MoveIt! is the state of the art software for mobile

manipulation, as it incorporates the latest advances in
motion planning and manipulation

5 CONCLUSIONS

5.1 Results

We tested our methods and algorithms against simple
work-spaces. We limited the objects on the table to be
simple cubes that are not very difficult to grasp. The
work-space of the robot is limited to a table. In our
experiments the objects in the work-space are assumed to
be within the reach of the robot. We also enforce that the
robot moves or tries to move only those object for which
it thinks that it can move. In other words objects that are
beyond the capacity of our robot, are left untouched by it
as shown in Figure [2]

Figure 2. Cleaning work-space by moving graspable objects to one side

We were also able to stack cubes one over the another
3. This involved figuring out the empty place where we
wish to stack the objects. However because of the nature
of objects and also due to error propagation while placing
the objects, we could only reach to a height of 3 cubes at
a time. The Figure [3] shows the initial state of the work-
space, and the final state of the work-space after stacking
cube one over the other. We observe that we are not able
to stack very large number of cubes, due to the errors that
that crept in due to the motion.

3. A video demonstration of the same is available at YouTube
Video

https://www.youtube.com/watch?v=26aMaNX3Das
https://www.youtube.com/watch?v=26aMaNX3Das

REFERENCES 5

Figure 3. Stacking cubes one over the other

5.2 Future Work and Challenges Faced

In this section, we briefly describe the extensions and
additions to this project. Given the capabilities and avail-
able code, a much complex application can be designed.
We’ll mention some suggestions that we wish to do in
the future. The current system at times does not work
as desired (or repeat itself) because of the probabilistic
nature of path planning and grasping. This suggests that
we should have a more constrained path planning opera-
tion, such that it minimizes the error due to path planning
operation. Following are the list of ideas that we wish to
work and improve upon.

• Complex Work-spaces
Going to inaccessible and hazardous locations is
where robots shine the most. Our design works for
a small space, but for a more thorough and larger
space will require caching and planning on objects
not necessarily in the visual field. Adapting other
computer vision techniques for more information
is also relevant.

• Improved Grasp Planner
Our current grasp planner is one of the publicly
available ROS packages, and is highly randomized
(probabilistic) and sometimes leads to collisions
or missed grasps. Additional constraints to restrict
certain risky movements, like error handling, up-
dated pick and place code for accidentally fallen
objects, etc, can be a fruitful pursuit.

• Add heuristics / algorithms for efficient packing
We are currently using randomized and greedy ar-
rangement algorithms. Preferably, there should be
many such schemes available to a robot, which can
then choose which fits it and the task better. For
example, we can have an algorithms that results in
minimum motion of the robotic hand, one which
optimizes over the time taken for packing

• Move around for better grasp planning
In the current setting the work-space of the robot
is limited to the objects that are withing its reach.
However this might not be the case when the

work-space our huge. Thus we plan to have a
systematic plan of the work-space first. Based on
which it could plan the desired arrangement of
the space. And could thus incrementally clear the
work-space, by moving across the boundaries of
the work-space

• Transform, rotate objects
In the present system, the object were symmetric in
the dimensions, hence any type of rotation of the
object would result in the same update. However
many day to day objects are not symmetric across
all dimensions, thus for a better usage of the work-
space area, such an object must be placed in an
orientation where it is stable, and occupies the least
area of the work-space

• Integrating Vision for Error Recovery
Vision cues could also aid in identifying failed
grasps, and thus could save time attempting to
place failed grasps. This could be easily incorpo-
rated by threshold over the distance between the
robot’s fingers. The idea here is that the fingers of
the robot would be nearly touching each other

ACKNOWLEDGEMENTS

We would like to thank Prof. Peter Allen for
their encouragement, guidance, and teaching. We
would also like to thank Iretiayo Akinola and
Boyuan Chen for being always available at all time
for help and guidance. Without their support, this
project would not have been possible.

CONTRIBUTIONS

• Aayush Mudgal [am4590]
: Responsible for the design and control of Dobby
in gazebo. Formulated the code for work-space
perception, grasping and placement of objects in
the work-space based on the choice algorithm for
packing. Contributed towards write-up.

• Mehul Kumar [mk3916]
: Looked at ROS and the various packages and
their integration. Contributed towards the write-
up.

REFERENCES

[Amo+14] Heni Ben Amor et al. “Special issue on au-
tonomous grasping and manipulation”. In:
Auton. Robots 36 (2014), pp. 1–3.

[DH72] Richard O Duda and Peter E Hart. “Use of
the Hough transformation to detect lines and
curves in pictures”. In: Communications of the
ACM 15.1 (1972), pp. 11–15.

6

[Dis+01] MWM Gamini Dissanayake et al. “A solution
to the simultaneous localization and map
building (SLAM) problem”. In: IEEE Trans-
actions on robotics and automation 17.3 (2001),
pp. 229–241.

[DWB06] Hugh Durrant-Whyte and Tim Bailey. “Si-
multaneous localization and mapping: part
I”. In: IEEE robotics & automation magazine 13.2
(2006), pp. 99–110.

[Gua+16] Marcus Gualtieri et al. High precision grasp
pose detection in dense clutter. 2016. eprint:
arXiv:1603.01564.

[KV12] Bernhard Korte and Jens Vygen. “Bin-
Packing”. In: Kombinatorische Optimierung.
Springer, 2012, pp. 499–516.

[MA04] Andrew T Miller and Peter K Allen. “Graspit!
a versatile simulator for robotic grasping”.
In: IEEE Robotics & Automation Magazine 11.4
(2004), pp. 110–122.

[Qui+09] Morgan Quigley et al. “ROS: an open-source
Robot Operating System”. In: ICRA workshop
on open source software. Vol. 3. 3.2. Kobe. 2009,
p. 5.

[RBH15] Máximo A Roa, Dmitry Berenson, and
Wes Huang. “Mobile manipulation: toward
smart manufacturing [tc spotlight]”. In: IEEE
Robotics & Automation Magazine 22.4 (2015),
pp. 14–15.

[Ren+15] Shaoqing Ren et al. “Faster r-cnn: Towards
real-time object detection with region pro-
posal networks”. In: Advances in neural infor-
mation processing systems. 2015, pp. 91–99.

[SC13] Ioan A Sucan and Sachin Chitta. “Moveit!”
In: Online at http://moveit. ros. org (2013).

arXiv:1603.01564

