COMS W4995 Applied Machine Learning Spring 2019 - Schedule

Press P on slides for presenter notes (or add #p1 to the url if you’re on mobile or click on ).

# Date Topic Reading Comments
1 Wed 01/23/19 Introduction   IMLP Ch 1, APM Ch 1-2
2 Mon 01/28/19 git, GitHub and testing   Git - the simple guide, git for ages 4 and up HW 1 posted
3
Wed 01/30/19 matplotlib and visualization   Fundamentals of Data Visualization, Systematising Glyph Design for Visualization (Chapter 2)
4 Mon 02/04/19 Introduction to supervised learning   IMLP Ch2.1-2.3.2, APM Ch 4-4.3, IMLP Ch 5.1, 5.2, APM Ch 4.4-4.8
5
Wed 02/06/19 Preprocessing   IMLP Ch 3.3, IMLP Ch 4.1-4.6, APM Ch 3, HW 1 due, HW 2 posted
6 Mon 02/11/19 Linear models for Regression   IMLP p45-68, APM Ch 6
7 Wed 02/13/19 Linear models for Classification, SVMs  
8 Mon 02/18/19 Trees, Forests & Ensembles   IMLP 2.3.5, 2.3.6, APM Ch 14.1-14.4
9
Wed 02/20/19 Gradient Boosting, Calibration   IMLP 2.3.6, APM Ch 14.5 HW 2 due
10 Mon 02/25/19 Model Evaluation   IMLP 5.3, APM Ch 16 HW 3 posted
Wed 02/27/19 No class 
11 Mon 03/04/19 Learning with Imbalanced Data   APM Ch16, SMOTE, Easy Ensembles
12 Wed 03/06/19 Model Interpretration and Feature Selection   Interpretable Machine Learning, Beware Default Random Forest Importances
13 Mon 03/11/19 Parameter tuning and Automatic Machine Learning   AutoML book (chapter 1 gives a great intro), NeurIPS tutorial video

Wed 03/13/19 Midterm

Mon 03/18/19 Spring break


Wed 03/20/19 Spring break

14 Mon 03/25/19 Dimensionality Reduction   IMLP Ch 3.4.1, 3.4.3, APM p35-40
15 Wed 03/27/19 Clustering and mixture models   IMLP 3.5 HW 3 due
16 Mon 04/01/19 NMF and Outlier Detection   IMLP 3.4.2
17 Wed 04/03/19 Working with text data   IMLP Ch 7.1-7.8
18 Mon 04/08/19 Topic models for text data   IMLP Ch 7.9, Tim Hopper, Understanding Topic Models HW 4 posted
19 Wed 04/10/19 Word and document embeddings Mikolov 2013a, Mikolov 2013b, gensim word2vec
20 Mon 04/15/19 Neural Networks IMLP Ch 2.3.8, DL Ch 6, Ch 7.8
21 Wed 04/17/19 Keras and Convolutional Neural Nets DL Ch 7.12, Ch 9, keras docs, Stanford CNN course notes, Module 2, Feature Visualization HW 4 due, HW 5 posted
22 Mon 04/22/19 Advanced Neural Networks
23 Wed 04/24/19 Time series data  
24 Mon 04/29/19 Summary and Recap  
25 Wed 05/01/19 Recommender systems taught by Nicolas Hug  
HW 5 due
Mon 05/06/19 Second Exam


IMLP: Mueller, Guido - Introduction to machine learning with python
APM: Kuhn, Johnson - Applied predictive modeling
DL: Goodfellow, Bengio, Courville - Deep Learning