
Self-maintained Folder Hierarchies as Document Repositories

Johann Eder, Alexander Krumpholz Alexandros Biliris, Euthimios Panagos∗

Department of Informatics Systems AT&T Labs Research
University of Klagenfurt, Austria Florham Park, NJ, USA

{eder, krumpholz}@isys.uni-klu.ac.at {biliris, thimios}@research.att.com

Abstract

This paper presents a novel approach for the manage-
ment of large collections of electronic documents. The ma-
jor technical contribution of our approach is the seamless
integration of features found in systems such as file sys-
tems, document repositories, directory services, classifi-
cation hierarchies, and email folders into a single folder-
based system. The user may specify a rules for character-
izing interesting or relevant document classes. Based on
these rules which are checked for consistency, folder are
not only populated with documents, but folders themselves
are created and deleted based on the occurrence of values
in documents.

1 Introduction

The proliferation of the Internet has created strong in-
terest in the management of large collections of electronic
documents. Today, the number of documents that are cre-
ated, stored, and managed (in file systems, directories,
databases, messaging systems, etc.) is growing at an ex-
ponential rate. Although existing document filing and re-
trieval systems have their relative merits, they are either
very rigid or they do not provide adequate management
capabilities. Therefore, the need for powerful and easy to
use document filing and retrieval systems is imperative.

File systems are very easy to use and allow users to se-
lect where and how to store documents. However, it is dif-
ficult to maintain a proper structure and, thus, manual op-
erations are required to a great extent. Directory services,
on the other hand, offer automatic document management
and support attribute-based document retrieval. However,
they do not allow a user to organize documents based on
their semantics instead of their explicit attributes. Classifi-
cation hierarchies place documents in predefined document
hierarchies automatically. Typically, the structure of these
hierarchies cannot be extended easily, and they often pro-

∗current affiliation: Voicemate Inc., New York, email:
thimios@voicemate.com

hibit manual placement of documents. In addition, their
strict subset property along the folders in a hierarchy can
be cumbersome for shared documents.

In this paper, we introduce a system that provides easy
access to large collections of documents. Our approach
combines database concepts for storing documents with
the well-known user interface of hierarchical file systems.
Document hierarchies can be managed by either creating
and deleting folders explicitly or by specifying rules that
reflect the user’s preferred view on the top of a collection
of documents. When a document is inserted at some folder
in a hierarchy, rules may force it to be automatically prop-
agated to sub-folders. In addition, folders may be created
automatically when document insertion triggers appropri-
ate rules. The main contributions of our work are the fol-
lowing.

• Seamless integration of folder hierarchy features
found in file systems, directory services and classi-
fication hierarchies;

• Implicit and explicit placement of documents into
folders;

• Automatic creation and deletion of folders according
to actual values of document attributes;

• Implicit and explicit deletion of folders and docu-
ments combining deletion and garbage collection se-
mantics for persistence management.

As proof of concept, we implemented a prototype using
the expert system shell CLIPS, showing that our approach
is indeed helpful for organizing documents and that the
specifications of the system are correct. However, space
does not allow to present all features and the full formal
specification of this system here. Rather, we will introduce
the main concepts and contributions of this work in a rather
informal way. A detailed description, together with a for-
mal specification of all operations can be found in [5].

document d1 document d2
id=’1732’ id=’46232’
type=’mail’ type=’mail’
from=’alex’ from=’michi’
to=’herb’ to={’alex’, ’hans’}
subject=’PantaRhei’ subject=’Lunch’

Table 1: Example set of documentsD

2 Documents, and Folders

Document classification based on hierarchically orga-
nized collections is important for two reasons. Firstly, it
provides an easy and intuitive way to classify documents
into collections and sub-collections. Secondly, it facilitates
easy navigations through document collections, especially
when the criteria used to classify the documents in the first
place are not readily available.

In the rest of this section, we present the definitions we
use in subsequent sections, explain the document sets that
can be associated with a folder, enumerate the properties
attached to each folder and how they are used for document
propagation and, finally, state the invariants that hold for
each folder.

2.1 Documents

Documentsare structured or semi-structured data. Each
document is represented as a collection of attribute-value
pairs. Each attribute may contain several values, and each
value can be structured, i.e. a list of values or even addi-
tional attribute-value pairs. Examples of such documents
include XML files, electronic mails, entries in directories
(such as LDAP), workflow forms, and bibliographic refer-
ences.

Let d be a document. The set of all attributes that are
defined ford is denotedattributes(d). For an attribute with
namea, values(d, a)returns the set of values of this at-
tribute in documentd, if a is in attributes(d), and the empty
set otherwise.

For a valuev, denote(v)is a function returning a unique
string representation ofv. For an attributea, denote(a)re-
turns the string representation of the attribute name. For a
set of documentsD, attributes(D)returns the attributes ap-
pearing in any document ofD, while values(D, a)returns
the set of all values of attributea has in any document of
D.

For the example set of documents listed in Table 1, the
following information can be extracted.
attributes(d1)= {id, type, from, to,
subject }

values(d2, to)= {’alex’, ’hans’ }
attributes(D)= {id, type, from, to,
subject }
values(D, to)= {’herb’, ’alex’, ’hans’ }

A constraintis a predicate or Boolean function over the
values of documents attributes. We require the following
properties of predicates. Ifp is a predicate andd is a doc-
ument, theneval(p, d)evaluates totrue or false. If p and
q are predicates, so are the conjunction and disjunction of
them, i.e.p and qandp or q.

Documents can be preprocessed to compute additional
attributes using expressions, queries or arbitrary function
calls. For this paper we assume that all relevant attributes
are already available.

2.2 Folders and Folder Hierarchies

A folder is a container of documents and other folders,
referred to as sub-folders. Typically, there are many ways
to organize documents into folder hierarchies (as an exam-
ple, consider the organizational hierarchy of a corporation:
business units, centers, departments, and years followed
by various document types). In the remainder of the paper,
we assume that the folders in some hierarchy form a tree,
where each folder (with the exception of the root folder)
has exactly one parent folder.

Each folder has a relative name,FRelName, which
uniquely identifies the folder within all sub-folders of its
parent folder. The absolute name of a folder,FAbsName, is
constructed by concatenating the relative folder names on
the path from the root folder to the folder in question, and
represented using ’/’ as the separator for the naming com-
ponents. The absolute name of a folder uniquely identifies
this folder within the system.

Each folderF may be associated with a constraint,
called relative filter,FRelFilter). The absolute filter of a
folderF, FAbsFilter, is the conjunction ofF’s relative filter
with the absolute filter ofF’s parent folder. The absolute
and relative filter of the root folder is simplytrue.

2.3 Explicit Document Insertion

Documents enter the system when they are inserted into
a folders. The attributeDocumentTimestampkeeps the in-
sertion time. The following command inserts the document
d3 into the system and assigns it to/myfolder.

insert documentd3 into /myfolder

Inheritance and rules can place the inserted document in
other folders, too as we will explain below. In contrast to
classification hierarchies, documents can be inserted at any
point in the folder hierarchy, they can be assigned to several

FRemX(2)={B}
FInhX(2)={A,B}
FFullX(2)={A,C,D}
FCoreX(2)={C}
FCoverX(2)={A,C,D,E}

FExpX(2)={C,D}

Figure 1: Types of extents in our system

folders simultaneously, and, finally, they can be removed
from a specific folder. Insertions and removals affect the
propagation of documents in the hierarchy, as we will see
below.

2.4 Folder Extents

A document belongs to a folderF either because it is ex-
plicitly inserted intoF or because it is propagated toF from
its parent folder. The following different notions of extents
can be defined for a folderF (for examples see Figure 1,
where the documents A and B are inserted into folder 1, C
and D into folder 2 and E into folder 3. A is inherited to
all subfolders, D to folder 3, B is explicitly removed from
folder 2).

1. The explicit extent,FExpX, of F is the set of docu-
ments explicitly inserted intoF;

2. The removed extent,FRemX, of F is the set of docu-
ments explicitly removed fromF;

3. The inherited extent,FInhX, of F is the set of docu-
ments inherited fromF’s parent;

4. The full extent,FFullX, of F is the union of the ex-
plicit and inherited extents, excluding the removed ex-
tent;

5. The core extent,FCoreX, of F contains all documents
of the full extent that are not inherited by any sub-
folder ofF;

6. The cover extent,FCoverX, of a folderF is the union
of F’s full extent and the cover extents of all ofF’s
sub-folders. The cover extent of a leaf folder is the
same as the full extent of the folder. The cover ex-
tent of the root folder contains all documents in the
hierarchy.

2.5 Propagation to Subfolders

Insertion and inheritance of documents are controlled
by filters and the inheritance options.

The optionFCheckInsertcontrols the explicit insertion
of documents into a folder, specifying which filters are
checked at insertion time. If it isfalse, no documents can
be inserted explicitly into this folder. If it isrelativeor ab-
solute, the explicitly inserted documents have to satisfy the

property name property type
FRelName relative folder name
FAbsName absolute folder name
FRelFilter constraint
FAbsFilter constraint
FAbsParent absolute folder name
FSubfolders set of rel. folder names
FInhX set of documents
FExpX set of documents
FRemX set of documents
FFullX set of documents
FCoreX set of documents
FCoverX set of documents
FRuleName identifier
FInherits [all|new|none]
FCheckInherit [absolute|relative|true|false]
FCheckInsert [absolute|relative|true|false]
FPermanent [true|false]
FTimestamp timestamp

Table 2: Properties of folders

relative or absolute filter of the folder, respectively. If the
FCheckInsertoption istrue, then there are no restrictions
on the insertion.

The inheritance of documents from a parent folder to
a sub-folder is controlled by the filters, theFInherits op-
tion and theFCheckInheritoption. If theFInheritsoption
of a folder isall, then all documents of the parent folder
are considered for inheritance. If it isnew, then only those
documents of the parent folder that have been inserted after
the creation of the folder are considered. If the inherits op-
tion is none, then the folder does not inherit any document
from it’s parent.

TheFCheckInheritoption specifies which filter is used
to determine the inherited documents, and it is defined ac-
cording toFCheckInsert. In particular, ifFCheckInsertis
absoluteor relative, then the documents have to satisfy the
absolute or relative filter, respectively. If it istrue, every
document can be inherited. If the option is set tofalse,
there cannot be a match and inheritance is disabled.

TheFPermanentoption is used to define when a folder
is deleted. If it istrue, then the folder exists until it is
explicitly deleted. If it isfalse, the folder only exists, if it
contains sub-folders or documents. This implies that the
folder will be deleted when its last document is removed.
A complete list of the properties is given in Table 2.

The above folder options lead to powerful combinations
of explicit and implicit placement of documents. For ex-
ample, if theFInheritsoption for all folders is set tonone,

and theFCheckInsertoption is set toall, then the folder
hierarchy has file-system semantics: all documents in a
folder have to be explicitly inserted and no document is
propagated to sub-folders. On the other extreme, when the
FCheckInsertoption is set tonone for all folders except
the root and theFCheckInheritoption is set toabsolute,
the typical classification hierarchy semantics are achieved,
where all documents are contained in the explicit extent of
the root (the document base) and all other folders contain
inherited documents only.

Arbitrary combinations of these concepts are feasible,
e.g. to have a hierarchy of insertion points according to the
organizational structure and classification hierarchies be-
low these insertion points. All combinations of property
settings have a precisely defined semantics through the in-
variants described below.

2.6 Folder Invariants

The following invariants hold for each folderf.

1. FAbsName(f) =

FAbsName(FAbsParent(f))/FRelName(f)

The absolute name of a folder is the absolute name
of its parent folder, followed by a ’/’ and the folder’s
relative name.

2. FAbsF ilter(f) =

FRelF ilter(f) ∧ FAbsF ilter(FAbsParent(f))

The absolute filter of a folder is the conjunction of the
absolute filter of its parent and the folder’s relative
filter.

3. f ∈ FSubfolders(FAbsParent(f))

A folder is an element of the sub-folders of its parent
folder.

4. FFullX(f) =

(FExpX(f) ∪ FInhX(f))\FRemX(f)

The full extent of a folder is the union of its explicit
extent with its inherited extent minus the removed ex-
tent.

5. FCoreX(f) = {d ∈ FFullX(f)|¬∃g ∈
FSubfolders(f) : d ∈ FInhX(g)}
The core extent of a folder includes all documents of
its full extent, that are not inherited to one of its sub-
folders.

6. FCoverX(f) = FFullX(f) ∪ FCoverX(c1) ∪ . . . ∪
FCoverX(cn), ci ∈ FSubfolders(f)

The cover extent of a folder is the union of its full
extent with the cover extent of all sub-folders of the
folder.

7. FInhX(f) = {d ∈ FFullX(parent(f))|
(FInherits(f) = all ∨ (FInherits(f) = new

∧DocumentT imestamp(d) ≥ FTimestamp(f)))

∧((FCheckInherit(f) = absolute

∧ eval(FAbsF ilter(f), d) = true)

∨(FCheckInherit(f) = relative

∧ eval(FRelF ilter(f), d) = true))}
The inherited extent of a folder contains all docu-
ments of the full extent of its parent folder according
to theFInheritsoption: (all): all documents are inher-
ited, (new): only documents newer then the folder are
inherited. Additionally the documents must match the
filter defined by theFCheckInheritoption to be inher-
ited.

8. FCheckInsert(f) = absolute ⇒ ∀d ∈ FExpX(f) :

eval(FAbsF ilter(f), d) = true

If the FCheckInsertvariable is set toabsolute, all doc-
uments of the explicit extent must match the folder’s
absolute filter.

9. FCheckInsert(f) = relative ⇒ ∀d ∈ FExpX(f) :

eval(FRelF ilter(f), d) = true

If the FCheckInsertvariable is set torelative, all doc-
uments of the explicit extent must match the folder’s
relative filter.

10. FCheckInsert(f) = false ⇒ FExpX(f) = ∅
If the FCheckInsertvariable is set tofalse, the explicit
extent should not contain any document.

11. FPermanent(f) = false ⇒ FFullX(f) 6= ∅
∨ FSubfolders(f) 6= ∅
If a folder’s permanent option is set tofalse, the folder
must contain a document or a sub-folder.

3 Folder Operations

3.1 Creating folders

A folder name is represented by a string and a folder
path is a sequence of folder names separated by the slash
character. A generic path (gpathfor short) is a sequence of
names where some of the names or parts of the names have
been replaced with the wild-card characters * or +.

A path matches a generic path, if each * in the generic
path can be substituted by a string and each + by a path
such that this substituted generic path equals the path.
For example,/research/dept:30/year:1998is a path, while
/research/*/year:1998is a generic path that matches the
first when the wild-card * is replaced withdept:30. The
same path would also match the generic path/+/year:1998,
where + substitutesresearch/dept:30.

Tree 2Tree 1 Tree 3

Figure 2: Example trees

3.2 Explicit Folder Creation

The simplest way of creating a folder is by an explicit
creation command. For example, the following statement
will create a folder namedresearchunder the folder/, the
top level folder, and the (relative) filter of the new folder
will be org=lab.

create folder research under / with org=lab

If the name of the parent folder includes wild-cards
(generic paths), a folder is created under all folders that
match the generic path. For example, the following com-
mand will create a folder with the (relative) name2000
under all folders matching/*/new.

create folder 2000
under /*/new with year=2000

3.3 Template-based Folder Creation

Folders are frequently created according to attribute val-
ues appearing in documents. Therefore, we provide opera-
tions to create a folder for each value of some distinguished
attribute given in theby clause.

create folder under /research
by dept named D-$val

This statement will create a folder under/researchfor
each distinct value of the attributedept of any document in
the full extent of the folder/research. The name of such
a folder will be D-$val, where$val is a placeholder for
the actual value of the attributedept, and the relative filter
of the folder will bedept=val(e.g., the name of the folder

havingdept=20becomesD-20).

Without thenamedoption in the template statement we
use the default name patternatt:$val, whereatt is the name
of the distinguished attribute.

Template-based folder creation can specify a sequence
of attribute names to be used for creating several levels in
a folder hierarchy. For example,
create folder under /research by dept/year
is a shorthand for the following statements:
create folder under /research by dept
create folder under /research/dept:* by year

Tree 1 in Figure 2 shows an instance of a folder hierar-
chy created by the above template.

3.4 Rule-based Folder Creation

For maintaining folder hierarchies we may define rules
that create folders when the folder hierarchy changes or
documents with new attribute values are inserted into a hi-
erarchy. We can think of these rules as folder creation op-
erations that are executed whenever the folder hierarchy or
the underlying document base changes.

rule r1: create folder old
under /* with year < 1998

The example above shows a rule with the rulenamer1 will
create a folder namedold under each folder with an abso-
lute name matching/* (i.e. all folders in the second layer
of the folder hierarchy). When a new folder (e.g.lab) is
created afterwards, a folder with nameold will be automat-

ically created under this folder (/lab/old) in our example).

Rules can also create folders based on templates. Tree
2 of Figure 2 shows the folder hierarchy created by the
following operations and rules.

create folder research under /
with org=research

rule r1:
create folders under /research

by dept/year/type
rule r2:

create permanent folder public
under /research/*/year:*
with clearance< secret and year> 1999

When a document with the attributes (dept=30, clear-
ance=unclassified, year=2000, type=letter) is inserted into
the hierarchy shown in Tree 2 of Figure 2, a new folder is
created underdept:30. When a folder that has been cre-
ated by a rule becomes empty, the folder is automatically
removed from the hierarchy. Tree 3 of Figure 2 shows the
hierarchy after the removal of all document withyear <
2000.

Rule-based folder creation allows the classification of
documents into various folders at the same time. Each rule
is inserted into the “rule base” of the system and creates a
generic invariant that is enforced whenever the folder hi-
erarchy or the document base changes. The invariant for
the maintenance of folders with template rules is presented
below. RuleType indicates that it is a template rule,

.=
is the matching relation between generic paths, RuleAt-
tribute contains the distinguished attribute of the template,
RuleRelfilter the relative filter given in the rule definition,
and RuleNamePattern represents the string given in the
named option.

Invariant:
∀rn ∈ R : r(rn).RuleType =′ template′∧
∀afn ∈ Fexi : f(afn).FAbsName

.
=

r(rn).RuleGenericParent∧
∀d ∈ f(afn).fullX : r(rn).RuleAttribute ∈
attributes(d)∧
∀v ∈ values(d, r(rn).RuleAttribute)
⇒ ∃f : f.FAbsName ∈ Fexi∧
f.FAbsParent = afn∧
f.FRelF ilter = (r(rn).RuleRelF ilter ∧
(r(rn).RuleAttribute = denote(v)))∧
f.FRelName =
stringrepl(r(rn).RuleNamePattern,′ $val′, denote(v))∧
f.FRuleName = r(rn).RuleName

The above invariant states that there has to be a sub-
folder with appropriate name and filter for all folders
matching the parent folder given in the rule for all values
of the distinguished attribute of documents in this (parent)
folder.

3.5 Avoiding Conflicts

A conflict arises when a folder with the same name is
defined twice. While this is easy to check for explicit folder
creation operations, it has also to be checked for template-
based folder creation and rule-based folder creation. In
particular, in the case of rules, we need to check for po-
tential conflicts at rule creation time, although the conflict
might arise some time in the future, when a new document
is inserted or a new folder is created.

We do not execute an operation when it (potentially)
creates a folder that already exists or a folder that could be
created by an existing rule. In order to determine whether
a folder name may be created by a rule, we use the notion
of patterns. In particular, the following patterns are being
used.

• Absolute names of existing folders are patterns;
• A path-rule with (generic) parentp and folder namef

has the patternp/f ;
• For a template-rule with the (generic) parentp and the

name-patternf we define the patternp/g by substitut-
ing $val inf with *.

For an explicit folder creation operation, which would
create a folder with the absolute namen, the operation is
only executed whenn does not match any existing pattern.
When a rule is inserted, the pattern of the rule is checked
against all existing patterns. If there is a match, then the
rule is rejected. It is easy to see that using these precautions
we can guarantee that no rule will generate a folder which
already exists, or that no two rules would generate the same
folder.

Since we introduced the wildcard + to represents a path
of any depth, we must avoid rules which trigger themselves
in a loop, directly, or indirectly via several rules. We avoid
such scenarios by maintaining a graph showing (potential)
triggering relationships between rules. Rules inducing a
cycle in this graph will be rejected.

3.6 Execution Order

The invariants defined in section 2.5 and in section 3.4
represent the semantics of valid instances of a folder hierar-
chy and control the creation of folders and the placement of
documents in folders. Whenever the document base or the
folder hierarchy changes, these invariants are interpreted
as rules establishing a consistent state as a consequence of
the change.

We distinguishproducing invariantsthat cause creation
of additional folders or insertions like inheritance or rules
and reducing invariantsthat delete folders or documents
(garbage collection).

We define the priority of rules maintaining the invari-
ants to guarantee deterministic behaviour of our system in
the following sequence: first the operation is performed,
then the producing invariants are triggered and finally the
reducing invariants are executed.

Since producing invariants may only depend on the ex-
istence of facts and never on their absence, this method
will ensure that the process will always terminate and the
results of applying reducing invariants will never will in-
validate producing invariants.

3.7 Deleting Folders

For maintaining the folder hierarchy, it is important to
be able to delete folders and rules. When a folder does not
have thepermanentoption, it is deleted automatically once
it becomes empty, i.e. when it contains no documents and
has no subfolders. Delete operations, of course, have to
provide the combined garbage collection and deletion se-
mantics for the definition of persistence as it is laid down
in the folder and rule invariants. For an example:

delete folder /research
This operation will delete the folder/researchwhen it has
no subfolders. When a folder is generated by a rule, it is
not deleted because the rule will create it again instanta-
neously. The operation

delete folder /research recursively
will delete the folder/researchand all its subfolders even
when they have been created by a rule, since the parent
folder is also deleted and the rule will not recreate these
folders.

We also provide operations to delete a rule. Here we
have to specify how the folders generated by this rule have
to be treated,: they may be deleted as well, their type may
be changed to created folders.

4 Related Work

4.1 File Systems

In modern operating systems [10], like UNIX [11], files
can be placed in folders created manually or via scripts,
and folder hierarchies are created to organize files. User
can structure their home directories (i.e. their part of the
global file system hierarchy) in a way that represents their
sense for organization. Problems arise when parts of the
file system have to be accessed by different users, with dif-
ferent preferences. The structure of the hierarchy has to
be well defined to find files that have been put there by a
different user. In our approach, multiple organization hier-
archies can be defined to access the same document. For
example, the ’Call for papers’ for the VLDB’2000 could
be found in folders like the following:

.../Conferences/2000/VLDB/CFP

.../re-
search/Conferences/VLDB/2000/CFP

.../actualCFPs/VLDB

Files need not be put in those directories by hand - they
are created automatically when a new CFP enters the sys-
tem, if rules are used to specify the hierarchy. Every user
will find the files by navigating through the system in his
most intuitively way. Finally, our approach provides all
the functionality and, additionally, allows inheritance ac-
cording to filters and automatic maintenance of the folder
structure.

4.2 Classification hierarchies

Classifications hierarchies are used to categorize doc-
uments according to their content. They have been used
in the mid-90s for special purpose documents in the med-
ical field, later they have been used in several search en-
gines like Yahoo or Infoseek to categorize the content of
the World Wide Web. Because of the huge amount of doc-
uments, automatically classifications was being developed
using Machine Learning algorithms [4].

Our system provides the additional feature to add doc-
uments wherever the user wants them to be (associative
placement) and let the user adjust the inheritance by set-
ting control options.

4.3 LDAP Directory Services

The Lightweight Directory Access Protocol (LDAP) is
a vendor-neutral standard to access common directory in-
formation [3]. It provides an extendable architecture for
storage and management of information that needs to be
available for today’s distributed systems and services.

Similar to a filesystem or a classification hierarchy, all
information in LDAP is organized in a tree, where each
node represents an attribute/value pair [2]. The name of
the node is alwaysAttribute=Value and cannot be
chosen freely. An object inside LDAP is always charac-
terized by the path to the node where it is located, i.e. all
documents in a node must match the conjunction of all ex-
pressions defined by the nodenames of its path. In this
facets LDAP is closer to a classification hierarchy than to
a filesystem.

4.4 Email Systems

Modern email clients let users organize their mails into
folder structures. Usually this has to be done manually. Al-
though the user can define filters in most of the client ap-
plications, e.g. Netscape Messenger [7], these filters can-
not create new folders according to incoming mail. More
sophisticated mail filters like procmail [9] are able to call

procedures to take care of new situations, but the rule base
needs an experienced user to manage it and reorganization
of the folder structure is not trivial.

Several studies have examined how to support the user
by automatically filing the mails using Machine Learning
[8], but new folders cannot be created here either, and there
is also no way to find the same document using different
access paths. SaveMe [1] offers an SMTP interface that al-
lows a group of users to send mail to a defined folder which
can be mounted by the users via the IMAP ACL extension
[6]. SaveMe provides a way to share documents and access
them like well known mail folders but the target folder has
to be specified when sending the mail to SaveMe.

Our system can display the emails by browsing through
folders that are created automatically by rules that are easy
to define. New rules can be added to create new folder
structures to access the same documents using different
ways to go there. Therefore, our folder tree can be seen
as nested views assorting messages.

4.5 Feature Matrix

Table 3 shows a comparison of the features the different
systems support. A plus sign shows that the feature at the
left is well supported by the proposal printed at the top of
the column. A minus sign indicates insufficient support for
this feature.

F C D E O

free names + + - + +
explicit placement + - - + +
implicit placement - + + + +
inheritance - + + - +
configuarable inheritance - - - - +
automatic maintenance - - - - +

Table 3: Comparison of approaches
F: File Systems, C classification hierarchies, D: Directory

services, E: email folders, O: our approach

5 Conclusion

In this paper, we presented a system that provides easy
access to large collections of documents. Our approach
combines database concepts for storing documents with
the well-known user interface of hierarchical file systems
and the automatic document placement of classification hi-
erarchies. In addition, we provide a mechanism that is used
to automatically maintain the structure of the hierarchy.

Rules can easily be specified to define interesting or rel-
evant structures to access large collections of documents.
Once such rules are defined, the system can automatically

create new folders and delete existing ones when new doc-
uments are inserted or deleted, respectively.

The very generic definition of documents in our sys-
tem makes it possible to support various kinds of different
documents, e.g. email, office documents, forms of vari-
ous kinds, network devices, or worklist entries of work-
flow management systems. In addition, the fact that we
only handle document metadata allows us to store the ac-
tual document in any kind of database and avoid duplicates
when the same document is inserted into multiple folders.

Finally, we implemented a prototype to prove our con-
cept, to validate our specifications and to gain experience
in the use of such a system. The evaluation of the behavior
of the system has been quite successful so far. A high per-
formance implementation is subject of ongoing research.

References
[1] Stefan Berchtold, Alexandros Biliris, and Euthimios Pana-

gos. SaveMe: A system for archiving electronic documents
using messaging groupware. In Dimitrios Georgakopoulos,
Wolfgang Prinz, and Alexander L. Wolf, editors,Proceed-
ings of the International Joint Conference on Work Activi-
ties and Collaboration: WACC ’99, pages 167–176. ACM
Press, 1999.

[2] Timothy A. Howes, Mark C. Smith, and Gordon S. Good.
Understanding and Deploying LDAP Directory Services.
Macmillan Technical Publishing, 1999.

[3] Heinz Johner, Larry Brown, Franz-Stefan Hinner, Wolfgang
Reis, and Johan Westman.Understanding LDAP. IBM
International Technical Support Organization (IBM Red-
books), 1998.

[4] D. Koller and M. Sahami. Hierarchically classifying doc-
uments using very few words. InProceedings of the 14th
International Conference on Machine Learning ICML97,
pages 170–178, 1997.

[5] Alexander Krumpholz. Self-Maintained Document Hierar-
chies. Master’s thesis, Institut für Informatik-Systeme, Uni-
versiẗat Klagenfurt, June 2000.

[6] J. Myers. RFC2086: IMAP4 ACL extension.http:
//www.imap.org/docs/rfc2086.html (current
26/04/2000), 1997.

[7] Netscape, Inc. Netscape Messenger.http://www.
netscape.com (current 26/04/2000), 2000.

[8] Jason Rennie. ifile: An application of machine learning to
e-mail filtering, 1998.

[9] Stephen R. van den Berg. Procmail.http://www.
procmail.org (current 26/04/2000), 1998.

[10] Andrew S. Tanenbaum and Albert S. Woodhull.Prentice-
Hall. Operating Systems, 1997.

[11] Uresh Vahalia.Prentice-Hall. UNIX Internals, 1996.

