
Online Data Mining for Co-Evolving Time Sequences

Byoung-Kee Yi
Univ. of Maryland

kee@cs.umd.edu

N. D. Sidiropoulos
Univ. of Virginia

nds5j@virginia.edu

Theodore Johnson
AT&T Labs

johnsont@research.att.com

H. V. Jagadish�

Univ. of Michigan
jag@eecs.umich.edu

Christos Faloutsosy

Carnegie Mellon Univ.
christos@cs.cmu.edu

Alexandros Biliris
AT&T Labs

biliris@research.att.com

Abstract
In many applications, the data of interest comprises

multiple sequences that evolve over time. Examples in-
clude currency exchange rates, network traffic data. We
develop a fast method to analyze such co-evolving time se-
quences jointly to allow (a) estimation/forecasting of miss-
ing/delayed/future values, (b) quantitative data mining,and
(c) outlier detection. Our method, MUSCLES, adapts to
changing correlations among time sequences. It can handle
indefinitely long sequences efficiently using an incremental
algorithm and requires only small amount of storage and
less I/O operations. To make it scale for a large number
of sequences, we present a variation, the Selective MUS-
CLES method and propose an efficient algorithm to reduce
the problem size. Experiments on real datasets show that
MUSCLES outperforms popular competitors in prediction
accuracy up to 10 times, and discovers interesting correla-
tions. Moreover, Selective MUSCLES scales up very well
for large numbers of sequences, reducing response time up
to 110 times over MUSCLES, and sometimes even improves
the prediction quality.

1. Introduction

In many applications, the data of interest comprises mul-
tiple sequences that each evolve over time. Examples in-
clude currency exchange rates, network traffic data from
different network elements, demographic data from multi-
ple jurisdictions, patient data varying over time, etc.

�This work was done largely when the author was at AT&T.
yThis material is based upon work supported by the National Science

Foundation under Grants No. IRI-9625428,DMS-9873442, IIS-9817496,
and IIS-9910606,and by the Defense Advanced Research Projects Agency
under Contract No. N66001-97-C-8517. Additional funding was pro-
vided by donations from NEC and Intel. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National
Science Foundation, DARPA, or other funding parties.

These sequences are not independent: in fact, they fre-
quently exhibit high correlations. Therefore, much useful
information is lost if each sequence is analyzed individu-
ally. What we desire is to study the entire set of sequences
as a whole, where the number of sequences in the set can be
very large. For example, if each sequence represents data
recorded from a network element in some large network,
then the number of sequences could easily be in the several
thousands, and even millions.

To make our task even more challenging, it is typically
the case that the results of analysis are most useful if they
are available immediately, based upon the portion of each
sequence seen so far, without waiting for “completion” of
data streams. In fact, these sequences can be indefinitely
long, and may have no predictable termination in the future.
What we require is the capability to “repeat” our analysis
over and over as the next element (or batch of elements) in
each data sequence is revealed, so that accurate estimations
of delayed/missing elements and/or up-to-date correlations
are available quickly. And we have to do this on poten-
tially very long sequences, indicating a need for analytical
techniques that have low incremental computational com-
plexity.

Table 1 illustrates a typical setting: Suppose that we
have k time sequences, and that we obtain the value of
each at every time-tick (say, every minute). Suppose that
one of the time sequences, say, s1, is delayed or missing.
Our goal is to do our best prediction for the last “current”
value of this sequence, given all the past information about
this sequence, and all the past and current information for
the other sequences. We wish to be able to do this at every
point of time, given all the information up to that time.

More generally, given a delayed or missing value in
some sequence, we would like to estimate it as best as we
can, using all other information available to us from this and
other related sequences. Using the same machinery, we can
also find “unexpected values” when the actual observation
differs greatly from its estimate computed as above. Such
an “outlier” may be indicative of an interesting event in the

Table 1. Snapshot of a set of co-evolving time sequences. Goal: predict the delayed value of s1.

sequence s1 s2 s3 s4

time packets-sent packets-lost packets-corrupted packets-repeated

1 50 20 10 3
2 55 20 10 10
...

...
...

...
...

N � 1 73 25 18 12
N ?? 25 18 18

specific time series affected.
Another problem to solve is the derivation of (quan-

titative) correlations; e.g., “the number of packets-lost is
perfectly correlated with the number of packets corrupted”,
or “the number of packets-repeated lags the number of
packets-corrupted by several time-ticks”. This type of in-
formation can be used for various purposes such as track-
ing of the source of cascaded network fault or overload,
or discovering unknown relationships between bank/credit
accounts to spot suspected criminal behaviors.

In light of the preceding discussion, our goal is to seek
a technique which satisfies the following requirements.

� It should provide all the machinery to solve both prob-
lems we introduced earlier.

� It shouldbe on-line and scalable, operating in time that
is independent of the number, N , of past time-ticks.

� It should scale up well with the number of time se-
quences, k.

� It should also be capable of adapting quickly to the
change of trends.

This is a challenging task because direct application of the
standard mathematical/statistical methods such as the linear
regression model may fail to meet the above requirements.
Hence our focus lies on the development of an elaborated
technique such that it satisfies all of our requirement and
verifies its effectiveness through extensive experimental
evaluations.

Applications: We embarked upon this work motivated
by a network management application similar to the one
described below. However, we soon discovered that our
concepts applied equally to any collection of co-evolving
time sequences. Sample applications include the following:

� Network management: Time sequences are measure-
ments (for example, number of packets lost, sent, and
received for a collection of nodes). Then, we want
to (a) fill in missing/delayed values;(b) spot outliers;
(c) group “alarming” situations together;(d) possibly,
suggest the earliest of the alarms as the cause of the
trouble.

� Sales data: Given, say, AT&T customers and their
calling patterns over time, spot outliers; these may be
indicators of fraud or a change in customer behavior.
Also, correlations between geographic regions may be
of interest.

� Web and intra-net management: For each site, con-
sider the time sequence of the number of hits per
minute; try to find correlations between access pat-
terns, to help forecast future requests (prefetching
and caching); try to detect outliers, to spot intrud-
ers/malicious users.

� Law enforcement: A large collection of bank accounts
owned by criminal suspects and their associates can
be continuously monitored so that money laundering
or other illegal activities can be uncovered as soon as
they occur.

Related Work: Time series forecasting has been a major
focus for research in other fields. In particular, valuable
tools for forecasting and time series processing appear in
statistics and signal processing. The traditional, highly suc-
cessful methodology for forecasting is the so-called Box-
Jenkins methodology, or Auto-Regressive Integrated Mov-
ing Average (ARIMA for short) [6, 8]. Variations of it
have been used for voice compression, under the name of
Linear Predictive Coding (LPC) [20]. ARIMA falls un-
der the class of linear time-series forecasting, because it
postulates a linear dependency of the future value on the
past values. More recent, non-linear forecasting methods,
constitute an open research area [7, 23]. DeCoste [10] pro-
posed a technique based on linear regression and neural
network for multivariate time sequences. It is, however,
limited to outlier detection and does not scale well for large
set of dynamically growing time sequences.

The closest related database work concerns similarity
searching in time sequences: When the distance is the
Euclidean metric, we have proposed an indexing method
using the first few Discrete Fourier Transform (DFT) co-
efficients, for matching full sequences [1], as well as for
sub-pattern matching [13]. This technique has been ex-
tended by Goldin and Kanellakis [14] for matching time

sequences, so that it allows for shifts and scalings. In a pre-
vious paper [16], we developed a general framework for
posing queries based on similarity. The framework enables
a formal definition of the notion of similarity for an applica-
tion domain of choice, and then its use in queries to perform
similarity-based search. Both we [11] and Agrawal et al
[5] developed indexing methods to search for sequences
that are similar, despite gaps, translation and scaling. In
[24], we developed efficient indexing techniques for simi-
lar time sequences under time warping distance. Das et al
[9] considered a problem of finding rules relating patterns
in a time sequence to patterns in other sequences as well as
itself. They used clustering of similar subsequences within
sliding windows.

Data mining in large databases is also related: Agrawal
et al [2] proposed an interval classifier method for large
databases; in [4, 3] they proposed fast algorithms to search
for association rules in binary matrices, by detecting large
itemsets. To the best of our knowledge, however, there
were no database work that attempted to address the types
of data mining problems we try to solve in this paper.

Organization of the paper In the rest of the paper, we
describe proposed methods in detail and report experimen-
tal results with real datasets in Section 2. and 3.. Section 4.
concludes this paper and presents future research direction.
Appendices provide mathematical details of the proposed
methods.

2. MUSCLES

Here we describe the first version of the proposed
method, MUSCLES(MUlti-SequenCe LEast Squares). Ta-
ble 2 gives a list of acronyms and symbols used in the rest
of this paper.

The first problem we want to investigate is concerned
with delayed sequences. We formulate it as follows:

Problem 1 (Delayed sequence) Consider k time se-
quences s1; : : : ; sk, being updated at every time-tick. Let
one of them, say, the first one s1 , be consistently late (e.g.,
due to a time-zone difference, or due to a slower commu-
nication link). Make the best guess for bs1[t], given all the
information available.

Our proposed solution is to set up the problem as a
multi-variate linear regression (the details of the multi-
variate linear regression model is beyond the scope of the
paper and can be found elsewhere, such as [19]), by using
two sources of information:

� (1) the past of the given time sequence s1, i.e.,
s1[t� 1]; s1[t� 2]; : : :;

� (2) the past and present of the other time sequences
s2; s3; : : : ; sv.

Table 2. List of symbols and acronyms

Symbol Definition

MUSCLES Multi-Sequence Least Squares

v number of independent variables
in multi-variate regression

k number of co-evolving sequences
y the dependent variable, that we try to estimateby estimate of the dependent variable y
y the column vector with all samples

of the dependent variable x

y[j] the j-th sample of the dependent variable y
xi the i-the independent variable
xi[j] the j-th sample of the variable xi

xi the column vector with all the samples
of the variable xi

x[j] the row vector with j-th samples of variables xi

w span of tracking window
b count of ‘best’ ind. variables,

used for Sel. MUSCLES
� forgetting factor (1, when we don’t

forget the past)

Next, we describe the way to achieve this set up: For the
given stream s1, we try to estimate its value as a linear
combination of the values of the same and the other time
sequences within a window of size w. We refer to w as the
tracking window. Mathematically, we have the following
equation:

bs1[t] = a1;1s1[t�1] + � � �+ a1;ws1[t�w] +

a2;0s2[t] + a2;1s2[t�1] + � � �+ a2;ws2[t�w] +

� � � (1)

ak;0sk[t] + ak;1sk[t�1] + � � �+ ak;wsk[t�w];

for all t = w+1; : : : ; N .
We define the delay operator Dd(:) as follows.

Definition 1 For a sample s[t] from a time sequence s =
(s[1]; : : : ; s[N]), the delay operator Dd(:) delays it by d
time steps, that is,

Dd(s[t]) � s[t� d]; d+1 � t � N: (2)

Then, Eq. 1 is a collection of linear equations for t = w+
1; : : : ; N , withs1[t]being the dependent variable (“y”), and
D1(s1[t]); : : : ; D

w(s1[t]); s2[t]; D1(s2[t]); : : : ; D
w(s2[t]);

: : : ; sk[t]; D
1(sk[t]); : : : ; Dw(sk[t]) the independent vari-

ables. The least square solution of this system—ai;j’s
which minimize the sum of (s1[t]� bs1[t])2 is given by the
multi-variate regression. Each ai;j is called a regression

coefficient. Notice that the number of independent vari-
ables is v = k � (w+1) � 1:

With this set up, the optimal regression coefficients are
given by

a = (XT �X)�1 � (XT � y) (3)

where each column of the matrix X consists of sample
values of the corresponding independent variable in Eq. 1,
and each row is observations made at time t. y is a vector
of desired values(s1[t]).

Efficiency Although Eq. 3 gives the best regression co-
efficients, it is very inefficient in terms of both storage re-
quirement and computation time. First, we need O(N �v)
storage for the matrixX. Since, in our setting, the number
of samples N is not fixed and can grow indefinitely, we
may have to store X in secondary storage such as disks.
The number of disk blocks required is dN�v�d

B
e, where B

is the capacity of a disk block and d is the size of floating
number representation. With limited main memory, the
computation of (XT �X) may require quadratic disk I/O
operations very much like a Cartesian product in relational
databases. A brute-force solution to this problem could be
reduce the size of the matrix, but it creates other problems
such as follows:

� How often do we discard the matrix?

� How large a portion of it do we discard?

Even with enough main memory to keep the matrixX, the
computational cost for Eq. 3 is O(v2 � (v+N)) and we
have to repeat it as new data sample is available.

We propose to avoid all these problems, by taking advan-
tage of a useful mathematical result called matrix inversion
lemma [17]. Thanks to its special form, the lemma holds
for the matrix X. Let Xn denote X with the first N = n
samples and define Gn as (XT

n � Xn)
�1. Then, Gn can

be calculated usingGn�1 as follows (see Appendix A. for
the details):

Gn= Gn�1 � (1 + x[n]�Gn�1 � x[n]
T)�1 (4)

�(Gn�1 � x[n]
T)� (x[n]�Gn�1); n > 1

where x[n] is a row vector of the n-th sample values.
The above equation has some desirable properties. First,

the inside of the inversion is just a scalar and, hence, no
matrix inversion is required in the above equation. Second,
Gn is much smaller thanXn because N = n� v. Its size
is fixed and independent of the number of samples. Also,
we don’t need to keep the original matrix Xn explicitly.
Therefore, it is more likely that we can keep Gn in main
memory. Using Eq. 4, the computational cost for updat-
ing regression coefficients a is only O(v2) for each new
sample. Even when it is not possible to keep Gn in main

memory, we only need dv
2
�d
B

e disk blocks to store it. It
is sufficient to scan the blocks at most twice, reducing I/O
cost significantly.

As a reference point, for a modest dataset of 100 se-
quences with 10000 samples each, Eq. 3 takes almost 84
hours to do the estimation on a Sun UltraSparc-1 work-
station. On the other hand, for a larger dataset of 100
sequences with 100000 samples each (� 80MB), Eq. 4
takes only about 1 hour on the same workstation. Note
that the dataset is 10 times larger, but the computation is 80
times faster!

Adaptiveness In addition to its fast execution time,
MUSCLES is able to adapt to changes over time: Con-
sider the case where there is a change in the underlying
processes that cause multiple sequences to be correlated
(such as a trade treaty between two countries, affecting
their currency exchange rates). When this happens, for-
mulae derived based on old observed values will no longer
be correct. Even worse, they can affect future estimations
indefinitely. What we would like to do is to adapt the pre-
diction coefficients so that they reflect the new rather than
historical reality.

It turns out that our MUSCLES can be slightly modified
to “forget” older samples gracefully. We call the method
Exponentially Forgetting MUSCLES. That is, let 0 < � � 1
be the forgetting factor, which determines how fast the
effect of older samples fades away. Then we try to find the
optimal regression coefficient vector a to minimize

min
a

NX
i=1

�(N�i)(y[i] � by[i])2 (5)

For � < 1, errors for old values are downplayed by a geo-
metric factor, and hence it permits the estimate to adapt as
sequence characteristics change. The formulae for expo-
nentially forgetting MUSCLES are given in Appendix A..

It is clear that we can apply this set up for any delayed
sequence, as opposed to the first only. That is, we can solve
the following problem:

Problem 2 (Any Missing Value) Consider k time se-
quences s1; : : : ; sv, being updated at every time-tick. Let
one value, si[t], be missing. Make the best guess for bsi[t],
given all the information available.

The solution for this is no different than for Problem 1 – we
simply have to keep the recursive least squares going for
each choice of i. Then, at time t, one is immediately able
to reconstruct the missing or delayed value, irrespective of
which sequence i it belongs to.

2.1. Making the most out of MUSCLES
We have described how to estimate a missing value in a

time sequence, using MUSCLES. Here we justify our ini-
tial claim that the solution to this problem (Problem 2) can

help us meet all the data mining goals listed in the intro-
duction. The trick is to pretend as if all the sequences were
delayed and apply MUSCLES to each of the sequences.
Specifically:

� Correlation detection: A high absolute value for a
regression coefficient means that the corresponding
variable is highly correlated to the dependent variable
(or current status of a sequence) as well as it is valuable
for the estimation of the missing value. Note that the
regression coefficients should be normalized w.r.t. the
mean and the variance of the sequence. Practically, it
can be done by keeping track of them within a sliding
window. The appropriate window size is 1=(1 � �),
which is approximately the length of memory imposed
by the forgetting factor.

� On-line outlier detection: Informally, an outlier is a
value that is very different from what we expected. In
our case, if we assume that the estimation error follows
a Gaussian distribution with standard deviation�, then
we label as “outlier” every sample of s1 that is � 2�
away from its estimated value. The reason is that, in
a Gaussian distribution, 95% of the probability mass
is within �2� from the mean.

� Corrupted data and back-casting: If a value is cor-
rupted or suspected in our time sequences, we can treat
it as “delayed”, and forecast it. We can even estimate
past (say, deleted) values of the time sequences, by
doing back-casting: in this case, we express the past
value as a function of the future values, and set up a
multi-sequence regression model.

2.2. Experimental Set-up
We performed experiments on several real datasets

� CURRENCY: exchange rates of k=6 currencies
Hong-Kong Dollar (HKD), Japanese Yen (JPY), US
Dollar (USD), German Mark (DEM), French Franc
(FRF), and British Pound (GBP) w.r.t. Canadian Dol-
lar (CAD). There are N=2561 daily observations for
each currency.

� MODEM: modem traffic data from a pool of k=14
modems. N=1500 time-ticks, reporting the total
packet traffic for each modem, per 5-minute intervals.

� INTERNET: internet usage data for several sites. We
have four data streams per site, measuring different
aspects of the usage (e.g., connect time, traffic and
error in packets etc.) For each of the data streams,
N=980 observations were made.

The experiments were designed to address the following
questions:

� Prediction accuracy: how well can we fill in the
missing values, compared with straightforward heuris-
tics? Following the tradition in forecasting, we use the
RMS (root mean square) error.

� Correlation detection: can MUSCLES detect hidden
yet interesting correlation patterns among sequences?

2.3. Accuracy
We used a window of width w=6 unless specified oth-

erwise. As mentioned, the choice of the window is outside
the scope of this paper; textbook recommendations include
AIC, BIC, MDL, etc.[6, 21].

We also used two popular, successful prediction meth-
ods:

� “yesterday”: ŝ[t] = s[t� 1], that is, choose the latest
value as the estimate for the missing value. It is the
typical straw-man for financial time sequences, and
actually matches or outperforms much more compli-
cated heuristics in such settings as shown in [18].

� Single-sequence AR (auto-regressive) analysis. This
is a special case of the traditional, very successful,
Box-Jenkins ARIMA methodology, which tries to ex-
press the s[t] value as a linear combination of its past
w values. We have chosen AR over ARIMA, be-
cause ARIMA requires that an external input source
(moving-average term) be specifically designated be-
forehand and it is impossible in our setting since we are
oblivious on specific relationship among sequences.

Figure 1 shows the absolute estimation error of MUS-
CLES and its competitors, for three sequences, one from
each dataset, for the last 25 time-ticks. In all cases, MUS-
CLES outperformed the competitors. It is interesting to
notice that, for the US Dollar, the “yesterday” heuristic and
the AR methodology gave very similar results: This is un-
derstandable, because the “yesterday” heuristic is a special
case of the “AR” method, and, for currency exchange rates,
“yesterday” is extremely good. However, our MUSCLES
method does even better, because it exploits information
not only from the past of the US Dollar, but also from the
past and present of other currencies.

Figure 2 shows the RMS error for some sequences of
the three real datasets, CURRENCY, MODEM and IN-
TERNET. For each of the datasets, the horizontal axis lists
the source, that is, the “delayed” sequence, s1. We can
observe several things. First, MUSCLES outperformed
all alternatives, in all cases, except for just one case, the
2nd modem. The explanations is that in the 2nd modem,
the traffic for the last 100 time-ticks was almost zero; and
in that extreme case, the “yesterday” heuristic is the best
method. For CURRENCY, the “yesterday” and the AR
methods gave practically identical errors, confirming the
strength of the “yesterday” heuristic for financial time se-
quences. In general, if the MUSCLES method shows large

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25

A
bs

ol
ut

e
E

rr
or

Time Ticks

MUSCLES
Yesterday

Autoregression

0

2

4

6

8

10

12

0 5 10 15 20 25

A
bs

ol
ut

e
E

rr
or

Time Ticks

MUSCLES
Yesterday

Autoregression

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

A
bs

ol
ut

e
E

rr
or

Time Ticks

MUSCLES
Yesterday

Autoregression

(a) US Dollar (CURRENCY) (b) 10-th modem (MODEM) (c) 10-th stream (INTERNET)

Figure 1. Absolute estimation error as time evolves for the selected sequences.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

HKD JPY USD DEM FRF GBP

R
M

S
E

Currency

MUSCLES
Yesterday

Autoregression

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
M

S
E

Modem Number

MUSCLES
Yesterday

Autoregression

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
M

S
E

Stream Number

MUSCLES
Yesterday

Autoregression

(a) CURRENCY (b) MODEM (c) INTERNET

Figure 2. RMS error comparisons of several alternatives.

savings for a time sequence, the implication is that this time
sequence is stronglycorrelated with some other of the given
sequences. The “yesterday” and AR methods are oblivious
to the existence of other sequences, and thus fail to exploit
correlations across sequences.

2.4. Correlation detection - Visualization

As we mentioned earlier, a high absolute value for a re-
gression coefficient means that the corresponding variable
is highly correlated to the dependent variable (or current
status of a sequence) as well as it is valuable for the estima-
tion of the missing value. As we will show in Theorem 1,
the correlation coefficient picks the single best predictor for
a given sequence. The correlation coefficient ranges from
-1 to 1, where high absolute values show strong correla-
tions.

We can turn it into a dis-similarity function, and ap-
ply FastMap [12] to obtain a low dimensionality scatter
plot of our sequences. Figure 3 does that for the curren-
cies. We took 100 samples back from the last 6 time-ticks
(t; t�1; : : :; t�5) for each currency and calculated the dis-
similarity based on mutual correlation coefficients. Closely
located sequences mean they are highly correlated.

We can see that HKD and USD are very close at every
time-tick and so are DEM and FRF. GBP is the most remote
from the others and evolves toward the opposite direction.
JPY is also relatively independent of others. By applying

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

DEM(t)

DEM(t-5)

FRF(t)

FRF(t-5)

GBP(t)

GBP(t-5)

HKD(t)

HKD(t-5)

JPY(t)

JPY(t-5)USD(t)

USD(t-5)

DEM
FRF
GBP
HKD
JPY
USD

Figure 3. FastMap-based visualization: CURRENCY

MUSCLES to USD, we found that

dUSD[t] = 0:9837 � HKD[t] + 0:6085 � USD[t�1]

�0:5664 � HKD[t�1] (6)

after ignoring regression coefficients less than 0.3. The
result confirms that the USD and the HKD are closely
correlated and perfectly agrees with Figure 3 as well as
Figure 2 (a).

3. Scaling-up: Selective MUSCLES
In case we have too many time sequences (e.g.,

k=100,000 nodes in a network, producing information

about their load every minute), even the incremental ver-
sion of MUSCLES will suffer. The solution we propose
is based on the conjecture that we do not really need in-
formation from every sequence to make a good estimation
of a missing value – much of the benefit of using multiple
sequences may be captured by using only a small number
of carefully selected other sequences. Thus, we propose to
do some preprocessing of a training set, to find a promising
subset of sequences, and to apply MUSCLES only to those
promising ones (hence the name Selective MUSCLES).

Following the running assumption, sequence s1 is the
one notoriously delayed, which needs to be estimated. For
a given tracking window span w, among the v independent
variables, we have to choose the ones that are most useful
in estimating the delayed value of s1.

Problem 3 (Subset selection) Given v independent vari-
ables x1; x2; : : : ; xv and a dependent variable y with N
samples each, find the best b(< v) independent variables to
minimize the mean-square error for by for the given samples.

We need a measure of goodness to decide which subset
of b variables is the best we can choose. Ideally, we should
choose the best subset that yields the smallest estimation
error in the future. Since, however, we don’t have future
samples, we can only infer the expected estimation error
(EEE for short) from the available samples as follows:

EEE(S) =
NX
i=1

(y[i]�cyS [i])2

where S is the selected subset of variables and cyS [i] is the
estimation based onS for the i-th sample. Note that, thanks
to Eq. 4, EEE(S) can be computed in O(N � jSj2) time.

Let’s say that we are allowed to keep only b= 1 indepen-
dent variable - which one should we choose? Intuitively,
we could try the one that has the highest (in absolute value)
correlation coefficient with y. It turns out that this is in-
deed optimal: (to satisfy the unit variance assumption, we
will normalize samples by the sample variance within the
window.)

Theorem 1 Given a dependent variable y, and v indepen-
dent variables with unit variance,the best single variable
to keep to minimize EEE(S) is the one with the highest
absolute correlation coefficient with y.

Proof: See Appendix B.. QED

The question is how we should handle the case when
b > 1. Normally, we should consider all the possible
groups of b independent variables, and try to pick the best.
This approach explodes combinatorially; thus we propose
to use a greedy algorithm (see Algorithm 1). At each step
s, we select the independent variable xs that minimizes
the EEE for the dependent variable y, in light of the s � 1
independent variables that we have already chosen in the
previous steps.

algorithm Selection

S := fg; /* selected var’s */

R := fx1; : : : ; xvg; /* remaining var’s */

while (S contains less than b variables)

foreach x in R

Compute EEE for S [fxg;

pick x with minimum EEE;

remove x from R and add to S;

end while

report variables in S;

end algorithm

Algorithm 1. Algorithm to select b variables

Bottleneck of the algorithm is clearly the computation
of EEE. Since it computes EEE approximately O(v � b)
times and each computation of EEE requires O(N � b2) in
average, the overall complexity mounts toO(N�v�b3). To
reduce the overhead, we observe that intermediate results
produced for EEE(S) can be re-used for EEE(S [fxg).

Theorem 2 The complexity of Algorithm 1 isO(N�v�b2).

Proof: Let S+ beS[fxg. The core in computingEEE(S[
x) is the inverse ofDS+ = (XT

S+
�XS+). Thanks to block

matrix inversion formula [17, p. 656] and the availability
ofD�1

S from the previous iteration step, it can be computed
in O(N � jSj+ jSj2). Hence, summing it up over v � jSj
remaining variables for each b iteration, we have O(N �
v � b2 + v � b3) complexity. Since N � b, it reduces to
O(N � v � b2). See Appendix B. for more detail. QED

We envision that the subset-selection will be done in-
frequently and off-line, say every N = W time-ticks. The
optimal choice of the reorganization window W is beyond
the scope of this paper. Potential solutions include (a) doing
reorganization during off-peak hours, (b) triggering a reor-
ganization whenever the estimation error for by increases
above an application-dependent threshold etc. Also, by
normalizing the training set, the unit-variance assumption
in Theorem 1 can be easily satisfied.

3.1. Experiments
One obvious question that arises is how much faster

the Selective MUSCLES method is than MUSCLES, and
at what cost in accuracy. We ran experiments with the
datasets described in Section 2.2..

Figure 4 shows the speed-accuracy trade-off for Selec-
tive MUSCLES. It plots the RMS error versus the compu-
tation time with varying number of independent variables
(b = 1; : : : ; 10), in double logarithmic scale. The compu-
tation time adds the time to forecast the delayed value, plus
the time to update the regression coefficients. The reference
point is the MUSCLES method on all v (referred to as the

Full MUSCLES in this subsection). For ease of compar-
ison across several datasets, we normalize both measures
(the RMS error as well as the computation time), by divid-
ing by the respective measure for the Full MUSCLES. For
each set-up, we vary the number b of independent variables
picked. The Figure shows the error-time plot for the same
three sequences (the US Dollar from CURRENCY, the
10-th modem from MODEM, and the 10-th stream from
INTERNET).

For every case, we have close to an order of magnitude
(and usually much more) reduction in computation time, if
we are willing to tolerate up to a 15% increase in RMS error.
We also observe that in most of the cases b=3-5 best-picked
variables suffice for accurate estimation. The Figure also
shows our Selective MUSCLES is very effective, achieving
up to 2 orders of magnitude speed-up (INTERNET, 10-th
stream), with small deterioration in the error, and often with
gains.

4. Conclusions and Future Research

We have presented fast methods to build analytical mod-
els for co-evolving time sequences, like currency exchange
rates and network traffic data to name a few. The proposed
methods (MUSCLES and Selective MUSCLES) have the
following advantages: (1) they are useful for data mining
and discovering correlations (with or without lag); (2) they
can be used for forecasting of missing/delayed values; (3)
they can be made to adapt to changing correlations among
time sequences; and (4) they scale up well for a large num-
ber of sequences which can grow indefinitely long.

We showed that the proposed methods are mathemati-
cally sound as well as computationally efficient. They re-
quire much less storage overhead so that even with limited
main memory, they do not cause excessive I/O operations
as a naive method does. We suggested how the proposed
methods could be used for various data mining tasks in
co-evolving time sequences. Experiments on real datasets
show that our methods outperform some popular success-
ful competitors in estimation accuracy up to 10 times, and
they discover interesting correlations (e.g., USD and HKD).
The Selective MUSCLES scales up very well for a large
number of sequences, in a variety of real-world settings
(currency exchange rates, network traffic data, and inter-
net usage data), reducing response time up to 110 times
over MUSCLES, and sometimes even improves estimation
accuracy.

For future research, a regression method called Least
Median of Squares [22] is promising. It is more robust than
the Least Squares regression that is the basis of MUS-
CLES, but also much more computationally expensive.
The research challenge is to make it scale for very large
databases. Another interesting research issue in time se-
quence databases is an efficient method for forecasting of
non-linear time sequences such as chaotic signals [23].

A. Appendix: Incremental Computation
GivenN samples, (x1[i]; : : : ; xv[i]; y[i]), i = 1; : : : ; N ,

our goal is to find the values a1; : : : ; av that give the best
estimations for y in the sense of least squares error. That
is, we look for the a1; : : : ; av that minimize

min
a1;:::;av

NX
i=1

(y[i] � a1x1[i]� : : :� avxv[i])
2 (7)

Using matrix notation, the solution to Eq. 7 is given
compactly by [19, pp. 671–674]:

a = (XT �X)�1 � (XT � y) (8)

where the super-scripts T and �1 denote the transpose and
the inverse of a matrix, respectively; � denotes matrix
multiplication; y is the column vector with the samples of
the dependent variable; a is the column vector with the
regression coefficients. The matrixX is the N � v matrix
with the N samples of the v independent variables. That
is:

X =

2
664

x1[1] x2[1] : : : xv[1]
x1[2] x2[2] : : : xv[2]

...
... : : :

...
x1[N] x2[N] : : : xv[N]

3
775 (9)

Recall that xj [i] denotes the i-th sample of the j-th inde-
pendent variable.

LetXn be the matrix with all the independent variables,
but with only the first n samples. Thus, its dimensions are
n� v. Let Dn = Xn

T �Xn, where D stands for “data”.
The goal is to invert the matrix D = Dn. Notice that its
dimensions are v�v, and its inversion would normally take
O(v3) time. Since the construction ofD takes O(n� v2),
the total computation time is O(n � v2 + v3). From a
database point of view, this is acceptable only when the
number of data samples is fixed and small. However, it is
not suitable for applications where there are large number
of data samples and new samples are added dynamically,
because the new matrix D and its inverse should be com-
puted whenever a new set of samples arrive. Thanks to its
special form and thanks to the so-called matrix inversion
lemma [15, 17], (Dn)�1 can be incrementally computed
using previous value (Dn�1)�

1. This method is called
Recursive Least Square (RLS) and its computation cost is
reduced to O(v2).

Next we present the final formulas for the solution; the
proofs are in e.g., [15]. Following the notation in the
statistics literature, the inverseGn = (Dn)

�1 is called the
gain matrix. Let x[i] be a row vector, denoting the i-th
sample (row) of X. That is x[i] = (x1[i]; x2[i]; : : : ; xv[i])
Also, let y[i] be the i-th sample ofy. Then, we can compute
Gn (n = 1; : : :) recursively, as follows:

Gn = Gn�1 � (1 + x[n]�Gn�1 � x[n]
T)�1 (10)

�(Gn�1 � x[n]
T
)� (x[n]�Gn�1); n > 1

1

10

0.1 1

Lo
g

R
el

at
iv

e
R

M
S

E

Log Relative Computation Time

Yesterday

Full MUSCLES

Autogressionb=1

b=2

b=3
b=10 1

10

0.01 0.1 1

Lo
g

R
el

at
iv

e
R

M
S

E

Log Relative Computation Time

Yesterday

Autoregression

Full MUSCLES

b=1

b=2 b=10
1

0.01 0.1 1

Lo
g

R
el

at
iv

e
R

M
S

E

Log Relative Computation Time

Yesterday

Full MUSCLES

Autogression

b=1

b=2

b=10

(a) US Dollar (CURRENCY) (b) 10-th modem (MODEM) (c) 10-th stream (INTERNET)

Figure 4. The relative RMS error vs. relative computation time, for several values of b ‘best-picked’ independent variables.
proposed(3) with varying b, Full MUSCLES(+), yesterday (�), and auto-regression(2).

with G0 = ��1 � I, where � is a small positive number
(e.g., 0.004), and I is the identity matrix. The coefficient
vector an after the n-th sample has arrived, can also be
updated incrementally

an = an�1�Gn� x[n]
T
�(x[n]�an�1�y[n]) (11)

for n > 1, and a0 = 0, where an is the vector of regression
coefficients when we consider the first n samples only,
and 0 is a column vector of v zeros. Notice that Eq. 10
needs only matrix multiplications with complexity O(v2),
a function of v only. If we repeat this forN sample arrivals,
the total computation cost becomes O(N � v2).

In addition to its lower complexity, it also allows for
graceful “forgetting” of the older samples. More specifi-
cally, we wish to have the effect of each samples diminished
by a factor of � (0 < � � 1) at each time-tick, thus al-
low exponential forgetting. In this setting,Gn now can be
computed by the following equation:

Gn =
1
�
Gn�1�

1
�
(�+x[n]�Gn�1�x[n]

T)�1 (12)

�(Gn�1 � x[n]
T) � (x[n]�Gn�1); n > 1:

Of course, it agrees with Eq. 10 when �=1 (i.e., no “forget-
ting”). The an is still given by Eq. 11.

B. Appendix: Subset Selection

Here we present the formulas for the solution of Prob-
lem 3, that is, we describe the procedure to select the b
best independent variables to estimate y, given the past N
time-ticks. As a basis, we must choose the first variable to
regress on. For each independent variable xi, let a scalar
a be the least-squares solution of Eq. 7. Then, EEE(fxig)
can be expressed by matrix notation as follows:

EEE(fxig) = ky� axik2

= (y � axi)T � (y � axi)
= kyk2 � 2a(yT � xi) + a2kxik

2

Let d and p denote kxik2 and (xT �y), respectively. Since
a = d�1p,

EEE(fxig) = kyk2 � 2p2d�1 + p2d�1

= kyk2 � p2d�1

To minimize the error, we must choose xi which maximize
p2 and minimize d. Assuming unit-variance (d = 1), such
xi is the one with the biggest correlation coefficient to y.
This proves Theorem 1.

Now suppose we have chosen a subset of variables, say
S, and try to select one more variable. Let XS denote a
matrix of column vectors xi which correspond to variables
xi in S. We defineDS as (XT

S �XS) andPS as (XT
S �y).

We assume that (DS)�1 is available from the previous
selection step. We consider one of the remaining variables
in R, say xj. If we denote S [fxjg by S+ , then,

EEE(S+) = ky � byS+k2

= ky �XS+ � aS+k
2

= kyk2 � 2(yT �XS+ � aS+)
+(aTS+ �X

T
S+ �XS+ � aS+)

= kyk2 � 2(PT
S+

� aS+)
+(aT

S+
�DS+ � aS+)

where aS+ is the optimal regression coefficient vector for
variables in S+ w.r.t. Eq. 7, and given by,

aS+ = (DS+)
�1 � PS+ :

Thus, the expected estimation error becomes,

EEE(S+) = kyk2 � 2(PT
S+

�D�1
S+

� PS+)
+(D�1

S+
�PS+)

T�DS+�(D�1
S+
�PS+)

= kyk2 � (PT
S+

�D�1
S+

�PS+):

Now we show how to compute (DS+)
�1 efficiently without

explicit matrix inversion. Thanks to block matrix inversion
formula [17, p. 656], we can avoid explicit inversion. The
general form of this formula is as follows:�
A D

C B

��1

=

�
A�1 + E���1�F �E���1

���1�F ��1

�

where � = B � C � A�1 � D, E = A�1 � D, and
F = C �A�1. Since

DS+ =

�
XT

S �XS XT
S � xj

xTj �XS xTj � xj

�
;

we substituteA, �, E, and F as follows:

A = XT
S �XS = DS

� = kxjk2 � xTj �XS �D
�1
S �XT

S � xj
E = D

�1
S �XT

S � xj
F = xTj �XS �D

�1
S

Note that� is essentially a scalar andD�1
S is available from

the previous step. The complexity of D�1
S+

computation is
O(N � jSj + jSj2). We compute EEE(S [xj) for each
remaining variable xj and select the one with the minimum
value. We repeat these steps until we select all b variables.
Given N , v, and b, the total computational complexity is
O(N � v � b2 + v � b3). Since N � b, we finally have
O(N � v � b2). This proves Theorem 2.

References
[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient simi-

larity search in sequence databases. In Fourth Int. Conf. on

Foundations of Data Organization and Algorithms (FODO),
pages 69–84, Evanston, IL, Oct 1993.

[2] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami.
An interval classifier for database mining applications.
VLDB Conf. Proc., pages 560–573, Aug 1992.

[3] R. Agrawal, T. Imielinski, and A. Swami. Database mining:
a performance perspective. IEEE Trans. on Knowledge and

Data Engineering, 5(6):914–925, 1993.

[4] R. Agrawal, T. Imielinski, and A. Swami. Mining associ-
ation rules between sets of items in large databases. Proc.

ACM SIGMOD, pages 207–216, May 1993.

[5] R. Agrawal, K.-I. Lin, H. S. Sawney, and K. Shim. Fast simi-
larity search in the presence of noise, scaling and translation
in time-series databases. Proc. of VLDB, pages 490–501,
September 1995.

[6] G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis:

Forecasting and Control. Prentice Hall, Englewood Cliffs,
NJ, 1994. 3rd Edition.

[7] M. Castagli and S. Eubank. Nonlinear Modeling and Fore-

casting. Addison Wesley, 1992. Proc. Vol. XII.

[8] C. Chatfield. The Analysis of Time Series: an Introduction.
Chapman and Hall, London & New York, 1984.

[9] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and
P. Smyth. Rule Discovery from Time Series. In Proc. of

KDD’98, Aug 1998.

[10] Dennis DeCoste. Minig Multivariate Time-Series Sensor
Data to Discover Behavior Envelopes. In Proc. of KDD’97,
Aug 1997.

[11] C. Faloutsos, H.V. Jagadish, A. Mendelzon, and T. Milo.
A signature technique for similarity-based queries. In Pro-

ceedings of SEQUENCES97, Salerno, Italy, Jun 1997. IEEE
Press.

[12] C. Faloutsos and K.-I. Lin. Fastmap: a fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. Proc. of ACM-SIGMOD, pages 163–
174, May 1995.

[13] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. Proc. ACM

SIGMOD, pages 419–429, May 1994.

[14] D. Goldin and P. Kanellakis. On similarity queries for time-
series data: Constraint specification and implementation.
Int. Conf. on Principles and Practice of Constraint Pro-

gramming (CP95), Sep 1995.

[15] S. Haykin. Adaptive Filter Theory. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1996.

[16] H.V. Jagadish, A. Mendelzon, and T. Milo. Similarity-based
queries. Proc. ACM SIGACT-SIGMOD-SIGART PODS,
pages 36–45, May 1995.

[17] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs,
New Jersey, 1980.

[18] B. LeBaron. Nonlinear Forecasts for the S&P Stock Index.
In M. Castagli and S. Eubank, editors, Nonlinear Modeling

and Forecasting, pages 381–393. Addison Wesley, 1992.
Proc. Vol. XII.

[19] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.
Numerical Recipes in C. Cambridge University Press, 1992.
2nd Edition.

[20] L. Rabiner and B.-H. Juang.Fundamentals of Speech Recog-

nition. Prentice Hall, 1993.

[21] J. Rissanen. Minimum description length principle. In
S. Kotz and N. L. Johnson, editors, Encyclopedia of Sta-

tistical Sciences, volume V, pages 523–527. John Wiley and
Sons, New York, 1985.

[22] P. Rousseeuw and A. Leroy. Robust Regression and Outlier

Detection. John Wiley, New York, 1987.

[23] A. Weigend and N. Gerschenfeld. Time Series Prediction:

Forecasting the Future and Understanding the Past. Addi-
son Wesley, 1994.

[24] B.-K. Yi, H.V. Jagadish, and C. Faloutsos.Efficient Retrieval
of Similar Time Sequences under Time Warping. In IEEE

Proc. of ICDE, Feb 1998.

