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Abstract

In many applications, the data of interest comprises
multiple sequences that evolve over time. Examples in-
clude currency exchange rates, network traffic data. We
devel op a fast method to analyze such co-evolving time se-
guencesjointly to allow (a) estimation/forecasting of miss-
ing/del ayed/futureval ues, (b) quantitative data mining, and
(c) outlier detection. Our method, MUSCLES, adapts to
changing correl ationsamong timesequences. It canhandle
indefinitely long sequences efficiently using an incremental
algorithm and requires only small amount of storage and
less 1/0O operations. To make it scale for a large number
of sequences, we present a variation, the Selective MUS
CLESmethod and propose an efficient algorithmto reduce
the problem size. Experiments on real datasets show that
MUSCLES outperforms popular competitors in prediction
accuracy up to 10 times, and discoversinteresting correla-
tions. Moreover, Selective MUSCLES scales up very well
for large numbers of sequences, reducing response time up
to 110timesover MUSCLES, and someti mes even improves
the prediction quality.

1. Introduction

In many applications, thedataof interest comprises mul-
tiple sequences that each evolve over time. Examplesin-
clude currency exchange rates, network traffic data from
different network elements, demographic data from multi-
plejurisdictions, patient data varying over time, etc.
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These sequences are not independent: in fact, they fre-
guently exhibit high correlations. Therefore, much useful
information is lost if each sequence is analyzed individu-
ally. What we desireisto study the entire set of sequences
asawhole, where the number of sequencesinthe set can be
very large. For example, if each sequence represents data
recorded from a network element in some large network,
then the number of sequences could easily beinthe several
thousands, and even millions.

To make our task even more challenging, it istypically
the case that the results of analysis are most useful if they
are available immediately, based upon the portion of each
sequence seen so far, without waiting for “completion” of
data streams. In fact, these sequences can be indefinitely
long, and may have no predictableterminationinthefuture.
What we require is the capability to “repeat” our anaysis
over and over asthe next element (or batch of elements) in
each data sequenceisreveded, so that accurate estimations
of delayed/missing e ements and/or up-to-date correl ations
are available quickly. And we have to do this on poten-
tially very long sequences, indicating a need for andytical
techniques that have low incremental computational com-
plexity.

Table 1 illustrates a typica setting: Suppose that we
have k time sequences, and that we obtain the value of
each at every time-tick (say, every minute). Suppose that
one of the time sequences, say, s1, is delayed or missing.
Our goal isto do our best prediction for the last “current”
value of thissequence, given al the past information about
this sequence, and al the past and current information for
the other sequences. We wish to be able to do thisat every
point of time, given all the information up to that time.

More generdly, given a delayed or missing value in
some sequence, we would liketo estimate it as best as we
can, using al other information availableto usfromthisand
other rel ated sequences. Using the same machinery, wecan
also find “unexpected values’ when the actual observation
differs greatly from its estimate computed as above. Such
an “outlier” may beindicativeof an interestingevent in the



Table 1. Snapshot of a set of co-evolving time sequences. Goal: predict the delayed vaue of s;.

sequence S1 $2 $3 S4
time packets-sent | packets-lost | packets-corrupted | packets-repeated
1 50 20 10 3
2 55 20 10 10
N-1 73 25 18 12
N ?? 25 18 18

specific time series affected.

Another problem to solve is the derivation of (quan-
titative) correations; e.g., “the number of packets-lost is
perfectly correlated with the number of packets corrupted”,
or “the number of packets-repeated lags the number of
packets-corrupted by severa time-ticks’. This type of in-
formation can be used for various purposes such as track-
ing of the source of cascaded network fault or overload,
or discovering unknown rel ationshi ps between bank/credit
accounts to spot suspected crimina behaviors.

In light of the preceding discussion, our goal is to seek
a technique which satisfies the following requirements.

o It shouldprovideall the machinery to solveboth prob-
lems we introduced earlier.

¢ |t shouldbeon-lineand scalable, operatingintimethat
isindependent of the number, V, of past time-ticks.

o It should scale up well with the number of time se-
quences, k.

¢ It should aso be capable of adapting quickly to the
change of trends.

Thisisachalenging task because direct application of the
standard mathemati cal/statistical methods such asthelinear
regression model may fail to meet the above requirements.
Hence our focus lies on the devel opment of an elaborated
technique such that it satisfies all of our requirement and
verifies its effectiveness through extensive experimental
evaluations.

Applications: We embarked upon this work motivated
by a network management application similar to the one
described below. However, we soon discovered that our
concepts applied equally to any collection of co-evolving
timesequences. Sampleapplicationsincludethefollowing:

¢ Network management: Time sequences are measure-
ments (for example, number of packets lost, sent, and
received for a collection of nodes). Then, we want
to (a) fill in missing/delayed values;(b) spot outliers;
(c) group “darming” situationstogether;(d) possibly,
suggest the earliest of the alarms as the cause of the
trouble.

e Sdes data Given, say, AT&T customers and their
calling patterns over time, spot outliers; these may be
indicators of fraud or a change in customer behavior.
Also, correl ations between geographi c regionsmay be
of interest.

e Web and intra-net management: For each site, con-
sider the time sequence of the number of hits per
minute; try to find correlations between access pat-
terns, to help forecast future requests (prefetching
and caching); try to detect outliers, to spot intrud-
ers/malicious users.

o Law enforcement: A large collectionof bank accounts
owned by criminal suspects and their associates can
be continuously monitored so that money laundering
or other illegal activities can be uncovered as soon as
they occur.

Related Work:  Time seriesforecasting has been amajor
focus for research in other fields. In particular, valuable
tools for forecasting and time series processing appear in
statisticsand signal processing. Thetraditional, highly suc-
cessful methodology for forecasting is the so-called Box-
Jenkins methodol ogy, or Auto-Regressive Integrated Mov-
ing Average (ARIMA for short) [6, 8]. Variations of it
have been used for voice compression, under the name of
Linear Predictive Coding (LPC) [20]. ARIMA fdls un-
der the class of linear time-series forecasting, because it
postulates a linear dependency of the future value on the
past values. More recent, non-linear forecasting methods,
constitute an open research area[7, 23]. DeCoste[10] pro-
posed a technique based on linear regression and neura
network for multivariate time sequences. It is, however,
limited to outlier detection and does not scale well for large
set of dynamically growing time sequences.

The closest related database work concerns similarity
searching in time sequences: When the distance is the
Euclidean metric, we have proposed an indexing method
using the first few Discrete Fourier Transform (DFT) co-
efficients, for matching full sequences [1], as well as for
sub-pattern matching [13]. This technique has been ex-
tended by Goldin and Kanellakis [14] for matching time



sequences, so that it allowsfor shiftsand scalings. Inapre-
vious paper [16], we developed a general framework for
posing queries based on similarity. The framework enables
aformal definition of thenotion of similarity for an applica-
tion domain of choice, and thenitsusein queriesto perform
similarity-based search. Both we [11] and Agrawa et al
[5] developed indexing methods to search for sequences
that are similar, despite gaps, trandation and scaling. In
[24], we devel oped efficient indexing techniques for simi-
lar time segquences under time warping distance. Das et al
[9] considered a problem of finding rules relating patterns
in atime sequence to patternsin other sequences aswell as
itself. They used clustering of similar subsequences within
diding windows.

Data mining in large databases isa so related: Agrawal
et al [2] proposed an interval classifier method for large
databases; in [4, 3] they proposed fast algorithmsto search
for association rules in binary matrices, by detecting large
itemsets. To the best of our knowledge, however, there
were no database work that attempted to address the types
of data mining problemswe try to solvein this paper.

Organization of the paper In the rest of the paper, we
describe proposed methods in detail and report experimen-
tal resultswith real datasetsin Section 2. and 3.. Section 4.
concludes thispaper and presentsfutureresearch direction.
Appendices provide mathematical details of the proposed
methods.

2. MUSCLES

Here we describe the first version of the proposed
method, MUSCLES(MUIti-SequenCe L East Squares). Ta
ble 2 givesalist of acronyms and symbols used in the rest
of this paper.

The first problem we want to investigate is concerned
with delayed sequences. We formulateit as follows:

Problem 1 (Delayed sequence) Consider £ time se
guences sy, . . ., i, being updated at every time-tick. Let
one of them, say, thefirst one s1, be consistently late (e.g.,
due to a time-zone difference, or due to a slower commu-
nication link). Make the best guess for 53[t], given all the
information available.

Our proposed solution is to set up the problem as a
multi-variate linear regression (the details of the multi-
variate linear regression model is beyond the scope of the
paper and can be found elsewhere, such as[19]), by using
two sources of information:

¢ (1) the past of the given time sequence s, i.e,
Sl[t — l], Sl[t — 2], cey

e (2) the past and present of the other time sequences
$2,83,...,8y.

Table 2. List of symbolsand acronyms

| Symbol | Definition
MUSCLES | Multi-Sequence L east Squares
v number of independent variables
in multi-variate regression
k number of co-evolving sequences
y the dependent variable, that we try to estimate
y estimate of the dependent variable y
y the column vector with all samples
of the dependent variable =
y[7] the j-th sample of the dependent variable y
T; the i-the independent variable
z;[4] the j-th sample of the variable z;
Xi the column vector with all the samples
of the variable «;
X[7] the row vector with j-th samples of variables «;
w span of tracking window
b count of ‘best’ ind. variables,
used for Sel. MUSCLES
A forgetting factor (1, when we don’t
forget the past)

Next, we describe the way to achieve this set up: For the
given stream s1, we try to estimate its value as a linear
combination of the values of the same and the other time
sequences within awindow of size w. We refer to w asthe
tracking window. Mathematically, we have the following
equation:

st = a151[t=1 + - - - + agwsit—w] +

az,092[t] + az152[t=1] + - - - + apws2t—w] +
. (1)
ag,05:[t] + ar 15:[t=1] + - - - + ag wsp[t—w],

fordlt =w+1,...,N.
We define the delay operator D(.) asfollows.

Definition 1 For a sample s[t] from a time sequence s =
(s[1],...,s[N]), the ddlay operator D?(.) delays it by d
time steps, that is,

DUs[t]) = st —d], d+1<t<N. 2
Then, Eqg. 1 isacollection of linear equationsfor¢ = w+
1,..., N,withs;[t] beingthedependent variable(“y"), and
DY(s1[t]), ..., D¥(s1[t]), s2[t], DY(s2[t]), - .., D¥(s2[t]),
oy se[t], DY(si[t]), . . ., DY (sx[t]) the independent vari-
ables. The least square solution of this system—a; ;'s
which minimize the sum of (s1[t] — 51[t])? isgiven by the
multi-variate regression. Each a; ; is celled a regression



coefficient. Notice that the number of independent vari-
ablesisv = k * (w+1) — 1.

With this set up, the optimal regression coefficients are
given by

a=(X"xX)"tx (X" xy) (3)

where each column of the matrix X consists of sample
values of the corresponding independent variablein Eqg. 1,
and each row is observations made at timet. y isavector
of desired values(s,[t]).

Efficiency Although Eqg. 3 gives the best regression co-
efficients, it isvery inefficient in terms of both storage re-
quirement and computationtime. First, weneed O(N x v)
storage for the matrix X. Since, in our setting, the number
of samples N is not fixed and can grow indefinitely, we
may have to store X in secondary storage such as disks.
The number of disk blocks required is [ ¥22x4] where B
isthe capacity of a disk block and d isthe size of floating
number representation. With limited main memory, the
computation of (X7 x X) may require quadratic disk 1/0
operations very much like a Cartesian product in rel ational
databases. A brute-force solution to this problem could be
reduce the size of the matrix, but it creates other problems
such asfollows:

¢ How often do we discard the matrix?
o How large aportion of it do we discard?

Even with enough main memory to keep the matrix X, the
computationa cost for Eq. 3 is O(v? x (v+N)) and we
have to repest it as new data sample isavailable.

We proposeto avoidall these problems, by taking advan-
tage of auseful mathematical result called matrixinversion
lemma [17]. Thanks to its special form, the lemma holds
for the matrix X. Let X,, denote X withthefirst N = n
samples and define G, as (XL x X,,)~1. Then, G,, can
be calculated using G,, —1 as follows (see Appendix A. for
the details):

Gn=Gh_1— (14 x[n] x Gu_1 x x[n]")™Y  (4)
%(Gno1 x x[n]") x (x[n] x Gp_1), n>1

where x[n] isarow vector of the n-th sample vaues.

The above equation has somedesirable properties. First,
the inside of the inversion is just a scalar and, hence, no
meatrix inversionisrequired in the above equation. Second,
G, ismuch smaller than X,, because N = n > v. Itssize
is fixed and independent of the number of samples. Also,
we don’'t need to keep the original matrix X,, explicitly.
Therefore, it is more likely that we can keep G, in main
memory. Using Eq. 4, the computational cost for updat-
ing regression coefficients a is only O(v?) for each new
sample. Even when it isnot possibleto keep G,, in main

memory, we only need [£X4] disk blocks to store it. It
is sufficient to scan the blocks at most twice, reducing I/0
cost significantly.

As a reference point, for a modest dataset of 100 se-
guences with 10000 samples each, Eq. 3 takes amost 84
hours to do the estimation on a Sun UltraSparc-1 work-
gtation. On the other hand, for a larger dataset of 100
sequences with 100000 samples each (=~ 80MB), Eq. 4
takes only about 1 hour on the same workstation. Note
that the dataset is 10 timeslarger, but the computationis 80
times faster!

Adaptiveness In addition to its fast execution time,
MUSCLES is able to adapt to changes over time: Con-
sider the case where there is a change in the underlying
processes that cause multiple sequences to be correlated
(such as a trade treaty between two countries, affecting
their currency exchange rates). When this happens, for-
mul ae derived based on old observed valueswill no longer
be correct. Even worse, they can affect future estimations
indefinitely. What we would like to do isto adapt the pre-
diction coefficients so that they reflect the new rather than
historical reality.

It turnsout that our MUSCLES can be dlightly modified
to “forget” older samples gracefully. We call the method
Exponentially ForgettingMUSCLES. Thatis, let0 < A < 1
be the forgetting factor, which determines how fast the
effect of older samples fades away. Then wetry to find the
optimal regression coefficient vector a to minimize

N
min Y AV (yli] - gli])? (5)
i=1

For A < 1, errorsfor old values are downplayed by a geo-
metric factor, and hence it permits the estimate to adapt as
sequence characteristics change. The formulae for expo-
nentialy forgetting MUSCLES are givenin Appendix A..

Itisclear that we can apply this set up for any delayed
sequence, as opposed to thefirst only. That is, wecan solve
the following problem:

Problem 2 (Any Missing Value) Consider &k time se-
guences sy, . . ., Sy, being updated at every time-tick. Let
one value, s;[t], be missing. Make the best guess for 5;[t],
given all the information available.

The solutionfor thisis no different than for Problem 1—we
simply have to keep the recursive least squares going for
each choice of i. Then, at timet, oneisimmediately able
to reconstruct the missing or delayed vaue, irrespective of
which sequence ¢ it belongsto.

2.1. Making the most out of MUSCLES
We have described how to estimate amissing valuein a

time sequence, using MUSCLES. Here we justify our ini-
tial claim that the solution to this problem (Problem 2) can



help us meset all the data mining goals listed in the intro-
duction. Thetrick isto pretend asif all the sequences were
delayed and apply MUSCLES to each of the sequences.
Specificdly:

e Correlation detection: A high absolute value for a
regression coefficient means that the corresponding
variableishighly correlated to the dependent variable
(or current status of asequence) aswell asitisvaluable
for the estimation of the missing value. Note that the
regression coefficients should be normalized w.rt. the
mean and the variance of the sequence. Practicaly, it
can be done by keeping track of them withinadiding
window. The appropriate window sizeis1/(1 — A),
whichisapproximately thelength of memory imposed
by the forgetting factor.

e On-lineoutlier detection: Informaly, an outlierisa
vauethat isvery different from what we expected. In
our case, if weassumethat theestimation error follows
aGaussian distribution with standard deviation o, then
we label as “outlier” every sample of s; thatis> 20
away from its estimated value. The reason isthat, in
a Gaussian distribution, 95% of the probability mass
iswithin +20 from the mean.

e Corrupted dataand back-casting: If avalueiscor-
rupted or suspected inour time sequences, we can treat
it as“delayed”, and forecast it. We can even estimate
past (say, deleted) values of the time sequences, by
doing back-casting: in this case, we express the past
value as a function of the future vaues, and set up a
multi-sequence regression model.

2.2. Experimental Set-up
We performed experiments on several rea datasets

¢ CURRENCY: exchange rates of k=6 currencies
Hong-Kong Dollar (HKD), Japanese Yen (JPY), US
Dollar (USD), German Mark (DEM), French Franc
(FRF), and British Pound (GBP) w.r.t. Canadian Dol-
lar (CAD). There are N=2561 daily observations for
each currency.

¢ MODEM: modem traffic data from a pool of k=14
modems. N=1500 time-ticks, reporting the tota
packet traffic for each modem, per 5-minuteintervals.

o INTERNET: internet usage datafor severd sites. We
have four data streams per site, measuring different
aspects of the usage (e.g., connect time, traffic and
error in packets etc.) For each of the data streams,
N=980 observationswere made.

Theexperimentswere designed to addressthefollowing
guestions:

e Prediction accuracy: how well can we fill in the
mi ssing val ues, compared with strai ghtforward heuris-
tics? Followingthetraditionin forecasting, we usethe
RMS (root mean square) error.

o Correlation detection: can MUSCLESdetect hidden
yet interesting correl ation patterns among sequences?

2.3. Accuracy

We used a window of width w=6 unless specified oth-
erwise. As mentioned, the choice of the window isoutside
the scope of this paper; textbook recommendationsinclude
AIC, BIC, MDL, etc[6, 21].

We aso used two popular, successful prediction meth-
ods:

o “yesterday”: 5[t] = s[t — 1], that is, choose the latest
value as the estimate for the missing value. It isthe
typical straw-man for financial time sequences, and
actually matches or outperforms much more compli-
cated heuristicsin such settings as shown in [18].

¢ Single-sequence AR (auto-regressive) anadysis. This
is a specia case of the traditional, very successful,
Box-Jenkins ARIMA methodol ogy, which triesto ex-
press the s[¢] value as alinear combination of its past
w values. We have chosen AR over ARIMA, be-
cause ARIMA requires that an externd input source
(moving-average term) be specifically designated be-
forehand and itisimpossiblein our setting sinceweare
obliviouson specific relationship among sequences.

Figure 1 shows the absolute estimation error of MUS-
CLES and its competitors, for three sequences, one from
each dataset, for the last 25 time-ticks. In dl cases, MUS-
CLES outperformed the competitors. It is interesting to
noticethat, for the US Dollar, the“yesterday” heuristic and
the AR methodology gave very similar results: Thisisun-
derstandable, because the “yesterday” heuristicis a special
case of the” AR” method, and, for currency exchangerates,
“yesterday” is extremely good. However, our MUSCLES
method does even better, because it exploits information
not only from the past of the US Dollar, but aso from the
past and present of other currencies.

Figure 2 shows the RMS error for some sequences of
the three rea datasets, CURRENCY, MODEM and IN-
TERNET. For each of the datasets, the horizontal axislists
the source, that is, the “delayed” sequence, s;. We can
observe severa things. First, MUSCLES outperformed
al aternatives, in al cases, except for just one case, the
2nd modem. The explanationsis that in the 2nd modem,
thetraffic for the last 100 time-ticks was almost zero; and
in that extreme case, the “yesterday” heuristic is the best
method. For CURRENCY, the “yesterday” and the AR
methods gave practicaly identicd errors, confirming the
strength of the “yesterday” heuristic for financia time se-
guences. Ingenerd, if the MUSCLES method shows large
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Figure 2. RMS error comparisons of several aternatives.

savingsfor atime sequence, theimplicationisthat thistime
sequenceisstrongly correl ated with some other of thegiven
sequences. The“yesterday” and AR methods are oblivious
to the existence of other sequences, and thusfail to exploit
correlations across sequences.

2.4. Corrédation detection - Visualization

Aswe mentioned earlier, a high absolute value for are-
gression coefficient means that the corresponding variable
is highly correlated to the dependent variable (or current
status of asequence) aswell asitisvauablefor theestima
tion of the missing value. Aswe will show in Theorem 1,
the correl ation coefficient picksthesinglebest predictor for
agiven sequence. The corrélation coefficient ranges from
-1 to 1, where high absolute values show strong correla
tions.

We can turn it into a dis-similarity function, and ap-
ply FastMap [12] to obtain a low dimensionality scatter
plot of our sequences. Figure 3 does that for the curren-
cies. We took 100 samples back from the last 6 time-ticks
(t,t—1,...,t—5) for each currency and calculated thedis-
similarity based on mutual correlation coefficients. Closely
located sequences mean they are highly correlated.

We can see that HKD and USD are very close a every
time-tick and so are DEM and FRF. GBP isthemost remote
from the others and evolves toward the opposite direction.
JPY isaso relatively independent of others. By applying
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Figure 3. FastMap-based visudization: CURRENCY

MUSCLES to USD, we found that

USD[f] = 0.9837 HKD[¢] + 0.6085 + USD[t—1]
—0.5664 * HKD[t—1] (6)

after ignoring regression coefficients less than 0.3. The
result confirms that the USD and the HKD are closely
correlated and perfectly agrees with Figure 3 as well as
Figure 2 (a).

3. Scaling-up: Selective MUSCLES

In case we have too many time sequences (eg.,
k=100,000 nodes in a network, producing information



about their load every minute), even the incrementa ver-
sion of MUSCLES will suffer. The solution we propose
is based on the conjecture that we do not redlly need in-
formation from every sequence to make a good estimation
of a missing value — much of the benefit of using multiple
sequences may be captured by using only a small number
of carefully selected other sequences. Thus, we proposeto
do some preprocessing of atraining set, to find apromising
subset of sequences, and to apply MUSCLES only to those
promising ones (hence the name Selective MUSCLES).

Following the running assumption, sequence s; is the
one notoriously delayed, which needs to be estimated. For
agiven tracking window span w, among the v independent
variables, we have to choose the ones that are most useful
in estimating the delayed value of s;.

Problem 3 (Subset selection) Given v independent vari-
ables 1, 5, ..., 2, and a dependent variable y with N
sampleseach, find thebest (< v) independent variablesto
minimizethemean-squareerror for i for thegiven samples.

We need a measure of goodness to decide which subset
of b variablesisthe best we can choose. 1dedlly, we should
choose the best subset that yields the smallest estimation
error in the future. Since, however, we don’t have future
samples, we can only infer the expected estimation error
(EEE for short) from the available samples as follows:

N
EEE(S) = Y (uli] - 5s[i])?
i=1

where S is the sdected subset of variables and y5[:] isthe
estimation based on S for thei-th sample. Notethat, thanks
to Eq. 4, EEE(S) can be computed in O(N x |S]?) time.

Let'ssay that weareallowed tokeep only b = 1indepen-
dent variable - which one should we choose? Intuitively,
we could try the onethat has the highest (in absol ute val ue)
correlation coefficient with y. It turns out that thisisin-
deed optimal: (to satisfy the unit variance assumption, we
will normalize samples by the sample variance within the
window.)

Theorem 1 Given a dependent variable y, and v indepen-
dent variables with unit variancethe best single variable
to keep to minimize EEE(SS) is the one with the highest
absolute correlation coefficient with y.

Proof: See Appendix B.. QED

The question is how we should handle the case when
b > 1. Normally, we should consider al the possible
groups of & independent variables, and try to pick the best.
This approach explodes combinatorialy; thus we propose
to use a greedy algorithm (see Algorithm 1). At each step
s, we select the independent variable z that minimizes
the EEE for the dependent variable y, in light of thes — 1
independent variables that we have already chosen in the
previous steps.

al gorithm Sel ection
S =4} /* selected var’'s */
R = {z1,...,m0}; [* remaining var’'s */
while ( S contains less than b variables )
foreach = in R
Conput e EEE for Su{z};
pick z wi th m ni mrum EEE;
renove z from R and add to S;
end while
report variables in S;
end al gorithm

Algorithm 1. Algorithmto select b variables

Bottleneck of the algorithm is clearly the computation
of EEE. Since it computes EEE approximately O(v x b)
times and each computation of EEE requires O(N x b2) in
average, theoverall complexity mountsto O( N xvxb3). To
reduce the overhead, we observe that intermediate results
produced for EEE(S) can be re-used for EEE(S U {z}).

Theorem 2 Thecomplexity of Algorithm1isO (N xvxb?).

Proof: Let ST be SU{x}. Thecoreincomputing EEE(SU
x)istheinverseof Dg+ = (X%, x Xg+). Thankstoblock
matrix inversion formula[17, p. 656] and the availability
of Dgl fromthe previousiteration step, it can be computed
inO(N x |S|+ ]S|?). Hence, summing it up over v — |5
remaining varigbles for each b iteration, we have O(N x
v x b2 + v x b%) complexity. Since N >> b, it reduces to
O(N x v x b?). See Appendix B. for more detail. QED

We envision that the subset-selection will be done in-
frequently and off-line, say every N = IV time-ticks. The
optimal choice of the reorganization window 1V is beyond
thescopeof thispaper. Potential solutionsinclude(a) doing
reorgani zation during off-peak hours, (b) triggering areor-
ganization whenever the estimation error for y increases
above an application-dependent threshold etc. Also, by
normalizing the training set, the unit-variance assumption
in Theorem 1 can be easily satisfied.

3.1. Experiments

One obvious question that arises is how much faster
the Selective MUSCLES method is than MUSCLES, and
at what cost in accuracy. We ran experiments with the
datasets described in Section 2.2..

Figure 4 shows the speed-accuracy trade-off for Selec-
tive MUSCLES. It plotsthe RMS error versus the compu-
tation time with varying number of independent variables
(b=1,...,10), in doublelogarithmic scale. The compu-
tation time adds thetime to forecast the delayed value, plus
thetimeto updatetheregression coefficients. Thereference
point is the MUSCLES method on al v (referred to asthe



Full MUSCLES in this subsection). For ease of compar-
ison across several datasets, we normalize both measures
(the RMS error aswell asthe computation time), by divid-
ing by the respective measure for the Full MUSCLES. For
each set-up, we vary the number b of independent variables
picked. The Figure shows the error-time plot for the same
three sequences (the US Dallar from CURRENCY, the
10-th modem from MODEM, and the 10-th stream from
INTERNET).

For every case, we have close to an order of magnitude
(and usually much more) reduction in computation time, if
wearewillingtotolerateuptoal5%increaseinRMSerror.
We a so observethat in most of the cases b=3-5 best-picked
variables suffice for accurate estimation. The Figure also
showsour SelectiveMUSCLES isvery effective, achieving
up to 2 orders of magnitude speed-up (INTERNET, 10-th
stream), with small deteriorationin theerror, and oftenwith
gains.

4. Conclusonsand Future Research

We have presented fast methods to build anal ytical mod-
elsfor co-evolving time sequences, like currency exchange
rates and network traffic datato name afew. The proposed
methods (MUSCLES and Selective MUSCLES) have the
following advantages. (1) they are useful for data mining
and discovering correlations (with or without lag); (2) they
can be used for forecasting of missing/delayed vaues; (3)
they can be made to adapt to changing correlations among
time sequences; and (4) they scale up well for alarge num-
ber of sequences which can grow indefinitely long.

We showed that the proposed methods are mathemati-
cally sound as well as computationdly efficient. They re-
quire much less storage overhead so that even with limited
main memory, they do not cause excessive |/O operations
as a naive method does. We suggested how the proposed
methods could be used for various data mining tasks in
co-evolving time sequences. Experiments on real datasets
show that our methods outperform some popular success-
ful competitorsin estimation accuracy up to 10 times, and
they discover interesting correlations(e.g., USD and HKD).
The Selective MUSCLES scales up very well for a large
number of sequences, in a variety of real-world settings
(currency exchange rates, network traffic data, and inter-
net usage data), reducing response time up to 110 times
over MUSCLES, and sometimes even improves estimation
accuracy.

For future research, a regression method called Least
Median of Squares[22] ispromising. Itismore robust than
the Least Sguares regression that is the basis of MUS
CLES, but aso much more computationally expensive.
The research challenge is to make it scale for very large
databases. Another interesting research issue in time se-
guence databases is an efficient method for forecasting of
non-linear time sequences such as chaotic signals[23].

A. Appendix: Incremental Computation

Given N samples, (z1[é], ...,z [i], y[d]), i = 1,..., N,
our goal isto find thevaues ay, . . ., a, that give the best
estimations for y in the sense of least squares error. That
is, welook for theay, . . ., a, that minimize

N
min 3 (ol - awnlil - - an il (D)

Using matrix notation, the solution to Eq. 7 is given
compactly by [19, pp. 671-674]:

a= (X" xX)"tx (X" xy) (8)

where the super-scripts 7" and — 1 denote the transpose and
the inverse of a matrix, respectively; x denotes matrix
multiplication; y is the column vector with the samples of
the dependent variable; a is the column vector with the
regression coefficients. The matrix X isthe N x v matrix
with the N' samples of the v independent variables. That
is

Sl wfl ol
X xl:[ ] xz:[ (R xv:[ ] ©
2[N] s N] 2o[N]

Recall that z;[i] denotes the i-th sample of the j-th inde-
pendent variable.

Let X,, bethematrix with al theindependent variables,
but with only thefirst » samples. Thus, itsdimensions are
nx v LeaD, =X, x X, where D standsfor “data’.
The goal isto invert the matrix D = D,,. Notice that its
dimensionsarev x v, anditsinversionwould normally take
O(v®) time. Since the construction of D takes O(n x v?),
the total computation time is O(n x v2 + v3). From a
database point of view, thisis acceptable only when the
number of data samplesis fixed and small. However, itis
not suitable for applications where there are large number
of data samples and new samples are added dynamically,
because the new matrix D and itsinverse should be com-
puted whenever anew set of samples arrive. Thankstoits
special form and thanks to the so-called matrix inversion
lemma [15, 17], (D,,)~! can be incrementally computed
using previous value (D,,_;)~1. This method is called
Recursive Least Square (RLS) and its computation cost is
reduced to O(v?).

Next we present the final formulas for the solution; the
proofs are in eg., [15]. Following the notation in the
dtatisticsliterature, theinverse G,, = (D,,)~tiscaled the
gain matrix. Let x[i] be a row vector, denoting the i-th
sample (row) of X. That isx[i] = (z1[d], z2[7], . . ., zu[{])
Also, let y[¢] bethei-th sampleof y. Then, we can compute
G, (n=1,.. ) recursively, asfollows:

G, = Gp_1— (14 x[n] x Gp_1 x x[n]")"1 (10)
%(Gno1 x x[n]") x (x[n] x Gp_1), n>1
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with Go = 61 x I, where 6 is a small positive number
(e.g., 0.004), and I isthe identity matrix. The coefficient
vector a,, after the n-th sample has arrived, can aso be
updated incrementally

a, = an_1— Gp x x[n]" x (x[n] xap_1—y[n]) (11)

forn > 1,and ag = 0, where a,, isthevector of regression
coefficients when we consider the first » samples only,
and 0 is a column vector of v zeros. Notice that Eqg. 10
needs only matrix multiplicationswith complexity O(v?),
afunctionof v only. If werepeat thisfor N samplearrivals,
the total computation cost becomes O(N x v?).

In addition to its lower complexity, it also alows for
graceful “forgetting” of the older samples. More specifi-
cally, wewishto havetheeffect of each samplesdiminished
by afactor of A (0 < A < 1) a each time-tick, thusal-
low exponential forgetting. In thissetting, G,, now can be
computed by the following equation:

;Gn_l— %(/\—I—x[n] xGraxx[n] ) (12)

%(Gpoa x x[n]") x (x[n] x Gp), n>1.

G, =

Of course, it agrees with Eg. 10 when A=1 (i.e., no “forget-
ting”). The a, isstill given by Eq. 11.

B. Appendix: Subset Selection

Here we present the formulas for the solution of Prob-
lem 3, that is, we describe the procedure to select the b
best independent variables to estimate y, given the past N
time-ticks. Asabasis, we must choose the first variable to
regress on. For each independent variable z;, let a scalar
a be the least-squares solution of Eq. 7. Then, EEE({x; })
can be expressed by matrix notation as follows:

EEE({z:}) = 2

[ly — ax;
(y — axi)T X (y — ax;)
Iyl12 = 2a(y™ x x;) + a?||x;||?

Let d and p denote ||x;[|? and (x x y), respectively. Since
a=d"p,

EEE({z:}) = |lyl|®—2p%d~t +p?d~?
=yl

To minimizethe error, we must choose x; which maximize
p? and minimize d. Assuming unit-variance (d = 1), such
x; 1S the one with the biggest correlation coefficient to y.
This proves Theorem 1.

Now suppose we have chosen a subset of variables, say
S, and try to select one more variable. Let X denote a
matrix of column vectorsx; which correspond to variables
z;inS. WedefineDg as (XL x Xg)and Py as (X% xy).
We assume that (Dg)~? is available from the previous
selection step. We consider one of the remaining variables
inR, say z;. If wedenote S U {z;} by ST, then,

EEE(ST) ly — ¥s+?

ly — X+ x ag+|?
Iy[l? = 2(y" x X+ x as+)
+(aly x XTI, x Xg+ x ag+)
IylI2 - 2PT, x age)
—|—(a§+ X D5+ X as+)

where ag+ isthe optima regression coefficient vector for
variablesin St wirt. Eq. 7, and given by,

ag+ = (D5+)_1X P5+.

Thus, the expected estimation error becomes,

EEE(S*) = [ly|P~2(PT, x D3t x Por)
+(Dgi xPst)" xDgs x(Dgy xPg+)

= lIyl2= (PLy x D3} x Po).

Now weshow how to compute (D s+ )~ ! efficiently without
explicit matrix inversion. Thanksto block matrixinversion
formula[17, p. 656], we can avoid explicitinversion. The
genera form of thisformulaisasfollows:

AD] '  [AL1+ExAIxF —ExAl
cB| = ~AIxF AL



where A = B-Cx A 1xD,E= A1xD,ad

F =

C x A~1 Since

D XgXXS XgXX]'
+ fu—
o X]»TXXS x]»Txxj ’

we substitute A, A, E, and F asfollows:

= XgXXSIDS

12 _ T -1 T ,
||x]|l| —x; xXg xDg" x Xg x x;j
- D= T ,
= Dy xXSxx]l
= x] x Xg x D3

ol ol >
|

Notethat A isessentially ascalar and D5 tisavailablefrom
the previous step. The complexity of Dgi computationis
O(N x |S| + |SI?). We compute EEE(S U z;) for each
remaining variablez; and select the onewith the minimum
value. We repeat these steps until we select all b variables.
Given N, v, and b, the total computational complexity is
O(N x v x b+ v x b3). Since N > b, wefinaly have
O(N x v x b?). Thisproves Theorem 2.
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