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ABSTRACT

In this paper. we described a number concurrency control methods for B-trees. Among them. a proto-
col which allows a number of independent search. insertion. and deletion processes, acting concurrently on
a B-tree. 10 operate even when multiple insertions or deletions are pending. A number of properties have
been also proposed to compare such Frotccols. The set of properties includes the aumber of lock types being
used, degree of data sharing, number of processes that are permitted to access a node simultaneously. bow
fast a reader can reach the leaf node. number of nodes locked by the three processes during their operation,
number of nodes being accessed sequentially, and the number an updater passes through the tree. Based on
these properties. seven protocols are ccmpared and discussed.

1. INTRODUCTION

In many computing systems. there is a need for sharing data and resources among processes. The problem
of synchronizing such processes that ccmpete with one another for shared objects is called. in the database
literature. the concurrency control prodlem. Given that the system has not failed. the concurrency control
mechanism must ensure that corsistency of objects is preserved and that ail processes will compiete their
operations in finite time. [KOHLS1]

An important part of any dawbase is its index mechanism which speeds up the retrieval process by
directing the searcher to a small portion of the database containing the desired item. Hashing and its vari-
4nts provide 2 mean for data accessing. On the other band. multilevel (tree) structures in which each index
a1 some level points to another index in the level below until the actual data have been reached. have
became extremely popular. While no single scheme can be best for all applications a particular multilevel
structure. called B-tree [BAYET2]. bas became the most widely used technique for storing large files of
information. especially on external storage devices. Knuth {(KNUT73] provides a survey of the basic tech-
niques and Comer [COME79] discusses and analyzes the B-trees and its variants.

Although. simultaneous accesses 1o the same database component may be rare. there is a high proba-
bility that indexes will be repeatedly accessed. and therefore a great deal of the time spent during the data-
base access is attributed to searching through indexes. Serializing access to the indexes of a data base may
create an undesirable bottleneck and degrade the entire system. Since B-trees are the most widely used
access aids. for both primary and secondary indexing, maximizing concurrency on them is the most contri-
buting factor in the overall degree of concurrency.

The rest of the paper is organized as follows. Section 2 briefly presents some representative algo-
rithms for concurrency control on B-trees. Section 3 describes the mU protocol and in section 4 twelve
properties for comparison of similar algorithms are proposed. Finally. section § summarizes this work.

1.1. DEFINITIONS

B-tree Definition: A B-tree of order m is a balanced tree which has the following properties.
®  Every node, except for the root has berween m and 2m children.

®  The roxt has between two and 2m children.
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® A nonleaf node consists of s pointers to its children /Po, PI' P:-I) and s-1 keys (1(1. K, .. Kx—l)

arranged in such way that for every key K in the subtree pointed 10 by Pl . the following relationships
hold:

K < Kl =0
K SK<K_.0<i<s—I
K, € K i=s—1
® A leaf node with s children contains s keys.

We assume that each node is organized sequentially. and that the set of all keys appears in the leaves. In
case that P, belongs to a leaf node it may point to records keeping actual data associated with the key K.
Data associated with each key are of no interest in the following discussion and are omitied. An example
of a three level B-tree of order two is shown in Figure 1.
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Fig 1. A B-tree structure.

.

The cperz2tions 1e be performed. concurrently. on a B-iree structurs will be of three xinds: search for
2 key. insert a (key, pointer) pair. and delete a pair from the tree. The processes that perform these opera-
tions are cailed read process (RP). insertion process (IP) and deietion rrocess (DP). respectively. IPs and
DPs are coliectively called updaters.

An updater goes through the following two phases. Searching: it reads the tree starting from the root
to determine the leaf node for a particular key. Restructiring: Once ihe leaf node is found. it adds (or
removes) the key and restructures the tree if necessary. It is exactly this restructuring phase that creates
most of the problems in a concurrent environment.

Most of the solutions to the problem of supporting concurrent operations in B-trees make use of the
foilowing cbservations. There exists a node which is the root of a subtres above which no change in data
and structure due 10 an update can propagate. This node is called a safe node [BAYE77b]. A node consist-
ing of less :kan 2m children is called insertion-safe (i-safe). because a new key can be added without forc-
ing a split. A node with more than m children is called delezion-safe (¢-safe). because a kev can be deleted
without going below the m-children minimum. The portion of the access path from the despest safe node
10 a leaf is called the scope of the Updater. We also refer to the child of the Updater’s deepest safe node on
its scope. as the highest unsafe node.

The protocols compared in this paper are defined using the Conditioral Compatibility and Convertibil-
ity Grapb (CCCG). [BILI85b).
CCCG Definition: The CCCG is a weighted directed graph in which versices represent lock types and edges
wich their cssociated weight specify the relation among these locks on a node. as follows:

if a and b are vertices (locks) then




a (solid edge. W)b <=>
A process may place an a-lock on a >-locked node iff condition W is satisfied. Absence of the condition
W, implies that locks a and b are fully (that is always) compatible.

a (broken edge) b <=>
A process holding an a-lock on a node may convert it into a b-lock.

2. RELATED RESEARCH

We may very easily show that :aking no precautions against the anomalies of concurrency leads to
incorrect (non serializable) results and 10 an inconsistent state of the index itself. The execution of a set of

processes is called serializable. iff it produces the same effects as some serial execution of the same Frocesses
[BERN79. PAPA79].

The first algorithm 10 this prcblem was offered by Samadi, [SAMA76], who uses semaphores to
exclusively lock a node. Fig 2a. That is the only lock type that may be used by each process.

Three algorithms have been propesed by Bayer and Schiolnick [BAYE77b]. Their first proteca! suo-
stantially improved the previous me:=od by introducing separate lock types for readers (r-locks) and
upcaters {e-locks). Fig 2b. This. takes advantage of the fact that readers do not medify any node on the
tree and therefore multiple read access *5 a3 node may be allowed. Their second solution. requires urdaters
to proceed down the tree as if they were readers using r-locks. until they reach a leaf node. They e-lock
this node and examine its safeness: if it is not safe. they release all the locks and repeat access to the tree.
this lime using the protocol of their irst solution. The third solution requires updaters. to use read-
comratible locks. namely w-locks. during ke searching phase. In case the leaf node is not safe the urdaters
should convert. from top to bottom. ze:r w-locks 10 e-locks. The CCCG of this protocol s shown in Fig
2c.
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Fig 2. CCCG of various protocols.

In the Kwong and Wood scheme. [KWON82]. the relations among locks remain the same. Fig 2c.
However, the modifications imposed by 2 key insertion on a full node are always done on a new not;yel-
in-tree node (side branch) which has 2s a result to further delay the placement sf the exclusive locks
because of the update.

Guibas and Sedgewick proposed another solution in which an insertion process. as it goes down the
tree. splits "almost full” nodes to aveid a bouom-up restructuring of the tree [GUIB78). and Miiler and
Snyder [MILL78] use a kind of queue mechanism to help Readers to flow over locked regions of the :ree.

Lehman and Yao presented a solution in which Readers use no locks and insertion processes place
their exclusive locks in a bottom-up manner [LEHM81). This protocol is based on the assumption that each
process works on each node after it is fetched on its private space (no data sharing).and requires a slight
modification of the usual B-tree structure. named B"**-tree in their paper. In addition. in this protocol. a
node of fewer than m pairs (zero included) is permitted: in case of storage underutilization the entire tree is
locked and re-organization of the tree is performed.

Kung and Lehman's work on binary trees. [KUNGBO). created a new class of concurrency control
methods called optimistic. These mettods assume that conflicting operations are the exceptional case and
therefore no locking is needed. Instead. correctness is guaranteed in the validation siep. performed at the
end of each operation. in which a test 15 done to verify that nodes accessed by one process have not been
modified by others. Kersten and Terba. [KERS84], have extended this idea for B-trees. and Lausen develop
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an intergrated concurrency control mechanism that switches from the *optimistic” metbod to locking
(Samadi's method) depending on the number of the conflicting operations. [LALS84).

3. THE mU PROTOCOL

The above locking algorithms characterize the safeness of a node by a single true-false value. making
minimal use of the fact that a node may be "very’ or “a little bit’ safe at some particular instance for a par-
ticular kind of process. Since. no distinction is made between insertion and deletion processes. no advan-
tage is taken from the fact that the first adds some data to the node while the second removes some. The
mU protocol permits as many insertion (deletion) processes 10 place, concurrently, a lock on a node as will
not. by their collective action. require the node to be split (merged).

The protocol uses four types of locks. viz read-lock. insert-lock, delete-lock. and exclusive-lock (r-,
i-. d-. and e-lock respectively). Readers use r-locks. IPs i-locks, DPs c-iocks. Their CCCG is given in Fig-
ure 1. We use the variabies rl. il. and di 1o keep the number of r-. i-. and d-locks respectively currently
rlaced on a node: s represents the number of children in the node. Ar impertant point that can not be seen
from the CCCG is tbat a request 1o i- or d-lock a node implies aiso a reques: for an r-lock. When the read-
ing is terminated the Updater must explicitly r-unlock the node. Also. i- or d- locks do not give the right
to an Updater to modify a node. They are used as reservations of fres slots in the node. Should an actual
modification be required. these locks should be converted to e-locks. a technique used also in [BAYE7S,
KWONS82].

A summary of the basic lock relations is following.

F1. A request of an RP 10 r-lock a node is granted when this node is not e-locked and no e-lock request is
pending for tkat node.
F2. A request of an IP 10 i-iock a node is zranted when this node is a2t e- or d-locked and
il < 2m-s or il=0

F3. A request of 2 DP 10 d-lock a node is granted when this node :s rnct e- or i-locked and
dl < s-m or d1=0

F4. Reques: for i- or d-lock implies also request for r-lock.
FS. Only & rrocess that zlready holds ar i- or d-lock may convers :% 1o =-lock; the lock wili be assigned
wher all r-locks have been removecd {3- that node.

It is noteworthy that in this protocol compesibility relations among locks are not static. The lock assignment
on a node does not depend exclusively on the lock type. but also cn the stcrus of the node and the number
of processes acting currently on that particular node. Many authors bave observed that using semantic
knowledge about the object that a process manipulates, or about the operations that a process performs on
an object car increase concurrency, [BERN78, GARCS83. HSUS3, SPECS3, SPECSS].

The process that honors or denies the right of a process 10 access z particular node. is called Lock Con-
troller (LC). It is assumed that lock requests of the same kind are ire2ied by the LC in 2 first-in-first-out
fashion and that processes being run on processors with comparable speeds.

3.1. SEARCHING

A Reacd process searches down the tree. using r-locks only. reporting success or failure Locks are
Placed and released according to the locking-coupling technique [BAYE77b]. in which an RP on its path to
the Jeaf unlocks a node only after it has locked its child. The locking—coupiing technique guarantees that
there is (at least) one node in the tree that is not currently updated.

3.2. INSERTION

An Insertion Process uses i-locks on its passage to a leaf node. Since i-lock implies r-lock it can read
the node with no other control. In each node it checks for the node’s safeness. and if the node is safe. it i-
unlocks all the ancestors. The outline of the IP's steps from root through the leaf node is shown in Fig 3a.
On reaching the leaf node the IP’s scope will be i-locked. but still fres for other IPs and RPs. If the leaf
node is safe. it e-locks it. adds the new key. unlocks the node and so its task is terminated. If the leaf node
is full then the tree will be re-organized. We do that using the side branching technique which was first



i lock(root i current := the full of pairs leal node:
current = root; while current is not i-safe o002
while ~ot current is a leaf node loop get 2 new node:
£n4d appropriate child of current; add appropriate half of current intoe branch:
r-:niock(current); add the new (k. p) en branch:
current := appropriate childs current := father of current on [P’s
i-lock(current); access path:
if current is i-safe then end loop
i-unlock ancestors of current ;
enc if
end ooz .
(a) (b)

Fig 3. "2} IP steps from oot to the leaf: (o) IP sieps from leaf to the Zezepest safe.

rexcrted by Kung and Lehman for Sinary trees [KUNGS0], and Kwong and Weoed for B-trees [KWONS2]

3.2.1. Restruciuring Phase

The IP gres in the bottom up direction creating left or right side branches as follows. ("lef:” and
“r:znt” declare ie Ziraction of the zranck with respect 10 current node). Let C 9e tze fuil node in wiaica P
"~a71s 10 add a ze'x K, p) pair. Tze IP procedure scans the current node (C) tc 3nd the "position” ; xzere
1ze ney (k) shculd be added. It then zets a ne'w node (B) from the free storage 2nd “writes the left. if j €
. or the rignt zaif of C.if j > =, into B. In 2ither case ke dranch nodz (B) :ontains m-1 pairs. Since a
ne's node has ~een created. a new pair should be added on C’s parent and the overlow propagates urtil the

i

222025t safe noce. The outline of <ne [P's sters from the izaf (0 the deepest salz node is shown in Fig 3b.
a

reaching 2rest safe node -

2 .? will have 1o add :n that node 1 pointer he newly creazec ntde

one ievel below remaining task :s o remove redundant talves from every noce on its scope {e-lccking
zm2 node at a Lime..
The higrest

amere node NI ind N3 are the Zzemest safe and highest unsafe node respect

.nsafe node needs speciai care in the mU rretccol. Consicer

X2 situation of Figure 1.
cf an IP. cailed IP1.
Assume. aiso an stier [P, calle¢ (P2, which hoiding an i-lccxk 2n N1 (hefcre [F1 converis its i-lock o e-
lock). finds that .is rath passes :hrougs N3. IP2's request w0 i-lock node N3 is not granted (because of F2)
and it waits for IP1 to free node N3. However, when IP1 unlocks this node, haif of N3's (K.P) pairs have
been removed to the newly created N3's branch. This raises the possibility of an incorrect path selection by
IP2. For this reason. IP1 provides information about the side branch by means of an auxiliary pair
(LINKK. LINK?, hereinafter referred to as the LINK pair. deiined as follows, {BILI8Sa)
LINK pair definition: LINK is a rair (LINKK. LINKP) of a key and a pointer 0 2 node which is set on the
hignest unsafe ncde (C) of an IP's scope when a left or right zranch (B) of C has been created. such that:

®  LINKP pounts o B. regardless of B's direction.

¢ LINKK is 32 ey added to T's parent because of ihe sypiitting of node C it =ay be the separator of C
itseif or its =ranch node).

That is. [P2 -emoves half »f C's pairs and places (LINKX. LINKP) on ixe rightmost pair (K::-.-l'
P._,). Then :t uniocks C and waits for IP2 1o read it. When this is done it sets P:m_’ to NIL. A NIL
pointer at this position indicates a node with no branch. Since a FIFO discipiine is assumed for lock
recuests of tke same kind. IP1 will be able to place again an i-lock on this node only after all other IPs
nave already piaced their i-locks. Proofs for the above statements can be found in [BILI85b]).

The exarzrie of Figure 4b shows the operations of four Insertion processes acting on the B-tree of Fig-
ure 42 using tte =U protocol. To simplify the flow, it is assumed that the Lock Controller assigns lock
reguests from left to right. It is also assumed that other operations besides lock assignments are of no
interest and ihev are treated on a single step (and briefly).

3.3. DELETION

na

L e SN 7 U VA VMV SUPRIT AL S T



310

ml  hoozooso0fecoi || |
—_—
| k10207230 1 2u0i 250} Pl T Soisolmosad 171
N2 Nz
/rn
moimmilaszussi | ! ) |
n5'2~c::ufzczs:~3: I |j hémer;:zziz:sl i '

‘135731 2327253 714 23w 2264287

LY
(a)
time inser1 238 tnsert 239 insert 328 insert 338
1 i-l(N1),G i-i{N1),G -i{N1}),G =I{N1L W
2 read N1 read N1 read N1 w
3 r-ul(N1) r-ul(N1) r-ul(N1) w
4 i-iN2),G i-I(N2).G i-i{N3).G w
s i-ul(N1) i-ul(N1) i-ul{N1) G
6 read N2 read N2 read N3 read N1
7 r-ul(N2) 1-ul(N2) 1-ul(N3) 1-ul{N1)
8 i-1(N4),G i-l(N4), W i-l(N6).G i-I(N3),G
9 read N4 w i~ul(N3) i-ul(N1)
10 r-ul(N4) W read N6 read N3
11 N8 right branch
of N4; transfer
N4's right half
on N8;
add 238 on N8 W 1-ul(N6) r-ul(N3)
12 e-1(N2),G w e-1(N6).G i-IINT)LG
13 add NE on N2 w adc 328 on N6 1-ul(N3)
14 e-1(N3).G w e-ul(N6) read N7
15 set LINK on N3 w r-ul(N7)
16 e-ui{N3) G e-IIN7).G
17 i-(N2).G i-ul{N2) add 228 on N7
18 r-ullN3; read N4 e-uliNT)
19 e-1INS W i-1IN8).G
20 w r-ul(N4)
21 G i-ul(N4)
22 reset LINK read N8
23 e-ul{N2) 1-ul(N8)
24 e-ul(N4) ¢-1{N8).G
25 add 239 on N8
26 e-ul{Ng)
where,

i-1(N) : i-lock node N: e-I(N} : convert i- to e-lock
x-ul{N}: x unlock node N, where x- riore

W : lock not pgranted. process should wait: G : lock rranted

(b)

Figure 4: An example of four concus-ent Insertions

The outline of a Deletion Process steps from root to leaf node is the same with an IP. Fig 3a. except
that DPs use d-locks on their passage 10 the leaf node.

33.1. Restructuring Phase

On reaching the leaf node, DP checks for its safeness. In case the leaf node is d-safe the DP removes
the key and unlocks that node. Its task is finished. Otberwise it begins the tree re-organization.

On each node (C). the sibling node (B) is checked. If B has exactly m children then merging is per-
formed. Node B is locked and all pairs from C (except the on: that has to be removed) are read into B
together with the separating key on the parent. Node C now becomes redundant but it remains intact for
Readers. Merging results in a new (K P) that should be deleted on the parent node and the problem pro-
Pagales to the next (upper) level.




N

If C's sibling is d-safe rotation is performed. Nodes B.C and their parent {A) are e-locked and the
kevs on C and B together with the serarating key on A are rotated. Once a rotation is performed on C. the
DP’s task is to remove the remaining d-locks on C's ancestors.

d .,
AN

9ccess
a

) -

:::2::57 / \

N
7

b ]

(b}

N -

regunce
subtree

Fig 5: (a) initial configuration. (b) deadlock. (¢c) lost path problem

If C's sibling is not d-safe the DP goes up the tree (by node merging) until the deepest safe node is
reached {node A in Figure 5a). DP1 wants to d-lock B to see if merging or rotation is appropriate. This
action, however, can create deadlock problems. and also leave the tree on 2 non consistent state. These
problems are examined in the next two paragraphs.

Decdlock Problem: Consider another DP (DP2) for which nodes A and B are part of its access path.
ard nodes & is its deerest safe node {Figure 5b). DP2 d-lccks its scope and enters tae restructuring shase.
togetheér with DP1 on A.C.... path. DP1. on reaching A. requests 10 d-lock noce B. a reguest vhich can not
be 3rante¢ since B is unsafe and d-iccked by DP2 (rule F3;. DP2. on the otker 2and. also reackes scde A
and reguest 0 d-lock C. Therefore each DP is waiting for the other one :5 unlcck the desired node
(ceadlock .

The Lost Path Problem: This problem is raised when DP2’s path passes through C instead of B (Figure
Sc). Then. DP2 tries to d-lock a node which will be removed from the tree structure bv DP1.

For the above reasons all DPs are forced 1o operate in a different way on the highest unsafe zode{C).
They remove the appropriate (k.p) from C and immediately unlock that node. Merging or rotation will be
done collectively in a following step by one DP only. This DP is the process that reduced the number of
children of C from m to m-1. It might be said that it is responsible for that node.

The example of Figure 6a shows an execution of four Deletion processes acting on the B-tree of Figure
6b using the mU protocol. Again, it is assumed that the Lock Controller assigns lock requests froz= left to
right. and that other operations besices lock assignments are of no interest and they are treated or 2 single
step (and briefly).
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N4 (a)
time delete 322 delete 323 deiete 333 delete 233
1 d-1(IN1).G d-1(N1).G Gé-IN1),G d-Hnl) W
2 read N1 read N1 reac N1 W
¥ 3 r-ul(N1) r-ul(N1) r-ul{N1) w
i 4 d-I(N3),G d-1(N3).G d-1{N3).G w
] s d-ul(N1) d-ul(N1) d-ul(N1) G
| 6 read N3 read N3 read N3 read N1
7 r-ul(N3) 1-ul(N3) r-ul(N3) r-ul(N1)
8 d-1(N6).G d-1(N6),W d-N7),G d-1(N2).G
9 r-ul{N6) v 1-ul{N7) d-ul(N1)
10 e-l(N6).G w e-1(N7),G read N2
11 delete 322 w delete 333 r-ul(N2)
12 D322 w D333 is d-l(ND)
i responsible responsible
for node N6 for node N7
13 e-ul(N6) G e-uliN7) d-ul{N2)
| 14 e-i(N3).G r-ul(N6) e-1(N3), W r-ul(N4)
15 d-1(N6). W e-1(N6).G w e-1(N4).G
16 \3 delete 323 w delete 234
D323 is NOT
responsible
for node N6
Hel w e-ul{N6) W e-ul{NJ)
18 G d-ul(N3) W
19 1-ul(N6) w
20 e-1(N6),G w
21 d-1INT).G w
22 r-ul{N7) w
23 e-I(N7).G w
24 merge N6 into N7 w
2 remove N6 from N3 w
26 e-ul(N3) G
27 e-ul(N7) d-1(NT),G
28 e-ul{N6) r-ullN7)
29 free N6 e-1{N7).G
30 N~ bas more
thar 4 pairs
31 e-ul(N3)
32 e-ul{N7)
where,

d-1(n) : d-lack node n; e-I(n) : convert d- to e-lock on n
x-ul(n): x uniock node n, where x is d, r, or ¢
: lock pranted; W: jock not granted, the process should wait

(b)

Figure 5: An example of four concurrent Deletions.

4. COMPARISON OF SOLUTIONS

Unfortunately. there is no universal approved measure of goodness of solution. In addition, most

papers (including ours) in this field use terms that are intuitively understood. not precisely defined. Terms
like “degree of concurrency” and "protocol simplicity” belong to to this category.
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Many authors atlempt to define he efective level of concurrency as the number of transactions doing
useful work. {see ie. [FRANS5]). The term “"useful’. however. may have a different interpretation for
different concurrent algorithms. It could be the case that some operations performed by some processes
using one protocol don't need to be performed on another. Consider, for example, the case where restarts
are employed in some “optimistic” protocols as conflict resoiution method and that the majority of the
processes are forced to restart. Clearly, knowing that the majority of the process are doing "useful® work is
not informative. Better measures such as, for example. the number of processes completing their work per
unit of time (throughput) are very difficult to evaluate analytically.

Yet. there is a place for comparison of different solutions. examining some of their characteristics and
getting a feeling of tke rrotocol quality. Working in this direction, twelve protocoi prcperties that a com-
parison should be basec upon are proposed (a similar effort is done in [KWONB82]). Tze set of properties
includes the number of lock types being used. degree of data sharing, number of processes that are permit-
ted to access a node simultaneously. how fast an RP can reach the leaf node. number of nodes locked by
the three processes during their operation. number of nocdes being accessed sequentiaily, and the number an
updater passes througz the iree.

These properties are used to ccnstruct Table 1, which compares six already proposed protocols with
ours. It shouid be pointed out that it is t:e set of all these properties that give a feeling of the protocol
quality rather than eack individual property :solated from each other.

4.1. Number of Lock Types

The number of lock types being used gives a measure of the protocol compiexity. The more lock types
are used the more comriex the pretocel is sxyected.
Table 1: Comparison of solutions

| SOLUTIONS S1 S3 S4 S i S6 S7
! Sarac Baver Baver Leaman Side- Tre U
} i Scrxelnick | Scnkeinmck Yo Sranching protceol
: | soiution 2 | solution 3 i :
lPROPERTIES il , ;
Pl Number cf lck 1vpes " i z 2 3 1 3 i 4 I'
P2. Special memory : yes,
arrangement £o z0 no no no sharing 20 zo
of memory
P3. Maximum number of RPs
accessing the same node 1 o a0 oo a L 0
P4, Maximum aumber of [Ps
accessing 1he same node 1 1 1 1 o 1 m
PS. Maximum aumber of DPs
accessing the same nocde 1 1 1 1 X! 1 =m
P6. RPs in the Updaters secpe
during the searching prase 20 2o no yes ves yes yes
i|P7- RPs in the Upcatess scope : i i
i during resiruct g pnase B ' =2 120 20 ves | ves yes
\|PS. Maximum number of zcces ;
|| locked by RPs : 2 2 0 P2 2
‘|P9. Maximum number 2f 2cees ! the wrie e wnole ! 1,or the the whole
locked by IPs scepe | sepe whole scope scope 3 2 2
P10. Maximum number of zodes || the whzie | the whole 1, 0r the the whole
locked by DPs scope i scope whole scope scope X! 3 3
P11. Maximum aumber of zodes } IPs: 2
being accessed sequentially 1 i 1 1 1 [ 1 RPs.DPs:t
P12. Number of €3
hrough the tyee i i ur ut i m | n

XT: In this soiztion, 2 node may ave less than m children and therefore a DP never restructures the tree.

For instance, solution S1 requires a fairly simple lock controller (a semaphore) that makes it attractive.
However the concurrency that is peraitted in this protocol is at 2 very low level. On the other hand. the
mU protocol increases the degree of concurrency because, mainly. it distinguishes the locks used by IPs and
DPs. Moreover the operations that are performed for these locks by the Lock Controller are trivial (addi-
tions and subtractions). Indeed. a recent work by Carey, [CARES3], indicates that concurrency control )

|
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overhead is insignificant compared to other factors.

4.2. Special Memory Arrangement

Memory requirements give a measure of the protocol applicability under different logical configuration
of the primary memory. Solutions which reguire special memory arrangement have more restrictive use
than others that do not. Consider. for instance, solution S5 which does not permit data sharing at all. It
Tequires that each process has part of the main memory for its own, In fact, this is a key issue in this solu-

bridge the gap between the assumed and actual storage systems. The remaining solutions in the table . on
the other hand. do not impose such a restriction.

43. Maximum Number of Processes Accessing Concurrently the Same Node

The maximum number of processes accessing concurrently the same node is a doubtless factor of the
protocol’s degree of concurrency. Solutions that permit a higher number of processes 1o operate on the
s2me node at the same time are faster. The solution presented in this Ppaper compares favorably with ear-
lier solutions in that an Updater who visits a node of s children permits up 1o 2m-s-1 Updaters of the same
kind to access that same node. Consider, for instance. the case of the deepest safe node. In all earlier solu-
tions. except S5. this node is locked by the Updater who first happened to visit it and no other Updaters
have access 10 that node until: (1) the leaf node is reached. (2) the key is added or deleted and. (3) the res-
tructuring phase (get new nodes. or merge two halves) is performed. The mU protocol keeps this node free:
therefore nodes belonging to the s-1 subtrees of the deepest safe node also remain free. It's easy 1o see
what it is gained in concurrency, in the case where the deepest safe node is at a relatively higher level in
the B-tree (closer 10 the root). Naturally, nodes in higher levels need be split (likewise deieted) infre-
guently compared 10 the number of insertions (deletions) performed. However. this statement implies that
most of the lime the higher level nodes are safe. In this case the mU protocol is still more efficient than
previous solutions since it doesn't delay an Updater from accessing 2 nade, wziting for an other Updater of
ihe same kind holcing already a lock on that node 10 find the nex: {Cesper) szfe node.

Solution S5 permits an infinite number of Updaters to visit a node at the same time. This solution,
however, does not require each node to have at least m children. That is. a2 DP e-locks the leaf node.
removes the appropriate pair. unlocks the node. and its task is terminated regardless of the number of pairs
in this node. Consequently, repeated deletions may lead to Space underutilization. For applications. how-
ever, where deleted pairs are evenly distributed on the tree. or for apriications in which speed is of prime
concern while space utilization and memory sharing is not. this may be the protocol of choice.

4.4. Reader Access During the Searching and Restructuring Phase

In general. RPs represent the majority of the processes entering the tree. Therefore it’s imporiant to
see how fast a RP can reach the leaf node. in the presence of Updaters (1he interaction among Readers is
examined in P3). P7is a verv important issue since the restructuring phase of an Updater’s life could take
lime. especially when the deepest safe node is in higher levels,

45. Maximum Number of Nodes Locked by an RP, IP ,or DP

All protocols using more than one lock type have at least a read {r-) and an exclusive (e-) lock.
Whatever is the CCCG of a particular protocol these two locks are incompatible (they can not coexist on
the same node). Therefore, it is worth knowing how many nodes are locked at a time by each process. It
might be suggested that it is 2 measure of the restrictions’ spreading set by 2 process. Clearly. solutions S5,
S$6 and S7 dominate over the first four. It is noteworthy that the ‘yes” answer in P7, for these three proto-
cols, is an immediate consequence of P9 and P10. It is the fact that an Updater locks two or three nodes.
and not its entire scope. which permits Readers 10 operate on this part of the tree.




315

4.6. Maximum Number of Nodes Accessed Scquentially by the Processes

Some solutions (S5. S7) use a link pointer to a sibling node 25 another means o reach that node. In
S5 the link (10 the right sibling) is permarent and part of the tres structure. It is used by ail processes try-
ing to reach the appropriate leaf node. As s pointed out in [LEHMS1], this situation could force a process to
run indefinitely having to follow link peinters created by other processes. Aittoughb this is extremely
unlikely to happen in a practical implementation. it is still an undesirable factor fer the searching time.

The mU protocol also uses a link to the left or right sibling. However, this link is not part of the tree
structure. It is set by the IPs on the highest unsafe node, to address the newly created sibiing node and for
a time period suficient for other processes acting on that node to omplete their cperation. In addition only
IPs should be aware of this link. Readers :nd DPs need know acthing about it. and therefcre they iiways
access one node seguentially.

4.7. Number of Updater Passes Through the Tree

“ndater goes irst :irough the wicle iree. Tze other arrows
est safe node {up acTow) and wvise ~ersa (down arrow . This

The first de'wn arrow indicates tha:
indicate the passage from the leaf o0 the
property is a factor of the Updaters’ spee
Without any intention 0 discharge S6 an

1 s desirable to keep *he number of rasses as small as pessible.

¢ 87 ‘rom being three-rass protoccis. it
existence of the third pass that eraties So :na S7 to permit Reazders to creratz most of the ur=2 o lbe
Updaters’ scope.

=2y e said that it s the

5. CONCLUSIONS

In this paper, we irst defined th2 Cin

CCCG.. which
=3 .0¢ks that are not stzuic. Then. '~e sascribed fe'w coneurrency
control methods for B-trees. Among tke=. it's the mU protocel which provides 1igh concurrency among

cnal Compaukility z2né Conver

's a directed grara defining relalions z

Read. Insertion or Deletion processes i concurrent!y cn 1 node. This is achieved by using three

separate lock tvpes for each of *he above rricesses.

™

A number of properties have hesn :lsc prorosed 1o comrars such prowecis. The ser of priperties

includes the numbzer of lock tvpes being used. Zegree of data shamng. number i crocesses that are permit-
ted 1o access a ncde simultaneously. how {ast a reader can reach ihe leaf node. nuzber of nodes locked by
the three processes during their operation, number of nodes being accessed sequentially. and the number an
updater passes through the tree. Based on these properties, the seven protocols are compared. Although no
precisely defined metric for the overall quality of a protocol exists, it was argued that the mU protocol
permits more concurrency, without having o sacrifice space or 1o :mpose special memory requirements. The
validity of the atove argument has beea 2150 demonstrated oy de.eloping a simulztion modei. [BILIS6].
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