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ABSTRACT 

B-trees haxe been used as an access ald for both primary and 
secondary Indexing for quite some time This paper presents 
a deadlock free lockmg mechanism m which different processes 
make use of cbfferent lock types m order to reach the leaf 
nodes The compatltuhty relations among locks on a node, do 
not exclusl\ely depend on their type, but also on the node 
status and the number and kmd of processes actmg currently 
on the node As a result, a number of msertion or deletion 
processes can operate concurrently on a node The paper 
presents an appropriate recovery strategy m case of falure, 
and dIsccusses the protocol modifications that are required so It 
can be used rn other smular structures such as B+-trees, 
compressed B-trees, and R-trees for spatial searchmg 

1 INTRODUCTION 

4 great deal of the time spent during the database access 
IS attributable to the searching through Indexes The B-tree 
and Its barlants have become the most widely used access 
alds Maxlmlzmg concurrency on them IS one of the most con- 
tributing factors to the overall degree of concurrency Figure 
la shows a B-tree of level three a hose nodes may store from 
two up to four (key, pointer) pairs We may eaznlq show that 
tablng no precautions agamst the anomahes of concurrency 
leads to Incorrect results 

Assume that two processes act on the B-tree of Figure 
la The first IS an insertion for key 36 and the other 1s a 
search for key 38 Now suppose the followmg sequence of 
operations 
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Insert 36 search 38 

1 find proper child of Nl for 36 

‘child 1s N3j 

2 find proper child of N3 for 36 
c Md 1~ NlO] 

3 find proper child of Nl for 38 

[ciuld 1s N3] 

4 find proper child of N3 for 38 

[cluld 1s h lo] 

5 YlO F leaf and full 

6 add 36 tn NlO => spht NlO mto NlO, N13 [see figure lb] 
7 add (36, N13) m N3 => split N3 tnto N3, N14 Isee figure Ic] 

8 NlO ts leaf, search NlO for 38 

key 38 not found’ 

9 add (24, N14) m Nl lsee figure Ed] 

It’s obvious that the search operation makes a wrong conclu- 

Slon about the existence of key 38 Between the time the 
search process finds the appropriate leaf (node NIO, step 4) 
and the time It reads it (step 8), the Insert process has ahead\ 
moved 38 from NlO to Nl3 (step 6) and therefore the search 
Ing is incorrect 

Smular problems exist among msertlons and deletions 
Consider the tree of Figure Id and suppose again the existence 
of two procebses a deletion of key 32, and an insertion for the 
key 3 1 Suppose also the followmg sequence of operations 

delete 32 -- -~- insert 31 

find proper child of EC 1 for 32 

rhlld 1s Y14] 

find proper child of \l for 31 

thlld IC Iv 141 

hnd proper child of N14 for 32 

thtld I 11101 

hnd proper cluld of \ 14 for i I 

[&Id 1s NlO] 

hl0 1s leaf, delete 32 from NlO 

xdd the rest of NlO m N13 
N10 ICC leaf and not II II 

add 31 m NlO 

Irlert node NlO from N14 [see figure le] 
-= --_z-_ 

I ht prohlr nt her6 ts that the new key (31) has been a&It d t 
1 VI<& (1 III) which 1s deleted later by the deletion process 
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F’lgure 1 (a) through (e) illustrate concurrency anomahes 

Essentially, all the known concurrency control tech- 
mques, IBernSl], can be employed to synchronize simultaneous 
access on the tree It has been observed however, that 
semantic knowledge about mdlvidual objects that a process 
manipulates, or about the operations that a process performs 
on an oblect can Increase concurrency, [Garc83, Lync83, 
Spec83, Scpec85, WelkSG] For example, non two phase lock- 
mg protocols (graph protocols [Yann79, Kede83, Buck85], tree 
protocols (S&80, Crok86]) have been proposed where the 
addltlonal mformatlon on the way that processes access the 
database IS used to increase concurrency 

Workmg on this direction, we developed a deadlock free 
locking protocol that takes advantage of how nodes are organ- 
ized, how processes access nodes and what kmd of 
modlficatlons these processes can Impose on a tree node As a 
result, many InsertIon or deletion processes can operate con- 
currently on a node 

We start the description of the proposed protocol, by 
giving some background mfottnatlon m the next se&on Sec- 
tlon 3, discusses the locking rules and the storage model Sec- 
tlons 4, 5 and 6, present the algorithms for searchrng, insertion 
and deletion In sections 7 and 8, we preqent an informal proof 
of correctness and suggest recovery strategies m case of 
faJure FInally, section 9 discusses the protocol applicability 
to B-tree hke structures and section 10 summarizes tins work 

2 BACKGROUND 

Definltlons 

A B-tree of order M 1s a balanced tree with the followmg 
properties [Baye72] 
Every node has between M and 2M children, except for the 
root whrch has between two and 2M A leaf node ulth s 
pointers contams s keys A nonleaf node consists of s pointers 
(PO, p,, > P,-,) to Its chddren and s-l keys (K,, K,, , Kqml) 
arranged m such way that for every key K m the subtree 
pointed to by P,, the followmg relatronshlps hold 

1=0 + K < K, 
O<l<S-I -9 K, d K < Kltl 

1-s-l + K, d K 

We assume that each node IS orgamzed sequentmlly, and the 
set of all keys appears In the leaves In case that F’, belongs to 
a leaf node It ~111 point to records keeping actual data assoc~ 
ated with the keu h, Data associated with each key are of no 
Interest m the follo\nng dIscussIon and are ormtted The 
operations to be performed, concurrently, on a B-tree struc- 
ture will be of three hind\ search, insert, and delete The 
processes that perform these operations are called read process 
(RP), msertlon process (IP) and deletion process (DP), 
respectively IPs and DPs are collectively called updaters 

Most of the solutions to the problem of supportmg con- 
current operations In B-trees make use of the followmg obser- 
vations There emsts a node which IS the root of a subtree 
above which no change m data and structure due to an update 
can propagate This node IS called a sa/e node jBaye77] A 
node conslstmg of less than 2M children IS called rnsertlon- 
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safe (I safe), becau~ a ~CM hey can be ad&d without iorclng 
a splrt i\ node with more than hl children 17 c&d delelton- 
sa/e (d safe), because d key can be deleted without going 
below the Mmchddren mlnlmum The portion of the access 
path from the deepest safe node to a leaf IS called the scope 

of the updater The child of the updater’s deepest safe node 
on Its scope, IS called the hrghesl unsafe node 

Related Research 

A number of solutions have been proposed for handhng 
the concurrency control problem on B-trees Locking tech- 
mques [Sama76, Baye77, Mill78, Gulb78, Kwon82, Mond85] 
require each process to lock a node before It IS accessed, 
appropriate lock relations guarantee the correctness of each 
operation In the first solution, [Sama76], only one lock type IS 
used, the exclusive lock, regardless of the operation to be pe- 
formed, while the other solutions provide at least two chfferent 
lock types to be used by searchers and updaters None of these 
solutions, however, permits concurrency among insertion or 
deletion processes Lehman and Yao presented an elegant 
solution m which many updaters may simultaneously access 
the tree, [LehmSl] This, however, IS done In such way that 
(a) no data sharing among processes IS allowed and (b) succes- 
slve deletions may cause storage underutilization An 
optmustlc techntque, :KungSO], has been proposed to handle 
concurrencv on B-trees, [Kers84/, which IS not an efficient 
method R hen confllctmg operations are likely Finally, Lausen 
proposed a solution which switches from locking to the 
optlmlstlc method when confllctmg operations are rather sel- 
dom ,Laus84] The drawback of this method IS that the lock- 
mg protocol that 1s used IS the one proposed m [Sama76], an 
Inappropriate solution smce all processes (mcludmg readers) 
use exclusive locks 

3 LOCKING SCHEME AND STORAGE MODEL 

The protocol uses four types of locks, VIZ read-lock, 
Insert-lock, delete-lock, and exclusive-lock (r-, I-, d-, and e- 
lock respectively) Let rl, rl, and dl be the number of r-, I-, 
and d-lochs, respectively, currently placed on a node The 
compatlbihtv and convertlbihty relations are given m Figure 
2 The basic idea of the protocol IS that a node with s children 
could accept 2M-s l-locks by 2M-s IPs and still be a safe 
node for all of them In other words we permit as many IPs to 
place locks on a node as their collective actlon will not require 
the node to be spht Likewise, a node with s children can 
accept s--V d-locks by s-M DPs and still be safe for all of 
them Readers, on the other hand are free for reading nodes 
that belong to a subtree being updated by an Insertion or 
Deletion process I- or d- locks do not give the right to an 
updater to modify a node They are used as reservations of 
free slots m the node Should an actual modtjicatron be 
reqwred, they should be converted to e-locks, a technique 
used also m [Baye77, KwongSZ] An Important point that can 
not be seen from these tables IS that a request to I- or d-lock 
a node Implies also a request for an r-lock, e g If an l-lock 
request for node N IS granted, N IS both I- and r-locked 
b hen the reading IS terminated the updater must explicitly 

- 
r 
1 

d 
e - 

r I 

F F I- T al < 2M-s or 11 2 0 
T F 
F T 

(4 

d 

F 
F 

dl < s-M or dl = o 
T 

e 

F 
F 
F 
F - 

(b) 
Figure 2 (a) Compatibihty relations among locks 

(note the table IS asymmetric) 
(b) Convertlbihty relations among locks 

r-unlock the node Clearly, m this protocol compatib&y 
relations among locks are not static The lock assignment on 
a node does not depend exclusively on the lock type, but also 
on the status of the node and the kind and number of 
processes acting currently on that particular node 

Storage Model 

We assume that the nodes of the tree are stored on disks 
The disk IS partitIoned mto blocks which are the umt of both 
storage allocation and data transfer The size of the node IS 
the same as the block Size The maln memory IS shared by all 
processes Each process may have Its own private space but 
tins has nothing to do with Its right to read or modify a node 
m mam Reads and updates of a node may be performed on a 
scngle copy rn mam memory This model IS m contrast to the 
one m [LehmSl] where all processes should copy the block 
which they want to read or write on Its own private 
workspace, e g m their model, If at some point m time, n 
readers are reading a node, there are n copies of the same &sk 
block m mam memory 

The followmg modification of the basic B-tree structure 
IS required to accommodate our solution We assume that two 
auxlllary pairs exist on each node, as shown m Figure 3 The 
(K, P,) and (K,, PI) pairs of each node are called the r:ght 
and left lrnk pair, respectively The hnk pams are used by 
IPs as an ad&tonal method of reachmg a newly created node, 
readers do not depend on the values of the lmk pairs for their 

1 K,P/ 1 s PO K,P, Km1P2~-, 1 K$‘, 1 -- 
(4 

v/ s KoPo VI K 2M-1P2M-1 1 K?r 1 

04 

Flgure 3 (a) non-leaf and 
(b) leaf node with left and right hnk pairs 
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operation The techmque of usmg addItional paths to reach a Algorithm FmdLeafToInsert It searches the tree rooted at 
node IS also used m [Lehm81], where a hnk paJr on each node A for an argument key k, It reorganizes the tree, If necessary, 
always pomts to the node’s right slblmg, and m [Mena81] for and returns an e-locked non full leaf node m which k should 
reco\ ery purposes be inserted 

As we will see when we discuss the deletion process, It 1s 
very easy to parameterlze the threshold, say tm, for mergmg 
or rotation We may define any value of tm such that 0 < 
tm < M Asslgnmg a value of tm less than M, ~111 further 
increase concurrency because more DPs may place d-locks on 
a node and a greater number of IFS may place I-locks on a 
node with fewer pairs If tm - 0, all DPs wdl reach the leaf 
node without e\ er try Ing TV reorgamze the tree This may be 
useful when (a) It IS known a prlorl that deletions are not 
directed to a small part of the tree, (b) the tree IS young and, 
presumably, It IS growmg Notlce also, that when tm = 0 we 
may ha\e empty leaf nodes and the protocol behaves almost 
In the same way wrth the one presented m (LehmBl] where a 
deletion process always deletes the par from a leaf regardless 
of Its population Our solution, however, has the benefit that 
this 1s done In a controlled way, that IS, we may dynamlcally 
change tm to achieve the desired space utlhzatlon 

I1 [lock root] set A = root, I-lock(A), push(stack S, A) 

I2 [A IS leaf and I-safe] 
If A 1s leaf and not full then 
r-unlock(A), convert(l-re A), return A 

I3 [A IS leaf and full] 
If A IS leaf a,id full then 

I3 1 

I3 2 

r-unlock(A), mloke leaf = Restructure(S, k) 

E-lock(l, leaf), 
e-unlock all e-locked nodes except leaf, 
return leaf 

Notations 

The pair ( K,,, , P, A ), 0 < 1 d 2M - 1, exphcltly 
declares the lth kev and p&nter of node A A request to con- 
vert an I- or d-lock on A to e-lock IS expressed by the nota- 
tlon convert(x+e, A), where x IS 1 or d We use the notation 
E-lock(x, A) to mean the followmg three rndrurdual lock 
requests x-lock(A), r-unlock(A), convert(x-+e, A), where x IS 
I or d FInally, function Scan(A, k) reads node A, as If It had 
no hnk pairs, and returns the pomter to the appropriate chdd 
for an argument key k 

14 [find and lock child] 
C = Scan(A, k), r-unlock(A), l-lock(C), 

15 [check If child has been spht] 
C = CheckSplit(C, k), A = C 

16 [A IS I-safe] If A IS not full then 
while S not empty pop(S), I-unlock A’s ancestors 

I7 push(S, A), repeat from step I2 

For the majority of the cases the leaf node IS not full and the 
IP stops at I2 If, however, the leaf IS full the Restructure 
routine reorganizes the tree by mltlally, sphttmg the leaf 
node Smce a new node has been created for the leaf node, a 
new pair should be added on leaf’s parent and if the parent 1s 
full the overflow propagates until the deepest safe node Smce 
many IPs may operate on the same node simultaneously and 
because of the Just mentioned upwards reorgamzatlon, 
appropriate precautions should be taken agamst possible con- 
currency anomahes while another IP goes down the tree to 
find the proper leaf node This task IS undertaken by the 
CheckSplit routme, whose Internals ~111 be explamed later 

4 SEARCHING Restrueturmg Phase 

A read process searches the tree for a key ‘k’ and returns 
the r-locked leaf node on which k may exist, as follows 

Sl [lock root] r-lock(root) and set A = root 

$2 [leaf IS found] If A IS leaf then return A 

$3 /lock child, unlock parent] 
C = Scan(A, k), r-lock(C), 
r-unlock(A), A = C, 
repeat from step 2 

On reachmg the full leaf node the IP’s scope ~111 be I- 
locked, but still free for other IPs and RPs The IP Instead of 
e locking Its, alread) l-locked, scope uses a technique slmllar 
to the side branchmg one, reported m [Kung80] for bmary 
trees and [Kwon82] for B-trees, as follows Let C be the full of 
pairs leaf node The IP gets a new node B from the free 
storage (assume, PI = P, = NIL for all new nodes), and exam- 
mes the followmg posslblhtles 

This simple lock+ouplmg techmque, [Baye77], IS sufficient for 
the correctness of the RP’s operations 

If k > h,, (B ~111 be a right branch), the M right most 
pairs of C, (K, PM) through (KZMml, PZMeI) are read 
mto B 

5 INSERTION 

An InsertIon Process uses I-locks on Its passage to a leaf 
rlnde Since I lock lmphes r-lock It may read the node with no 
other control In each node, the IP checks for the node’s safe- 
nes5 and If the node 1s safe It r-unlocks all the ancestors An 
r lark on the other hand, IS released lmmedlately after read 
lrlg d node, regardless whether the I-lock IS kept or not The 
*)ut lme of the InsertIon process follows 

If k 6 KM,C (B ~111 be a left branch), the 21 left most 
pairs of C, (K,, P,J, through (KM-,, PM-,), are read mto 
B 

The sphttmg propagates upwards m a slmdar way, 1 e readmg 
half of the full node, with the addltlonal operation of addmg 
the newly created node, on the lower level, as well as the new 
separator The new separator which should be added on C’s 
parent 1s always the K, key of C before Its sphttmg, regard- 
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less of the \alue of htb L and the dlrtctlon of B 

Figure la shows the generatlon of a left (P) and right 
branch (Q) III order to Insert key 29 In the tree of Figure la 
(the hnk pars are shaded) Slmrlarly, Figure 5a shows the 
generation of two left branches, P and Q, m order to msert 
key 17 In the tree of Figure la It IS noteworthy that while 
the IP creates the side branches (costly operations smce the 
allocatlon of a free block may require two disk accesses), no 
node m the orlgmal tree needs to be exclusively locked Also, 
the side branches impose no addltlonal space overhead, smce a 
full node has to be split any way 

The update of the deepest safe node IS performed aa fol- 
lows 

(b) 
Figure 4 Tree reorgamzatlon m order to Insert key 17 

Flgure 5 Tree reorgamzatlon m order to insert key 29 

4lgorlthm IjpdatrDeepestSafe It UpddtcS the deepr<t \dff 
node A, given its unsafe child C and the newly created slbhng 
B of C In cast that there IS no such deepest safe, node 4 1s 
passed with value NIL (I e C IS the full of pairs root node) 

Ul Ideepest soft= node A exists) 
1fA f NIL then 

Ul 1 convert(~-re, A), convert(l-re, C), 
addBandKMMC the new separator, on A 

u12 if B IS a right branch then ( K+ , P, B ) = ( Kr c , 

Pr,c 1 and ( K,,, ) Pr,c 1 = ( KM,, f d 
u13 If B IS a left branch then ( K,,B , P,,B) = (K,,, 

p,,c ) and ( Kt,c y pt,c ) = ( KM,, 1 B ) ’ 
u14 remove left (If B IS left branch) or right (If B IS right 

branch) half of C 

U2 \C IS the full of pars root node, see Figure 6a,bJ 
If A - NIL then 

u2 1 convert(l*e, C), get a node D from the free storage 

U2 2a If B IS right branch, copy left half of C to D, 

=tPCIC = D, ( Kl,c 1 Pl,C 1 = ( KM,, 7 B) 
U2 2b If B ls’left branch, copy right half of C to D, 

set P, c , = B, ( Kl,c 7 ‘,,C) = ( K,,C 1 D, 
u2 3 set counter of root C to two 

Figure 6 Root sphttmg for 
(a) left and (b) right branch 

Vote that If the root IS full, rts update IS done on place, that 
IS, Its address never changes, Figure 6a,b Steps U1 2 and Ul 3 
are needed m order to guarantee that even a very slow IP ~111 
find Its path Assume the sltuatlon after an IP (say, IP,) has 
removed the C’s right half Assume also, another IP (say, 
IP,) that holdmg an r-lock on A, before IP, updated A, wants 
to proceed to I-lock C because that’s the proper node for the 
key that wants to Insert When IP, I-locks node C, half of 
C’s pairs have been removed by IP, Even worst, It could be 
the case that other IPs insert a number of pairs on C, causmg 
rc splrttmg of C, perhaps before IP, managed to read thl? 
node IP, IS able to find its path, through the CheckSpllt, 
N hlch 1s described bellow 

4lgorlthm CheckSpIlt Given an r- and I-locked node C and 
a key k, check whether C or one of Its branches IS the proper 
node for k 
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( 1 li (Pr#21L dnd kb h,) then Branch = P, 
elself (P,#NIL and k<h,) then Branch = P, 
ells Branch = NIL 

(2 appropriate node found1 
If Branch = NIL then return C 

c3 [transfer locks to branch node] 
I- lock(Branch), r- and I-unlock(C), C = Branch, 
repeat from step Cl 

Since, steps Ul 1 or Ul 3 actually insert a new node to a lmear 
Imked hst contammg some of A’s children, we lmmedlately 
have that for any paw of nodes, z and y, wh:ch have the 
same parent, rt can not be the case where z w reachable jrom 
y and y 1s reachable from z Therefore, IPs can not deadlock 
while movmg locks on slbhng nodes (step C3) Thus, we can 
always check whether a node has been spht and If so which 
node should be scanned m order to find the appropriate path 
&ote also, that there IS no need to set the lmk pair on nodes 
other than the highest unsafe, smce all IPs should first read 
this node before they proceed to lower levels 

The remammg task of the IP process IS to proceed to 
lower lebel nodes and remove the appropriate half from those 
nodes Its steps are summarized here 

Algorithm Restructure It accepts the key k for msertlon, 
and the 1 locked 1P’s scope It reorgamzes the tree and returns 
d non full leaf node In which k should be inserted After com- 
pletlon, all nodes In IP’s scope are e-locked 

RI1 make branch for the leaf node, and call this node A 

RI2 make branches upwards, until the highest unsafe node C 

RI3 UpdateDeepestSafe 

RI4 rf C IS leaf then return A 

RI5 convert(l-te, child of C), remove left or nght half of C, 
reset P, and P, of child to NIL, C = chdd 

RI6 repeat from step 4 

Figure 4b and 5b show the tree state after the Restructure 
routme IS completed for the operations of the previous exan- 
ples 

6 DELETIOX 

There are two major characterlstlcs of the way DPs 
Morh First, reorgamzatlon of the tree IS always done m a top 
down manner, secondly, each DP attempts to correct actions 
taken by other DPs, never Its own The Idea of relaxing the 
responslblhty of a process to fimsh Its own work IS also dls- 
cussed m (Elh80a, Elh80b] f or AVL and 2-3 trees and m 
,Manb84] for bmary trees On each level, the DP d-locks the 
proper node, exammes whether this node has no less the tm 
pairs, where tm IS the threshold for mergmg, and If so, It r- 
and d unlocks the parent If It has less than tm pars, It 
lmmedldtely unlocks this node, e-locks the parent and invokes 
the Reorgamze routine which operates as follows 

Algorithm Reorganlce It accepts an e-locked node A and a 
key k, It reorganizes the subtree rooted on A and the child C 
for key k, after the reorgamzatton, It returns the proper child 
C and Its slblmg B 

RDl [find child] C = Scan(A, k), E-lock(d, C), B = NIL 

RD2 [C IS d-safe] 
If C haa no less than tm children return C, B 

RD3 [C 1s unsafe] 
B = an Immediate srblmg node of C, E-lock(d, B) 

RD4a imerging] 
If total number of pairs m C and B IS less than 2M 
then move all pairs of C mto B, delete child C from 
A, FreeNode( interchange C and B 

RD4b jrotatlon] 
elseif C 1s a leaf node then rotate B mto C 

RD5 return C and B 

Our solution does not guarantee that every node has at least 
tm pairs because, as we see from the above algorithm, only 
merging IS performed on non leaf nodes The fact, hone\er 
that two nodes can not be merged It lmphes that they have, 
collectively, more than 2M pairs and therefore space underu- 
tlhzatlon problems can not be raised because of this action 
Rotations, on the other hand, may be performed on leaf 
nodes 

The problem of root IS handled m a slmllar manner ulth 
IPs, In that the address of root does not change, simply the 
contents of the root IS updated This ~111 happen off the root 
has exactly one child The update IS done b> molmg all pairs 
from this umque child to the root, Figure 7 

Figure 7 Root update because of deletions 

4lgorlthm ReorgameeRoot It fills up the root A with all 
the pairs of Its unique child The address of root does not 
change 

RR1 [e-lock the root] r-unlock(A), convert(d+e, A), 

RR2 [e-lock Its unique child] C = Po A , E-lock(d, C), 
copy C to A, set P, of C to pomt to Itself 

Notice that the unique child of the root IS not returned to the 
free storage, This IS the only case where a node IS lost “for- 
ever” We present now the deletion process 

Algorithm FmdLeafToDelete Given a tree A and a key k, 
It returns an e-locked leaf node from which k, If It exists, 
should be deleted As It goes down, It re-adJusts nodes with 
less than tm pairs 
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ibooltan ExL 1s true off the parent node IS e-locked] 

Dl jd lock root] 
make A the root, d-lock(A), set ExL = false, 
If root A IS leaf then r-unlock(A) and convert(d-+e, A) 

D2 [adjust root] 
If root A has one child C, and A IS not leaf then 
invoke ReorganmeRoot(A), e-unlock(C), ExL = true 

D3 [leaf IS found] If A IS leaf then return A 

D4 [find and lock child] C = Scan(A, k), d-lock(C) 

D5a [child IS d-safe] If cluld C has no less then tm pairs then 

D5a 1 If C IS leaf then r-unlock(C), convert(d-re, C) 

D5a 2 [unlock parent] unlock node A, set A to be C, set 
ExL to false 

D5b [chlld IS not d-safe] If child C has less than tm pairs 
then 

D5b I junlock child, e-lock parent] 
r-unlock(C), d-unlock(C), 
If not ExL then r-unlock A, convert(dde, A) 

D5b 2 ‘check node] If Pr, = A then e-unlock(A) and re- 
peat from step Dl ’ 

D5b 3 Ireorgamze A] Invoke Reorganlze(A, k) which re- 
turns child C, and Its sibhng B 

D5b 4 e unlock(A), set A to be C and ExL to be true, 
If B f lLIL then e-unlock(B) 

D6 repeat from step D3 

4n example of a deletion process ~111 be given m section 8, 
M hlle we drscuss the reco\ ery mechanism 

7 CORRECTNESS OF INTERACTION AND 
DEADLOCK FREEDOM 

In order to prove correctness, we will not prove that 
log-sequence of events, produced by this protocol, are serlahz- 
able ‘Esba76], because they are not 1 The sequence of low 

lekel, rntermedlate, reads and writes 1s unimportant m thrs 
appllcatlon as long as the results of the high level operations 
search, Insert, and delete, are consistent (equlvaient to a serial 
execution) The dlstmctlon between senahzablhty of log- 
sequence of events and operation-sequences IS &cussed also 
m ,Bern83 Ford84, Uoss86] We ~111 prove that all processes 
can navigate correctly mto the tree, m order to find the 
appropriate leaf node, given the mochficatlons winch are 
Imposed by the updaters’ reorgamzatlons and that they never 
deadlock We do that, by exammmg the synchromzatlon 
achieved between the three types of processes 

I 4ssume for example a tree of height four and a path 
conslstmg of the nodes A, B, C, D on level one through four, 
and two DPs, DPI and DP2 that pass through the above 
nodes DPl may rearrange nodes A, B before DP2 reads these 
nodes and DP2 may bypass DPl and rearrange C, D before 
DPI reads C and D 

In the followmg dlscusslon, nodes A nnd C are the 
deepest safe and highest unsafe node, rcspectlvely The time 
that a process P, IS granted an x-lock (x = r, I, d, or e) on 
some node N, IS expressed by x,(N) LIkewise, the notation 
xu,(N) means the time that P, x-unlocks node N 

Read/Insert IPs do not perform any modlficatlon durmg 
the searching phase, and for the part of the restructuring 
phase from leaf to the deepest safe node Recall that, during 
that time, side branches are not, yet, linked to the tree and 
they are mvisible by RPs Therefore the compatlblhty of r- 
and l-locks does not create any problem for RPs Vlstble 
modifications are performed after the IP e-locks node A Let 
e,(A), e,(C) be the time that II’, e-locks nodes A and C, 
respectively Let also r2(A), rZ(C) be the time that an RP, 
r-locks nodes A and C, respectively Because of the lock- 
couphng technique we have either r,(A) < rz(C) < cl(A) < 
e,(C) or e,(A) < el(C) < r2(A) < rz(C) In the first case 
RP, reads C before half of Its pairs are removed and m the 
latter RP, reads C after reading A which already has been 
updated to mclude also the branch of C Thus, rn either case, 
the RP does not have to read the hnk prs In summary, 
once the IP e locks the deepest safe node, readers can not 
interleave on the tree rooted on this node ’ Since, an RP and 
an 13’ place their r- and e-locks, respectively, on nodes vlslble 
by both m a top down way only, they can not deadlock 

Insert/Insert Clearly, the pomt that needs dIscussIon 15 the 
IPs operations on the deepest safe node Smce this IS the case 
where man) IPs may coexist on a node while updates take 
place Assume that an IP, say IP,, has already l-locked Its 
scope, created all the side branches and It IS ready to update 
the deepest safe node A Define e,(A), eI(C) to be the time 
when IP, e-locks nodes A and C, respectIveI> Assume also, 
the existence of another IP, say IP,, which path passes 
through nodes A and C (before Its sphttmg) Let I~( 4), In 
be the time when IP, l-locks nodes A and C, respectively 
Clearly, eI(A) < cl(C) and I*(A) < In 41~0, since node C 
IS full, IP, can not l-lock C before IP, unlocks this node and 
thus we have cl(C) < lz(C) Therefore, we have to examme 
the followmg two cases 

Case 1 e,(A) < cl(C) < 12(A) < la(C) or e,(A) < 12(A) 
< el(A) < lZ(C) The Important part of both of these me- 
quabhes IS that e,(A) < $A) which means that the side 
branch (say, B) has already been added on A when IP, reads 
this node and therefore IP, may access C or B m the usual 
way (reading A, the parent of both C and B) 

IP, reads A before Case 2 I*(A) < cl(A) < cl(C) < In 
IP, adds B m this node, and reads C after IP, removes the 
left or right part of C In this case, IP, makes use of the lmk 
pairs to find Its path via the CheckSplIt routme Note that If 
IP, delays to place Its l-lock request for node C (after e,(C)), 
other IPs may bypass IP,, add pairs m C and re-split this 

2 Strictly speaking, this IS required for recovery pur- 
poses only The execution IS still correct even If readers inter 
leave with an IP m Its scope, provided that the IP places Its 
e-lock requests accordmg to the lock coupling technique 
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node This could happen at most 2M-fm-1 times? 

IPs place their I- and e-locks m a top down manner, 
except *hen a branch node (on the same level) should be I- 
locked However, it has been shown that no cycles are posse- 
blp among nodes of the same level and thus IPs can not 
deddloc k 

Read/Delete DPs always e-lock the parent node before 
they e-lock and rearrange two of parent’s children Therefore, 
becduse of the lock<ouplmg technique, readers can not Inter- 
fere with DPs while updates take place Readers and DPs 
place their r- and e-locks, respectively, m a top down way and 
therefore they can not deadlock 

Delete/Delete There are two places where a DP performs 
its updates (a) to update the root (step D2) and (b) to reor- 
gamze a node other than root (step D5b 3) We examme those 
two cases 

Case 1, ReorganizeRoot Assume a DP, say DP,, d-locks the 
root A (step Dl) Since the root has exactly one chdd no 
other DP may have any kind of lock on the root Let e,(A) 
and cl(C) be the time when DP, e-locks A and Its umque 
child C and updates the root Conflict may arise when another 
DP, say DP,, holds a d- and r-lock on C and one of C’s chll- 
dren, say D If D 1s unsafe, DP, r-unlocks C, ruZ(C), and con- 
berts its d- to e-lock on C, e*(C) Although, the schedule 
ruz(C) cl(C) e*(C) 1s not correct, DP, recovers by first check- 
ing whether C 1s part of the tree (step D5b 4) and d It IS not 
unlock C and It starts again from the root No other mterac- 
tlon can create problems on the root 

Case 2, Reorganize This subprocess starts workmg with the 
parent node A being e-locked All subsequent operations are 
done after children nodes, C and B, have been e-locked, at 
e,(C), e,(B) respectively, (steps, RDl and RD3) Also, this 
5ubprocess do not depend on values passed by the parent pro- 
cess for their operations, I e It IS its own responsibility to find 
the child for some key, the sibling et c Therefore, here we 
have a sertaf execution between those subprocesses that act 
on a subtree rooted on the same node The order of the serial 
execution IS determined by the order m which e-locks are 
placed on the parent node A The same IS not true, when 
Reorganize subprocesses work on dlfferknt levels Assume a 
DP, that holds a d- and r-lock on B as well as on one of B’s 
children, say D If D has less than tm pans, DP, unlocks D 
and then r-unlocks B, ruz(B), and converts its d- to e-lock on 
B, e,(B), In order to reorganize B and C Agam, the schedule 
ruz(B) e,(B) ez(B) IS not correct However, no pour has been 
deleted from B, simply all pairs from C have been moved to 
H Smce, the Reorganize subprocess invoked by DP, reads 
node B after e,(B), no harm can be resulted from DP,‘s 
dctlon on B 

Insert/Delete Operations performed by IPs or DPs which 
modify the tree are done on their scope which IS I- or d- 

3 Lvery trme a sphttlng of C IS performed a new pair IS 
added on A, when A reaches the point where It will have 
exactly ZM-1 children and one I-lock, the IP2’s lock, no other 
I lock may be placed on A 

locked, respectlbely Since, these locks are not compatible 
there I$ no Interference among these processes 

8 RECOVERY 

We know of two condltlons that should be satisfied so 
that a locking protocol be recoverable (a) the locking granu- 
larity must be at least as fine as the recovery granularity and 
(b) obJects updated by a transactlon T, must be unavailable 
to other transactions until T, commits (to avold cascading 
roollbacks) While the first condition 1s satisfied, the latter IS 
not That IS, we would like to unlock updated nodes on higher 
levels on the tree before the transaction actually updates the 
leaf node and commits, without sacrlficmg recoverablhty 

Operations acting on a B-tree are actually a part of a 
longer transaction running on the database For example, we 
insert a key and a pointer to a B-tree because we insert a 
tuple on a relation indexed by this tree We expect a transac- 
tion to be atomic, that IS either happens or has no effect at all, 
[GrayBl, Haer83] F or Instance, m the above example we do 
not want to have neither the index updated with the new pair 
wlthout the tuple m the relation, nor the tuple m the relation 
wlthout the correspondmg pour m the tree In general, there- 
fore, tree updates must be revocable until the transaction that 
calls for those updates cornnuts Let’s, however, dlstmgulsh 
the operations of the insert or delete processes mto two 
categories In the first category belong operations that reor- 
ganize the tree and m the second, the action of inserting 
(deleting) a specific pair on (from) the leaf node Although, 
those operations have been imtiated by the same transactJon, 
they are not logically related That is, a&Ions of the first 
category may be committed regardless of the fact that the 
transactJon that mitlated the msertlon or deletion may later 
abort Consider the case of msertlon after the tree IS reorgan- 
ized and before the actual msertlon on the leaf IS performed 
If we commit those updates, the tree IS consistent no matter 
what wtll happen to the parent transactJon (the one that 
called the IP) SlmJlarly, if a DP reorgamzes a part of the 
tree, these updates could be cornnutted, the reorgamz&on on 
that subtree has nothmg to do with the lack not only of the 
parent transactlon but also of the Delete process Itself on a 
lower level m the tree To summarize, there ~111 be never need 
to undo updates that have to do with the reorgamzatlon of the 
tree 

In order to Implement the above Idea, we need a notion 
slmllar, but not identical, to the transaction save point 
/Gray811 We want the data manager to be able to perform a 
subcommrt(T,) actlon which JS defined as follows 

All update5 made by T, become permanent (not revoca 
ble) and no loch held by this transactJon IS released The 
parent transactlon IS the one which determmes when 
lock? held by child transactrons will be released 
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lo IN ntort \,,t ( lfl( iUh c~tr~lrrll5 nlt1~I In liwd M hc I, 1t1e fol 

Ii,*trlg l Ul,llrlll’df tlollcI ltrnllndtt Rc+trurturc* (\tcl) l(l1) 
Rcorg>ul/cRoot (51 c b, RR?). and Reorg,lnlze (stt p RD5) 

\inre upddtr- bt com( permanent, e 1ock.s may be released to 
Jncredst concurrent\ Which locks and when they will be 
rcleasrd drpend5 on the transaction that Invoked the above 
subtransactJons Tht InsertJon keeps the e-lock on the leaf 
nnd unlocks all ttrc other nodes (step 1J ?), the deletion keep5 
the c lock on the updated child and unlocks the vent (step 
D5b 4) In either case insert or delete, an e-locked leaf node 
IS rtturned to the parent transactJon If this parent transac- 
tion folloas the 2F’L protocol the leaf will be unlocked at corn- 
rnlt time If the transaction gets Jnto trouble Jt Js sufficient to 
back up to the Jrnmechate precechng subcommlt rather than 
undomg all the work 

Example 

4ssume the threshold for mergmg tm IS set to M, Jn the 
tree of Figure le (1 e tm = 2), and that the followmg opera- 
tions have been performed Jn thJs tree delete 38, delete 42, 
delete 46, delete 40 which, accordmg to the algorithm,, Jt also 
merges Nil Jnto Nl2 before deletmg 40 Figure 8a shows the 
resulting tree after the abole operatrons Now, suppose that 

(4 (b) 
Figure 8 4 tree for the example of section 8 

rIndLeaf 
~-- 

Invoke T, , with k 44 
d lock \ 1 
hnd proptr child UI h I for 44 jrhdd 1, M 
d lock 54, Iv4 ha les than 2 ps~ 
r- and d unlock Y4, r unlock NI, convert (d-e, ‘VI) 
Invoke T, 2 wth N-N1 and h 44 

E-lock N4 and h14 
merge N4 Into N14 
delete N4 from Nl, Frer(Y4) 
return chdd=hc 14, .Iblmg=N4 
and subcommIt lsee figure 2361 
IT, 2’~ update. are now Irrevocable] 

r-unlock NI and N4 
find proper child of N14 for 44 [chdd IS I1121 
d-lock N12, Y12 1s leaf and has les than 2 paws 
r- and d-unlock N12, r-unlock N14, convert(d-e, N14) 
Invoke T, 2 with N=N14 and k-44 

E-lock N12 and N13 
rotate N13 mto N12 through N14 
return chdd=N12, slblmg=N13 
and subcommlt 
[T, 2’q updates are now trrrvocable] 

e-unlock Nl4 and N13 
return N12 
[at tlus pomt only the leaf node, Y12, w e-locked] 

delete (Nl2, 44) 
delete tuple (44, Alex, Boston) from R 

[do “other work”] 

comrmt and relese all e-lock< 

Note the difference of the desrrlbed scheme alth the 
nested transactJon model [Reed78, Mos981’ The latter model 
permJts transactions to be nested, however Jt requires that 
transactions on the same level to be srrlallzable, which Js not 
the case here For example, although we require the Reor- 
ganize subtransactions to be seriahzable, the DP5 that are 
calhng them are not A paper by Moss, Grlffeth and Graham 
lloss861 presents a thorough discussJon of thJs concept 

tran\nctton T, have been JnJtlated to perform the followmg 
operations 

delete tuple (44, Alex, Boston) from relation R(ld, name, 
city) indexed by the tree of Figure 8 on the first attrl- 
bute, and then do some “other work” 

The mteractlon of T, with the various subtransa.ctJons are 

Jllustrated bellou 

9 PROTOCOL APPLICABILITY TO SIMILAR 
STRUCTURES 

Smce this protocol Js 50 light to the sperifics of the B- 
tree structure, we may not expect to apply It to other slrnilar 

structures “as it Js”, without sacrlficmg correctness and/or 
performance For some structures, Jt wtll be required to 

modify the algorithms for the three operations (whJch IS any 
wav natural, Smce they act on a different tree), for some oth- 
ers, however, the lockmg rules and/or the defimtion of I- and 
d-safeness must, be changed Moreover, there JS nothmg to be 
gaJned Jf we apply thJs protocol to structures Jn which we 
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hnou a prlorl that updaters modlfv all nodes on their access 
path from root to the leaf node (e g OB-trees, lSton84]) In 
the followmg we discuss the appropnate modlficatlons for 
B+-trees, compressed B-trees [Come79], and R-trees 
lGutt84j 

B+-trees 

Leaf nodes belonging to a B+-tree have pomters pomtmg 
to their right sibling The Pr pointer of the right hnk pair can 
also be used for this purpose The modlficatlon that IS 
required IS to restrict the splitting of leaf nodes to right 
branches only and set the P, to the right branch even when 
the leaf IS not the deepest safe node The lockmg rules are the 
same as in B-trees 

Compressed B-trees 

Key and pointer compression on a B-tree have been utll- 
lzed as a mean to increase the capacity of each node and 
therefore decrease the retrieval cost We examme the case of 
key compression only Instead of definmg the safeness of a 
node h as a function of the number of pairs stored m this 
node, we may use another storage unit, e g a byte, and say 
that N 1s I-safe off b storage units can be inserted without 
forcing sphttlng of Y An I-lock request must have the form 
I -lock (Y, b), where b 1s the number of storage units that a key 
occupies Assume, for example, that the storage unit IS one 
byte, a pointer occupies four bytes, and each tree node can 
store from M up to 211 bytes Let s be the number of bytes 
that are already occupied by keys and pomters on a node, and 
rl the number of bytes reserved by IP processes already hold- 
lng an I-lock on that node Each time the lock manager 
accepts an 1 lock(h, h), rl IS set to rI+b+4 for the node N 
The criterion for assignIng an I-lock ~111 be the folloumg 

A request of an IP to l-lock a node (with associated 

storage cost b) IS granted lff the node IS not e or d- 
locked and 

rl tb+4<2M-s or 11 = 0 

Slmllar locking rules may be apphed for DPs 

R-trees 

R-trees are slrn&,r to B-trees and they may be used for 
multl-dtmenslonal (spatial) searching Leaf nodes contain 
Index records of the form (e, tuple-Identifier) where tuple- 
ldentlher refers to a tuplc m a database and e IS the extend of 
the object indexed, the extend being the smaller rectangular 
surrounding the object Index records at higher levels are of 
the form (e, N) where e IS the extend of the extend of all the 
obJects being pointed b, the Indexes of the node N one level 
below (mformally, node’s extend) Insertions of new obJects 
ma) affect higher nodes even when the leaf node IS not full 
(because the extend must be updated) Thus, the defimtlon of 
the I safeness of a node should be modified as follows 

4 node IS lsdfe when It contains less that 2M pairs and 
the extend of the node covers the extend of the obJect 
being inserted 

The locking rules are the same as m B trees 

10 CONCLUSION 

We have given algorithms and lockmg rules to mampu- 
late the concurrency control problem m B-trees, and we hale 
discussed the appropriate modlficatlons which are required so 
that they can be used for some of the B-tree’s variants hke 
B+-trees, compressed B-trees and R-trees 

The algorithms introduce some concurrency control 
overhead with respect to the number of messages required to 
be sent by an updater to the lock manager, for example, an 
msertlon process h LS to sent three messages In order to e-lock 
a node, while m other protocols this number IS lower, e g two 
m ,Baye77, Kwon821 and one m ISama76, Lehm81, Sag1851 
The storage model introduces some space overhead by requu- 
mg each node to have two addItIonal pairs (the hnk pairs), but 
as the order of the tree increases this overhead becomes 
mslgmficant We behele, the protocol presented m this paper 
enables a higher degree of concurrency by allo&rng a number 
of msertlon or deletion processes to operate concurrently on a 
node This effect IS achieved by using an operation specific 
lockmg mechamsm m uhlch each of the three processes (read, 
insert, delete) use dlffekent lock types to reach the leaf node 
It also permits data sharing among processes and thus It ehm- 

mates the cost associated with stormg multl-coples of the 

same disk block m mam memory 

Finally, ue have given a specific and simple recover) 
mechanism which permits to unlock nodes updated bj some 
transaction before this transaction cornnuts 
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