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ABSTRACT

B-trees have been used as an access aid for both primary and
secondary indexing for quite some time This paper presents
a deadlock free locking mechamsm 1n which different processes
make use of different lock types in order to reach the leaf
nodes The compatibility relations among locks on a node, do
not exclusnely depend on their type, but also on the node
status and the number and kind of processes acting currently
on the node As a result, a number of insertion or deletion
processes can operate concurrently on a node The paper
presents an appropriate recovery strategy in case of failure,
and discusses the protocol modifications that are required so 1t
can be used in other similar structures such as BYt-trees,
compressed B-trees, and R-trees for spatial searching

1 INTRODUCTION

A great deal of the time spent during the database access
1s attributable to the searching through indexes The B-tree
and 1ts vanants have become the most widely used access
aids Maximuzing concurrency on them 1s one of the most con—
tributing factors to the overall degree of concurrency Figure
la shows a B-tree of level three whose nodes may store from
two up to four (key, pointer) pairs We may easily show that
tahing no precautions against the anomalies of concurrency
leads to incorrect results

Assume that two processes act on the B-tree of Figure
la The first 1s an insertion for key 36 and the other 1s a
<earch for key 38 Now <uppose the following sequence of
operations
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insert 36 search 38

1 find proper child of N1 for 36

'child 18 N3j
2 find proper child of N3 for 36

child 15 N10]
3 find proper child of N1 for 38

[child 1s N3]

4 find proper child of N3 for 38

[child 1s N10]

5 NI10 1« leaf and full

6 add 36 m N10 => sphit N10 into N10, N13 [see figure 1B

7 add (36, N13) in N3 => sphit N3 into N3, N14 |see figure 1¢|

8 N10 1s leaf, search N10 for 38
key 38 not found'

9 add (24, N14) in N1 [see figure 1d]

It’s obvious that the search operation makes a wrong conclu-
sion about the existence of key 38 Between the time the
search process finds the appropnate leaf (node N10, step 4)
and the time 1t reads 1t (step 8), the insert process has alreadv
moved 38 from N10 to N13 (step 6) and therefore the search

ing 1s mncorrect

Similar problems exist among insertions and deletions
Constder the tree of Figure 1d and suppose again the existence
of two processes a deletion of key 32, and an insertion for the
key 31 Suppose also the following sequence of operations

delete 32 insert 31

1 find proper child of N1 for 32
child s N14j
2 find proper child of N1 for 31
child 1= N14|

3 hnd proper child of N14 for 32
child 1s N10j

1 find proper child of N14 for 31

[child 1s N10]

5  N101s leaf, delete 32 from N10

~n add the rest of N10 n N13

‘ N10 1s leaf and not f¢ I

® add 31 m N10

v lelete node N10 from N14 [see figure Ie}

t he problem here 1s that the new key (31) has been added t
1 node {N10) which 1s deleted later by the deletion process
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Figure 1 (a) through (e} illustrate concurrency anomalies
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Essentially, all the known concurrency control tech-
mques, [Bern81], can be employed to sy nchronize simultaneous
access on the tree It has been observed however, that
semantic knowledge about individual objects that a process
manipulates, or about the operations that a process performs
on an object can increase concurrency, [Garc83, Lync83,
Spec83, Scpec85, Weik86] For example, non two phase lock-
ng protocols (graph protocols [Yann79, Kede83, Buck85), tree
protocols [S11b80, Crok86]) have been proposed where the
additional information on the way that processes access the
database 1s used to increase concurrency

Working on this direction, we developed a deadlock free
locking protocol that takes advantage of how nodes are organ—
1zed, how processes access nodes and what kind of
modifications these processes can impose on a tree node Asa
result, many insertion or deletion processes can operate con-
currently on a node

We start the description of the proposed protocol, by
giving some background infoftation 1n the next section Sec-
tion 3, discusses the locking rules and the storage model Sec-
tions 4, 5 and 6, present the algorithms for searching, insertion
and deletion In sections 7 and 8, we present an informal proof
of correctness and suggest recovery strategies in case of
fallure Finally, section 9 discusses the protocol applhicabihity
to B-tree like structures and section 10 summarizes this work

2 BACKGROUND

Definitions

A B-tree of order M 1s a balanced tree with the following
properties [Baye72]
Every node has between M and 2M children, except for the
root which has between two and 2M A leaf node with s
pointers contains s keys A nonleaf node consists of s pointers
(Py P, ,P_,) toits children and s-1 keys (K, K,, , K_)
arranged 1n such way that for every key K in the subtree
pointed to by Pl, the following relationships hold

1=0 - K<K1
0<1<s—1 = Kl<K<KH
1=s—1 = KIQK

1

We assume that each node 1s organized sequentially, and the
set of all keys appears 1n the leaves In case that P; belongs to
a Jeaf node 1t will point to records keeping actual data associ
ated with the kev k ~ Data associated with each key are of no
interest 1n the following discussion and are omutted The
operations to be performed, concurrently, on a B-tree struc-
ture will be of three hind~ search, insert, and delete The
processes that perform these operations are called read process
(RP), nsertion process (IP) and deletion process (DP),
respectively IPs and DPs are collectively called updaters

Most of the solutions to the problem of supporting con-
current operations 1n B-trees make use of the following obser-
vations There exists a node which 1s the root of a subtree
above which no change 1n data and structure due to an update
can propagate This node 1s called a safe node [Baye77] A
node consisting of less than 2M children 1s called tnsertion-



safe (1 safe), becausc a new hey can be addcd without forcing
a spht A node with more than M children 1s callcd deletion-
safe (d <afe), because a key can be deleted without going
below the M-children mummum The portion of the access
path from the decpest safe node to a leaf 1s called the scope
of the updater The child of the updater’s deepest safe node
on 1ts scope, 1s called the highest unsafe node

Related Research

A number of solutions have been proposed for handling
the concurrency control problem on B-trees Locking tech-
mques [Sama76, Baye77, Mill78, Guib78, Kwon82, Mond85]
require each process to lock a node before it 1s accessed,
appropriate lock relations guarantee the correctness of each
operation In the first solution, [Sama76), only one lock type 1s
used, the exclusive lock, regardless of the operation to be per-
formed, while the other solutions provide at least two different
lock types to be used by searchers and updaters None of these
solutions, however, permits concurrency among insertion or
deletion processes Lehman and Yao presented an elegant
solution 1n which many updaters may simultaneously access
the tree, [Lehm81) Ths, however, 1s done 1n such way that
{a) no data sharing among processes 1s allowed and (b) succes—
sive deletions may cause storage underutihzation An
optimistic technique, 'Kung80], has been proposed to handle
concurrency on B-trees, Kers84l, which 1s not an efficient
method when conflicting operations are hkely Finally, Lausen
proposed a solution which switches from locking to the
optimistic method when conflicting operations are rather sel-
dom Laus84; The drawback of this method 1s that the lock~
ing protocol that is used 1s the one proposed in [Sama76], an
inappropriate solution since all processes (including readers)
use exclusive locks

3 LOCKING SCHEME AND STORAGE MODEL

The protocol uses four types of locks, viz read-lock,
msert-lock, delete-lock, and exclusive-lock (r-, 1-, d-, and e-
lock respectively) Let rl, s/, and d! be the number of r-, 1,
and d-locks, respectively, currently placed on a node The
compatibihty and convertibility relations are given 1n Figure
2 The basic 1dea of the protocol 1s that a node with s children
could accept 2M—s 1-locks by 2M—s IPs and still be a safe
node for all of them In other words we permit as many IPs to
place locks on a node as their collective action will not require
the node to be sphit Likewise, a node with s children can
accept s—M d-locks by s—M DPs and still be safe for all of
them Readers, on the other hand are free for reading nodes
that belong to a subtree being updated by an Insertion or
Deletion process 1- or d- locks do not give the right to an
updater to modify a node They are used as reservations of
free slots 1n the node Should an actual modification be
required, they should be converted to e-locks, a techmque
used also in [Baye77, Kwong82] An important pont that can
not be seen from these tables 1s that a request to 1- or d-lock
a node imples also a request for an r-lock, eg if an 1-lock
request for node N 1s granted, N 1s both - and r-locked
W hen the reading is terminated the updater must exphcitly
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Figure 2 (a) Compatibility relations among locks
(note the table 1s asymmetric)
(b) Convertibility relations among locks

r-unlock the node Clearly, 1n this protocol compatibility
relations among locks are not static The lock assignment on
a node does not depend exclusively on the lock type, but also
on the status of the node and the kind and number of
processes acting currently on that particular node

Storage Model

We assume that the nodes of the tree are stored on disks
The disk 1s partitioned into blocks which are the unit of both
storage allocation and data transfer The size of the node 1s
the same as the block size The main memory 1s shared by all
processes FEach process may have its own private space but
this has nothing to do with 1its right to read or modify a node
in main Reads and updates of a node may be performed on a
single copy 1n main memory This model 1s in contrast to the
one in [Lehm81] where all processes should copy the block
which they want to read or write on 1ts own prnivate
workspace, e g 1n their model, if at some point in time, n
readers are reading a node, there are n copies of the same disk
block in main memory

The following modification of the basic B-tree structure
1s required to accommodate our solution We assume that two
auxihary pairs exist on each node, as shown in Figure 3 The
(K,, P,) and (K, P)) pairs of each node are called the right
and left link pair, respectively The link pairs are used by
IPs as an additional method of reaching a newly created node,
readers do not depend on the values of the link pairs for their

|KIPI ’ s P, K,P, Kom-1Pam-1 I KP, '

1

(2)

[KIPI l s KPP, KP, Kom-1Pama1 l KP, l

(b)

Figure 3 (a) non-leaf and
(b} leaf node with left and right hink pairs



operation The technique of using additional paths to reach a
node 1s also used 1n [Lehm81}, where a hnk pair on each node
always points to the node’s nght sibling, and in [Mena81] for
TeCOVery purposes

As we will see when we discuss the deletion process, 1t 1s
very easy to parameterize the threshold, say tm, for merging
or rotation We may define any value of tm such that 0 <
tm € M Assigning a value of tm less than M, will further
increase concurrency because more DPs may place d-locks on
a node and a greater number of IPs may place 1-locks on a
node with fewer pairs If tm — 0, all DPs will reach the leaf
node without ever trying to reorgamze the tree This may be
useful when (a) 1t 1s known a prior: that deletions are not
directed to a small part of the tree, (b) the tree 1s young and,
presumably, 1t 1s growing Notice also, that when tm = 0 we
may have empty leafl nodes and the protocol behaves almost
in the same way with the one presented in {Lehm81] where a
deletion process always deletes the pair from a leaf regardless
of 1ts population Our solution, however, has the benefit that
this 1s done 1n a controlled way, that 15, we may dynamucally
change tm to achieve the desired space utilization

Notations

The pair { KasPa ), 0 €1 € 2M — 1, exphatly
declares the 1" kev and pointer of node A A request to con-
vert an 1- or d-lock on A to e-lock is expressed by the nota—
tion convert(x—e, A), where x 1s1 or d We use the notation
E-lock(x, A) to mean the following three individual lock
requests x-lock(A), r-unlock(A), convert(x—e, A), where x 1s
1or d Finally, function Scan(A, k) reads node A, asf 1t had
no hink pairs, and returns the pointer to the appropriate child
for an argument key k

4 SEARCHING

A read process searches the tree for a key ‘k’ and returns
the r-locked leaf node on which k may exist, as follows

S1
S2
<3

[lock root} r-lock(root) and set A = root
[leaf 1s found] if A 1s leaf then return A

Hlock child, unlock parent)

C = Scan(A, k), r-lock(C),

r-unlock(A), A = C,

repeat from step 2

This simple lock—couphing techmque, [Baye77], 1s sufficient for
the correctness of the RP’s operations

5 INSERTION

An Insertion Process uses 1-locks on its passage to a leaf
Since 1 lock implies r-lock 1t may read the node wath no
other control In each node, the IP checks for the node’s safe-
ness and if the node 1s safe 1t 1~unlocks all the ancestors An
r lock on the other hand, is released immediately after read
The

node

ing a node, regardless whether the 1-lock 1s kept or not
outhne of the insertion process follows
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Algonthm FindLeafTolnsert It searches the tree rooted at
A for an argument key k, it reorgamzes the tree, if necessary,
and returns an e-locked non full leaf node in which k should
be 1inserted
I1 [lock root] set A = root, 1-lock(A), push(stack S, A)
12 |A1sleaf and 1-safe]

if A 1s leaf and not full then

r-unlock(A), convert(i~e A), return A
I3 [Aisleaf and full]

if A s leaf a.d full then

r-unlock(A), invoke leaf = Restructure(S, k)
E-lock{3, leaf),

e-unlock all e-locked nodgs except leaf,

return leaf

4 [find and lock child]
C = Scan(A, k), r-unlock(A), 1-lock(C),

131
132

15 [check if child has been spht]
C = CheckSplit{C, k}, A =C
16  |A1si-safe] if Ais not full then

while S not empty pop(S), 1-unlock A’s ancestors
17 push(S, A), repeat from step I2

For the majonity of the cases the leaf node 1s not full and the
IP stops at 12 If, however, the leaf is full the Restructure
routine reorgamzes the tree by mtially, splitting the leaf
node Since a new node has been created for the leaf node, a
new pair should be added on leaf’s parent and if the parent 1s
full the overflow propagates until the deepest safe node Since
many IPs may operate on the same node simultaneously and
because of the just mentioned upwards reorganization,
appropriate precautions should be taken against possible con-
currency anomahes while another IP goes down the tree to
find the proper leaf node This task 1s undertaken by the
CheckSplit routine, whose internals will be explained later

Restructurmmg Phase

On reaching the full leaf node the IP’s scope will be 1-
locked, but still free for other IPs and RPs The IP instead of
e locking 1its, already 1-locked, scope uses a techmque simlar
to the side branching one, reported in [Kung80| for binary
trees and [Kwon82| for B-trees, as follows Let C be the full of
pairs leaf node The IP gets a new node B from the free
storage (assume, P, = P, = NIL for all new nodes), and exam-
ines the following possibilities

If k > hy ¢ (B will be a nght branch), the M right most

pairs of C, (K, Py,) through (K, ;, Pyyp ) are read

mnto B

I k € Ky ¢ (B will be a left branch), the M left most
pairs of C, (K,, P,), through {Kp-p Pasy)s are read into
B
The splitting propagates upwards 1n a similar way, 1 e reading
half of the full node, with the additional operation of adding
the newly created node, on the lower level, as well as the new
The new separator which should be added on C’s
parent 1s always the Ky, key of C before 1ts sphitting, regard-

separator



less of the value of key k and the direction of B

Figure 1a shows the generation of a left (P) and night
branch (Q) in order to mnsert key 29 in the tree of Figure 1a
(the hnk pairs are <haded) Similarly, Figure 5a shows the
generation of two left branches, P and Q, m order to msert
key 17 in the tree of Figure 1a It 1s noteworthy that while
the IP creates the side branches (costly operations since the
allocation of a free block may require two disk accesses), no
node 1n the onginal tree needs to be exclusively locked Also,
the side branches impose no additional space overhead, since a
full node has to be sphit any way

The update of the deepest safe node 1s performed as fol-
lows

Figure 5 Tree reorgamization 1n order to nsert key 29
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Algorithm UpdateDeepestSafe 1t updates the deepest wafe
node A, given 1ts unsafe child C and the newly created sibling
B of C In casc that there i1s no such deepest safe, node A 15
passed with value NIL {1e C1s the full of pairs root node)

Ul |deepest safe node A exists]
if A = NIL then
Ul1 convert{i—e, A}, convert(i—e, C),
add B and KM,C , the new separator, on A
Ul2  if B s anght branch then ( K;5:P,5) = (K ¢,
Pr’c ) and ( Kr,C , P',C) = ( KM,C , B)
Ui3  if B1s a left branch then ( Kig:Pig) =( K¢,
Pl,C ) and ( Kz,c > PI,C ) = (KM,C ,B)
Ul4  remove left (if B s left branch) or nght (if B s right
branch) half of C
U2 |C s the full of pairs root node, see Figure 6a,b)
if A = NIL then
U21 convert(i~e, C), get a node D from the free storage
U22a if B s right branch, copy left half of C to D,
set Poo =D, (K;c,P,¢c) = (Kyc,B)
U22b  if Bis left branch, copy nght half of C to D,
set Py =B, ( Kic:'Pic) =( Kmeo D)
U23 set counter of root C to two

B8 C (root) C (root) 8
4 i
2 C [4 8 ]
0 [
(a) (b)

Figure 6 Root sphtting for
(a) left and (b) nght branch

Note that if the root 1s full, its update 1s done on place, that
1s, 1ts address never changes, Figure 6a,b Steps U1 2 and U1 3
are needed 1n order to guarantee that even a very slow IP will
find 1ts path Assume the situation after an IP (say, IP,) has
removed the C’s nght half Assume also, another IP (say,
IP,) that holding an 1-lock on A, before IP, updated A, wants
to proceed to 1~lock C because that’s the proper node for the
key that wants to insert When IP, 1-locks node C, half of
C’s pairs have been removed by IP, Even worst, 1t could be
the case that other IPs insert a number of pairs on C, causing
re sphitting of C, perhaps before IP; managed to read this
node IP, 1s able to find 1ts path, through the CheckSpht,
which 1s described bellow

Algonthm CheckSphit Given an r- and 1-locked node C and
a key k, check whether C or one of 1ts branches 1s the proper

node for k



if (P =N\IL and k2 k) then Branch = P,
elserf (P, =NIL and k<k ) then Branch =P,
else Branch = NIL

(2 appropriate node found,
if Branch = NIL then return C
C3  |transfer locks to branch node]

1-lock(Branch), r- and 1-unlock(C), C = Branch,

repeat from step C1
Since, steps Ul 1 or Ul 3 actually insert a new node to a linear
linked list contamning some of A’s children, we immediately
have that for any pair of nodes, z and y, which have the
same parent, it can not be the case where z 15 reachable from
y and y 15 reachable from z Therefore, IPs can not deadlock
while moving locks on sibhng nodes (step C3) Thus, we can
always check whether a node has been sphit and if so which
node should be scanned in order to find the appropriate path
Note also, that there 1s no need to set the link pair on nodes
other than the highest unsafe, since all IPs should first read
this node before they proceed to lower levels

The remaining task of the IP process is to proceed to
lower level nodes and remove the appropriate half from those
nodes Its steps are summarized here

Algorithm Restructure It accepts the key k for insertion,
and the 1 locked IP’s scope It reorganizes the tree and returns
a non full leaf node in which k should be inserted After com-
pletion, all nodes 1n IP’s scope are e-locked

RI1 make branch for the leaf node, and call this node A
RI2
RI3
RI4
RI5

make branches upwards, until the highest unsafe node C
UpdateDeepestSafe
if C s leaf then return A

convert(1—e, child of C), remove left or nght half of C,
reset P and P, of child to NIL, C = child

R16 repeat from step 4

Figure 4b and 5b show the tree state after the Restructure
routine 1s completed for the operations of the previous exam—
ples

6 DELETION

There are two major characteristics of the way DPs
worh First, reorgamzation of the tree 1s always done 1n a top
down manner, secondly, each DP attempts to correct actions
taken by other DPs, never its own The 1dea of relaxing the
responsibility of a process to fimish 1ts own work 1s also dis-
cussed n [Elh80a, ENi80b] for AVL and 2-3 trees and 1in
iManb84] for binary trees On each level, the DP d-locks the
proper node, examines whether this node has no less the tm
pairs, where tm 1s the threshold for merging, and if so, 1t r-
and d unlocks the parent
immediately unlocks this node, e-locks the parent and invokes
the Reorganize routine which operates as follows

If it has less than tm pars, 1t
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Algorithm Reorganmize It accepts an e-locked node A and a
key k, 1t reorgamzes the subtree rooted on A and the child C
for key k, after the reorgamization, 1t returns the proper child
C and its sibhng B

RD1 [find child] C = Scan(A, k), E-lock(d, C), B = NIL

RD2 [C s d-safe]
if C has no less than tm children return C, B

RD3 [C s unsafe]
B = an immediate sibling node of C, E-lock(d, B}

RD4a  |merging]
If total number of pairs in C and B 1s less than 2M
then move all pairs of C into B, delete child C from
A, FreeNode(C), interchange C and B

RD4b  [rotation]

elseif C 1s a leaf node then rotate B into C

RD5 return Cand B
Our solution does not guarantee that every node has at least
tm pairs because, as we see from the above algorithm, only
merging 1s performed on non leaf nodes The fact, however
that two nodes can not be merged 1t imples that they have,
collectively, more than 2M pairs and therefore space underu-
tihization problems can not be raised because of this action
Rotations, on the other hand, may be performed on leaf
nodes

The problem of root 1s handled 1n a similar manner with
iPs, 1n that the address of root does not change, simply the
contents of the root 1s updated This will happen 1iff the root
has exactly one child The update 1s done by moving all pairs
from this unique child to the root, Figure 7

ey

Figure 7 Root update because of deletions

Algorithm ReorganizeRoot It fills up the root A with all
the pairs of 1ts unique child The address of root does not
change

RR1 [e-lock the root] r-unlock(A), convert(d—e, A),
RR2 [e-lock 1ts umque child] C =P, , , E-lock(d, C),

copy C to A, set P_of C to pont to 1tself
Notice that the unique child of the root 1s not returned to the
free storage, This 1s the only case where a node 1s lost “for—
ever” We present now the deletion process
Algonthm FindLeafToDelete Given a tree A and a key k,
1t returns an e-locked leaf node from which k, if 1t exists,
should be deleted As 1t goes down, 1t re-adjusts nodes with
less than tm pairs



thoolean ExL 1s true iff the parent node 1s e-locked|

D1 [d lock root)

make A the root, d-lock(A), set ExL = false,

if root A 1s leaf then r-unlock(A) and convert(d—e, A)
D2 [adjust root]

If root A has one child C, and A 1s not leaf then

invoke ReorganizeRoot(A), e-unlock(C), ExL = true
D3 |leaf 1s found] If A s leaf then return A
D4 |find and lock child] C = Scan(A, k), d-lock{C)

D5a  [child 1s d~safe] If child C has no less then ¢m pairs then

D5a1 If Cis leaf then r-unlock(C), convert(d—e, C)

D5a2  [unlock parent] unlock node A, set A to be C, set
ExL to false

D5b [child 1s not d-safe] If child C has less than tm pairs

then

D5b1  Junlock child, e-lock parent]
r-unlock(C), d-unlock(C),
if not ExL then r-unlock A, convert{d—e, A}

D5b2  Icheck node] If P, = A then e-unlock(A) and re-
peat from step D1

D5b3  reorgamze A] mnvoke Reorganize(A, k) which re-
turns child C, and 1ts sibing B

D5b4 e unlock(A), set A to be C and ExL to be true,
if B # NIL then e-unlock(B)

D6 repeat from step D3

An example of a deletion process will be given n section 8,
while we discuss the recovery mechanism

7 CORRECTNESS OF INTERACTION AND
DEADLOCK FREEDOM

In order to prove correctness, we will not prove that
log-sequence of events, produced by this protocol, are serializ—
able 'Eswa76], because they are not 1 The sequence of low
level, intermediate, reads and writes ts ummportant 1n this
application as long as the results of the high level operations
search, insert, and delete, are consistent (equivalent to a serial
execution) The distinction between senalizabihty of log-
sequence of events and operation-sequences 1s discussed also
in Bern83 Ford84, Moss86] We will prove that all processes
can navigate correctly into the tree, in order to find the
appropriate leaf node, given the modifications which are
imposed by the updaters’ reorganizations and that they never
deadlock We do that, by exammng the synchromzation
achieved between the three types of processes

1 Assume for example a tree of height four and a path
consisting of the nodes A, B, C, D on level one through four,
and two DPs, DP1 and DP2 that pass through the above
nodes DP1 may rearrange nodes A, B before DP2 reads these
nodes and DP2 may bypass DP1 and rearrange C, D before
DP1 reads C and D
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In the following discussion, nodes A and C are the
deepest safe and highest unsafe node, respectively The time
that a process P, is granted an x-lock (x =r,1,4d, or e} on
some node N, 1s expressed by x (N) Likewise, the notation
xu,(N) means the time that P, x-unlocks node N

Read/Insert IPs do not perform any modification during
the searching phase, and for the part of the restructuring
phase from leaf to the deepest safe node Recall that, during
that time, side branches are not, yet, linked to the tree and
they are invisible by RPs Therefore the compatibility of r-
and 1-locks does not create any problem for RPs Visible
modifications are performed after the IP e-locks node A Let
e,(A), ¢,(C) be the time that IP, e-locks nodes A and C,
respectively Let also ry(A), r,(C) be the time that an RP,
r-locks nodes A and C, respectively Because of the lock-
couphng technique we have either r,(A) < r,(C) < ¢,(A) <
€,(C) or e;(A) < ¢,(C) < ry(A) < ry(C) In the first case
RP, reads C before half of its pairs are removed and in the
latter RP, reads C after reading A which already has been
updated to include also the branch of C Thus, 1n either case,
the RP does not have to read the hink pairs In summary,
once the IP e locks the deepest safe node, readers can not
interleave on the tree rooted on this node 2 Since, an RP and
an IP place their r~ and e-locks, respectively, on nodes visible
by both in a top down way only, they can not deadlock

Insert /Insert Clearly, the point that needs discussion 1s the
IPs operations on the deepest safe node since this is the case
where many IPs may coexist on a node while updates take
place Assume that an IP, say IP,, has already i-locked its
scope, created all the side branches and 1t 1s ready to update
the deepest safe node A Define ¢;(A), €,(C) to be the time
when IP, e-locks nodes A and C, respectively Assume also,
the existence of another IP, say IP,, which path passes
through nodes A and C (before 1ts splitting) Let 1,(A), 1,(C)
be the time when IP, i-locks nodes A and C, respectively
Clearly, ;(A) < ¢,(C) and 1,(A) < 1,(C) Also, since node C
1s full, IP, can not 1-lock C before 1P, unlocks this node and
thus we have e,(C) < 1,{C) Therefore, we have to examne
the following two cases

Case 1 e,(A) < (C) < 1,(A) < 1,(C) or e(A) <1,(A)
< ¢;(A) < 1,(C) The important part of both of these ine-
quahties 1s that e;{A) < 1,{A} which means that the side
branch (say, B} has already been added on A when IP, reads
this node and therefore IP, may access C or B 1n the usual
way (reading A, the parent of both C and B)

Case 2 1,(A) < ¢,(A) < &(C) < 1,(C) IP, reads A before
IP, adds B in this node, and reads C after IP, removes the
left or night part of C In this case, IP, makes use of the link
pairs to find 1ts path via the CheckSplit routine Note that if
IP, delays to place 1ts 1-lock request for node C (after ¢,(C}),
other IPs may bypass IP,, add pairs in C and re-split this

2 Strictly speaking, this 1s required for recovery pur-
poses only The execution 1s still correct even if readers inter
leave with an IP 1n 1its scope, provided that the IP places its
e-lock requests according to the lock couphng techmque



node This could happen at most 2M-tm-1 times®

IPs place their 1- and e-locks in a top down manner,
except when a branch node (on the same level) should be -
locked However, 1t has been shown that no cycles are possi-
ble among nodes of the same level and thus IPs can not
deadlock

Read/Delete DPs always e-lock the parent node before
they e-lock and rearrange two of parent’s children Therefore,
because of the lock—coupling technique, readers can not inter-
fere with DPs while updates take place Readers and DPs
place their r- and e-locks, respectively, 1n a top down way and
therefore they can not deadlock

Delete/Delete There are two places where a DP performs

and (h) to reor-
ana {b) to reor

tc undates {a) to undate the rant {cten N2
s dates | update {ne reot (step D2

ganize a node other than root (step D5b 3) We examine those

two cases

Case 1. ReorganizeRoot Assume a DP, say DP,, d-locks the
root A (step D1} Since the root has exactly one child no
other DP may have any kind of lock on the root Let e;(A
and e,(C) be the time when DP, e-locks A and 1ts unique
child C and updates the root Conflict may arise when another
DP, say DP,, holds a d- and r-lock on C and one of C’s chil-
dren, say D If D 15 unsafe, DP, r-unlocks C, ru,(C), and con-
verts 1ts d- to e-lock on C, e,(C) Although, the schedule
ru,(C) €,(C) e,(C) 15 not correct, DP, recovers by first check-
ing whether C 1s part of the tree (step D5b 4) and if 1t 1s not
unlock C and 1t starts again from the root No other interac-
tion can create problems on the root

Case 2, Reorgamze This subprocess starts working with the
parent node A being e-locked All subsequent operations are
done after children nodes, C and B, have been e-locked, at
€,(C), ¢,(B) respectively, (steps, RD1 and RD3) Also, this
subprocess do not depend on values passed by the parent pro-
cess for their operations, 1 e 1t is its own responsibility to find
the child for some key, the sibing e t ¢ Therefore, here we
have a sertal execution between those subprocesses that act
on a subtree rooted on the same node The order of the senal
execution is determined by the order in which e-locks are
placed on the parent node A The same 1s not true, when
Reorganize subprocesses work on different levels Assume a
DP, that holds a d- and r-lock on B as well as on one of B’s
children, say D If D has less than ¢m pairs, DP, unlocks D
and then r-unlocks B, ruz(B), and converts 1ts d- to e-lock on
B, e,(B), 1n order to reorgamze B and C  Again, the schedule
ru,{B) e,(B) e,(B) 1s not correct However, no pair has been
deleted from B, simply all pairs from C have been moved to
B Since, the Reorganize subprocess invoked by DP, reads
node B after el(B), no harm can be resulted from DP,’s

action on B

Insert/Delete Operations performed by IPs or DPs which
modify the tree are done on their scope which 1s - or d-

3 Lvery time a splitting of C 1s performed a new pair 1s
added on A, when A reaches the point where 1t will have
exactly 2M-~1 children and one 1-lock, the IP,’s lock, no other
1 lock may be placed on A

166

locked, respectively Since, these locks are not compatible
there 1s no interference among these processes

8 RECOVERY

We know of two condrtions that should be satisfied so
that a locking protocol be recoverable (a) the locking granu-
larity must be at least as fine as the recovery granularity and
(b) objects updated by a transaction T, must be unavailable

to other trancactions until T
(o olaer transacuions unihi i,

rooltbacks) While the first condition 1s satisfied, the latter 1s
not That 1s, we would like to unlock updated nodes on higher
levels on the tree before the transaction actually updates the
leaf node and commuts, without sacrificing recoverability

commite
COMIMIS

Operations acting on a B-tree are actually a part of a
longer transaction running on the database For example, we
msert a key and a pointer to a B-tree because we insert a
tuple on a relation indexed by this tree We expect a transac-
tion to be atomc, that 1s either happens or has no effect at all,
[Gray81, Haer83] For instance, in the above example we do
not want to have neither the index updated with the new pair
without the tuple 1n the relation, nor the tuple in the relation
without the corresponding pair in the tree In general, there-
fore, tree updates must be revocable until the transaction that
calls for those updates commts Let’s, however, distinguish
the operations of the insert or delete processes into two
categories In the first category belong operations that reor-
ganize the tree and 1n the second, the action of inserting
{deleting) a specific pair on (from) the leaf node Although,
those operations have been imtiated by the same transaction,
they are not logically related That 1s, actions of the first
category may be commtted regardless of the fact that the
transaction that imtiated the insertion or deletion may later
abort Consider the case of insertion after the tree 1s reorgan—
1zed and before the actual insertion on the leaf 1s performed
If we commt those updates, the tree 1s consistent no matter
what will happen to the parent transaction (the one that
called the IP) Simlarly, if a DP reorganizes a part of the
tree, these updates could be commtted, the reorgamzation on
that subtree has nothing to do with the lack not only of the
parent transaction but also of the Delete process 1tself on a
lower level in the tree To summarize, there will be never need
to undo updates that have to do with the reorganization of the
tree

In order to implement the above 1dea, we need a notion
similar, but not identical, to the transaction save point
[Gray81) We want the data manager to be able to perform a
subcommst(T ) action which 1s defined as follows

All updates made by T, become permanent {not revoca
ble) and no lock held by this transaction 1s released The
parent transaction 1s the one which determines when
locks held by child transactions will be released



To be more specthe subcommats must be 1ssued whon the fol

lowing subtiansactions terminate Restructure (<tep Rl1)
ReorgamizeRoot {stcp RR2), and Reorgamze (step RDS)
Since updates become permanent, e locks may be released to
Increase Which locks and when they will be

rdleased depends on the transaction that invoked the above

concurrency
subtransactions The insertion heeps the e-lock on the leaf
and unlocks all the other nodes (step 13 2), the deletion keeps
the e lock on the updated child and unlocks the parent (step
D5b 4) In erther case 1insert or delete, an e-locked leaf node
1s returned to the parent transaction If this parent transac-
tion follows the 2PL protocol the leaf will be unlocked at com-
mit time If the transaction gets into trouble 1t 1s sufficient to
back up to the immediate preceding subcommt rather than
undomng all the work

Example

Assume the threshold for merging im 1s set to M, 1n the
tree of Figure le (1e tm = 2), and that the following opera-
tions have been performed in this tree delete 38, delete 42,
delete 46, delete 40 which, according to the algonthm, 1t also
merges N11 into N12 before deleting 40 Figure 8a shows the

resulting tree after the above operations Now, suppose that

Figure 8 A tree for the example of section 8

transaction T, have been initiated to perform the following
operations
delete tuple (44, Alex, Boston) from relation R(1d, name,
aty) indexed by the tree of Figure 8 on the first attri—
bute, and then do some “other work”
The 1nteraction of T, with the various subtransactions are
1llustrated bellow
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Subtrn sction

fransiction subtransaciion
1 1 I‘l 1 i 12
FindLeaf (k) Reorginiz« (N k)

mvoke T, withk 44
d lock N1
find proper chitdd of M for 44 [child » N4|
d lock N4, N4 has Jess than 2 pairs
r- and d unlock N4, r unlock N1, convert {d-se, N1)
mvoke Ty, with N=Nland h 44
E-lock N4 and N14
merge N4 mto N14
delete N4 from N1, Free(N4)
return child=N14, <ibling=N4
and subcommt [see figure 8b]
{T, o’s update- are now irrevocable|
e—unlock N1 and N4
find proper child of N14 for 44 [child 1s N12]
d-lock N12, N12 1s leaf and has less than 2 paws
r~ and d-unlock N12, r-unlock N14, convert (d—e, N14)
mvoke T, , with N=N14 and k=44
E-lock N12 and N13
rotate N13 into N12 through N14
return child=N12, sibling=N13
and subcommit
[T, ;s updates are now wrrevocable|
e-unlock N14 and N13
return N12
[at this point only the leaf node, N12, is e-locked]
delete (N12, 44)
delete tuple (44, Alex, Boston) from R

[do “other work "}

commit and release all e-lock«

Note the difference of the described scheme with the
nested transaction model [Reed78, Moss81' The latter model
permuts transactions to be nested, however 1t requires that
transactions on the same level to be seriahizable, which 1s not
the case here For example, although we require the Reor-
ganize subtransactions to be serializable, the DPs that are
calling them are not A paper by Moss, Griffeth and Graham
Moss86! presents a thorough discussion of this concept

9 PROTOCOL APPLICABILITY TO SIMILAR

STRUCTURES

Since this protocol 15 so tight 1o the specifics of the B-
tree structure, we may not expect to apply it to other similar
structures “as 1t 1s”, without sacrificing correctness and/or
performance For some structures, 1t will be required to
modify the algonithms for the three operations (which 1s any
wav natural, since they act on a different tree}, for some oth-
ers, however, the locking rules and/or the defimtion of 1- and
d-safeness must be changed Moreover, there 1s nothing to be
gamned 1if we apply this protocol to structures m which we



know a prior1 that updaters modifv all nodes on their access
path from root to the leaf node (e g OB-trees, |Ston84]) In
the following we discuss the appropriate modifications for
B*-trees, [Come79], and R-trees
1Gutt84]

compressed B-trees

Bt-trees

Leaf nodes belonging to a BT-tree have pointers pointing
to their nght sibling The P, pointer of the nght link pair can
also be used for this purpose The modification that 1s
required 1s to restrict the sphitting of leaf nodes to nght
branches only and set the P to the nght branch even when
the leaf 1s not the deepest safe node The locking rules are the
same as in B-trees

Compressed B-trees

Key and pointer compression on a B-tree have been util-
1zed as a mean to increase the capacity of each node and
therefore decrease the retrieval cost We examine the case of
key compression only Instead of defining the safeness of a
node N as a function of the number of pairs stored in this
node, we may use another storage unit, e g a byte, and say
that N is 1—safe 1ff b storage units can be inserted without
forcing splhitting of N An i-lock request must have the form
1-lock(N, b), where b 1s the number of storage umts that a key
occuples Assume, for example, that the storage umt 1s one
byte, a pointer occuples four bytes, and each tree node can
store from M up to 2M bytes Let s be the number of bytes
that are already occupied by keys and pointers on a node, and
1l the number of bytes reserved by IP processes already hold-
ing an 1-lock on that node Each time the lock manager
accepts an 1 lock(N, b), il 1s set to 1/+b+4 for the node N
The criterion for assigmng an 1-lock will be the following

A request of an IP to 1-lock a node (with associated

storage cost b) 1s granted iff the node 1s not e or d-

locked and

l+b+4<2M-5s

Similar locking rules may be applied for DPs

or =0

R-trees

R-trees are similar to B-trees and they may be used for
multi-dimensional (spatial) searching Leaf nodes contain
index records of the form (e, tuple-identifier) where tuple-
1dentifier refers to a tuple 1n a database and e 1s the extend of
the object indexed, the extend being the smaller rectangular
surrounding the object Index records at higher levels are of
the form (e, N) where e 1s the extend of the extend of all the
objects being pointed by the indexes of the node N one level
below (informally, node’s extend) Insertions of new objects
may affect higher nodes even when the leaf node 1s not full
(because the extend must be updated) Thus, the definition of
the 1 safeness of a node should be modified as follows

A node 1s 1-safe when it contains less that 2M pairs and

the exterd of the node covers the extend of the object

being inserted

The locking rules are the same as 1n B trees
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10 CONCLUSION

We have given algonthms and locking rules to manipu-
late the concurrency control problem in B-trees, and we have
discussed the appropriate modifications which are required so
that they can be used for some of the B-tree’s variants hke
B*-trees, compressed B-trees and R—trees

The algorithms introduce some concurrency control
overhead with respect to the number of messages required to
be sent by an updater to the lock manager, for example, an
insertion process h s to sent three messages in order to e-lock
a node, while 1n other protocols this number 1s lower, e g two
i Baye77, Kwon82| and one in [Sama76, Lehm81, Sag:85]
The storage model introduces some space overhead by requir-
ing each node to have two additional pairs (the hink pairs), but
as the order of the tree increases this overhead becomes
significant  We beheve, the protocol presented 1n this paper
enables a higher degree of concurrency by allowing a number
of insertion or deletion processes to operate concurrently on a
node This effect 1s achieved by using an operation specific
locking mechanism i1n which each of the three processes (read,
insert, delete) use different lock types to reach the leaf node
It also permuts data sharing among processes and thus 1t ehm-
nates the cost associated with storing multi—copies of the
same disk block in main memory

Finally, we have given a specific and simple recovery
mechanism which permits to unlock nodes updated by some
transaction before this transaction commuts
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