
OPERATION SPECIFIC LOCKING IN B-TREES

Alexandros Blln-1s

Computer Science Department
Boston University
Boston, MA 02215

ABSTRACT

B-trees haxe been used as an access ald for both primary and
secondary Indexing for quite some time This paper presents
a deadlock free lockmg mechanism m which different processes
make use of cbfferent lock types m order to reach the leaf
nodes The compatltuhty relations among locks on a node, do
not exclusl\ely depend on their type, but also on the node
status and the number and kmd of processes actmg currently
on the node As a result, a number of msertion or deletion
processes can operate concurrently on a node The paper
presents an appropriate recovery strategy m case of falure,
and dIsccusses the protocol modifications that are required so It
can be used rn other smular structures such as B+-trees,
compressed B-trees, and R-trees for spatial searchmg

1 INTRODUCTION

4 great deal of the time spent during the database access
IS attributable to the searching through Indexes The B-tree
and Its barlants have become the most widely used access
alds Maxlmlzmg concurrency on them IS one of the most con-
tributing factors to the overall degree of concurrency Figure
la shows a B-tree of level three a hose nodes may store from
two up to four (key, pointer) pairs We may eaznlq show that
tablng no precautions agamst the anomahes of concurrency
leads to Incorrect results

Assume that two processes act on the B-tree of Figure
la The first IS an insertion for key 36 and the other 1s a
search for key 38 Now suppose the followmg sequence of
operations

Pernnsslon to copy wIthout fee all or part of thts material IS granted provided that
the coptes are not made or chstnbuted for chrect commercml advantage, the ACM
copyrlght nouce and the tttle of the pubhcatton and kts date appear, and nottce 1s
given that copymg 1s by pernnsslon of the Assoclauon for Computmg Mactnnery
To copy otherwIse, or to repubhsh, requxes a fee and/or specific pernusaon

0 1987 ACM 0-89791-223-3/87/ooO3/0159 754

Insert 36 search 38

1 find proper child of Nl for 36

‘child 1s N3j

2 find proper child of N3 for 36
c Md 1~ NlO]

3 find proper child of Nl for 38

[ciuld 1s N3]

4 find proper child of N3 for 38

[cluld 1s h lo]

5 YlO F leaf and full

6 add 36 tn NlO => spht NlO mto NlO, N13 [see figure lb]
7 add (36, N13) m N3 => split N3 tnto N3, N14 Isee figure Ic]

8 NlO ts leaf, search NlO for 38

key 38 not found’

9 add (24, N14) m Nl lsee figure Ed]

It’s obvious that the search operation makes a wrong conclu-

Slon about the existence of key 38 Between the time the
search process finds the appropriate leaf (node NIO, step 4)
and the time It reads it (step 8), the Insert process has ahead\
moved 38 from NlO to Nl3 (step 6) and therefore the search
Ing is incorrect

Smular problems exist among msertlons and deletions
Consider the tree of Figure Id and suppose again the existence
of two procebses a deletion of key 32, and an insertion for the
key 3 1 Suppose also the followmg sequence of operations

delete 32 -- -~- insert 31

find proper child of EC 1 for 32

rhlld 1s Y14]

find proper child of \l for 31

thlld IC Iv 141

hnd proper child of N14 for 32

thtld I 11101

hnd proper cluld of \ 14 for i I

[&Id 1s NlO]

hl0 1s leaf, delete 32 from NlO

xdd the rest of NlO m N13
N10 ICC leaf and not II II

add 31 m NlO

Irlert node NlO from N14 [see figure le]
-= --_z-_

I ht prohlr nt her6 ts that the new key (31) has been a&It d t
1 VI<& (1 III) which 1s deleted later by the deletion process

159

F’lgure 1 (a) through (e) illustrate concurrency anomahes

Essentially, all the known concurrency control tech-
mques, IBernSl], can be employed to synchronize simultaneous
access on the tree It has been observed however, that
semantic knowledge about mdlvidual objects that a process
manipulates, or about the operations that a process performs
on an oblect can Increase concurrency, [Garc83, Lync83,
Spec83, Scpec85, WelkSG] For example, non two phase lock-
mg protocols (graph protocols [Yann79, Kede83, Buck85], tree
protocols (S&80, Crok86]) have been proposed where the
addltlonal mformatlon on the way that processes access the
database IS used to increase concurrency

Workmg on this direction, we developed a deadlock free
locking protocol that takes advantage of how nodes are organ-
ized, how processes access nodes and what kmd of
modlficatlons these processes can Impose on a tree node As a
result, many InsertIon or deletion processes can operate con-
currently on a node

We start the description of the proposed protocol, by
giving some background mfottnatlon m the next se&on Sec-
tlon 3, discusses the locking rules and the storage model Sec-
tlons 4, 5 and 6, present the algorithms for searchrng, insertion
and deletion In sections 7 and 8, we preqent an informal proof
of correctness and suggest recovery strategies m case of
faJure FInally, section 9 discusses the protocol applicability
to B-tree hke structures and section 10 summarizes tins work

2 BACKGROUND

Definltlons

A B-tree of order M 1s a balanced tree with the followmg
properties [Baye72]
Every node has between M and 2M children, except for the
root whrch has between two and 2M A leaf node ulth s
pointers contams s keys A nonleaf node consists of s pointers
(PO, p,, > P,-,) to Its chddren and s-l keys (K,, K,, , Kqml)
arranged m such way that for every key K m the subtree
pointed to by P,, the followmg relatronshlps hold

1=0 + K < K,
O<l<S-I -9 K, d K < Kltl

1-s-l + K, d K

We assume that each node IS orgamzed sequentmlly, and the
set of all keys appears In the leaves In case that F’, belongs to
a leaf node It ~111 point to records keeping actual data assoc~
ated with the keu h, Data associated with each key are of no
Interest m the follo\nng dIscussIon and are ormtted The
operations to be performed, concurrently, on a B-tree struc-
ture will be of three hind\ search, insert, and delete The
processes that perform these operations are called read process
(RP), msertlon process (IP) and deletion process (DP),
respectively IPs and DPs are collectively called updaters

Most of the solutions to the problem of supportmg con-
current operations In B-trees make use of the followmg obser-
vations There emsts a node which IS the root of a subtree
above which no change m data and structure due to an update
can propagate This node IS called a sa/e node jBaye77] A
node conslstmg of less than 2M children IS called rnsertlon-

160

safe (I safe), becau~ a ~CM hey can be ad&d without iorclng
a splrt i\ node with more than hl children 17 c&d delelton-
sa/e (d safe), because d key can be deleted without going
below the Mmchddren mlnlmum The portion of the access
path from the deepest safe node to a leaf IS called the scope

of the updater The child of the updater’s deepest safe node
on Its scope, IS called the hrghesl unsafe node

Related Research

A number of solutions have been proposed for handhng
the concurrency control problem on B-trees Locking tech-
mques [Sama76, Baye77, Mill78, Gulb78, Kwon82, Mond85]
require each process to lock a node before It IS accessed,
appropriate lock relations guarantee the correctness of each
operation In the first solution, [Sama76], only one lock type IS
used, the exclusive lock, regardless of the operation to be pe-
formed, while the other solutions provide at least two chfferent
lock types to be used by searchers and updaters None of these
solutions, however, permits concurrency among insertion or
deletion processes Lehman and Yao presented an elegant
solution m which many updaters may simultaneously access
the tree, [LehmSl] This, however, IS done In such way that
(a) no data sharing among processes IS allowed and (b) succes-
slve deletions may cause storage underutilization An
optmustlc techntque, :KungSO], has been proposed to handle
concurrencv on B-trees, [Kers84/, which IS not an efficient
method R hen confllctmg operations are likely Finally, Lausen
proposed a solution which switches from locking to the
optlmlstlc method when confllctmg operations are rather sel-
dom ,Laus84] The drawback of this method IS that the lock-
mg protocol that 1s used IS the one proposed m [Sama76], an
Inappropriate solution smce all processes (mcludmg readers)
use exclusive locks

3 LOCKING SCHEME AND STORAGE MODEL

The protocol uses four types of locks, VIZ read-lock,
Insert-lock, delete-lock, and exclusive-lock (r-, I-, d-, and e-
lock respectively) Let rl, rl, and dl be the number of r-, I-,
and d-lochs, respectively, currently placed on a node The
compatlbihtv and convertlbihty relations are given m Figure
2 The basic idea of the protocol IS that a node with s children
could accept 2M-s l-locks by 2M-s IPs and still be a safe
node for all of them In other words we permit as many IPs to
place locks on a node as their collective actlon will not require
the node to be spht Likewise, a node with s children can
accept s--V d-locks by s-M DPs and still be safe for all of
them Readers, on the other hand are free for reading nodes
that belong to a subtree being updated by an Insertion or
Deletion process I- or d- locks do not give the right to an
updater to modify a node They are used as reservations of
free slots m the node Should an actual modtjicatron be
reqwred, they should be converted to e-locks, a technique
used also m [Baye77, KwongSZ] An Important point that can
not be seen from these tables IS that a request to I- or d-lock
a node Implies also a request for an r-lock, e g If an l-lock
request for node N IS granted, N IS both I- and r-locked
b hen the reading IS terminated the updater must explicitly

-
r
1

d
e -

r I

F F I- T al < 2M-s or 11 2 0
T F
F T

(4

d

F
F

dl < s-M or dl = o
T

e

F
F
F
F -

(b)
Figure 2 (a) Compatibihty relations among locks

(note the table IS asymmetric)
(b) Convertlbihty relations among locks

r-unlock the node Clearly, m this protocol compatib&y
relations among locks are not static The lock assignment on
a node does not depend exclusively on the lock type, but also
on the status of the node and the kind and number of
processes acting currently on that particular node

Storage Model

We assume that the nodes of the tree are stored on disks
The disk IS partitIoned mto blocks which are the umt of both
storage allocation and data transfer The size of the node IS
the same as the block Size The maln memory IS shared by all
processes Each process may have Its own private space but
tins has nothing to do with Its right to read or modify a node
m mam Reads and updates of a node may be performed on a
scngle copy rn mam memory This model IS m contrast to the
one m [LehmSl] where all processes should copy the block
which they want to read or write on Its own private
workspace, e g m their model, If at some point m time, n
readers are reading a node, there are n copies of the same &sk
block m mam memory

The followmg modification of the basic B-tree structure
IS required to accommodate our solution We assume that two
auxlllary pairs exist on each node, as shown m Figure 3 The
(K, P,) and (K,, PI) pairs of each node are called the r:ght
and left lrnk pair, respectively The hnk pams are used by
IPs as an ad&tonal method of reachmg a newly created node,
readers do not depend on the values of the lmk pairs for their

1 K,P/ 1 s PO K,P, Km1P2~-, 1 K$‘, 1 --
(4

v/ s KoPo VI K 2M-1P2M-1 1 K?r 1

04

Flgure 3 (a) non-leaf and
(b) leaf node with left and right hnk pairs

161

operation The techmque of usmg addItional paths to reach a Algorithm FmdLeafToInsert It searches the tree rooted at
node IS also used m [Lehm81], where a hnk paJr on each node A for an argument key k, It reorganizes the tree, If necessary,
always pomts to the node’s right slblmg, and m [Mena81] for and returns an e-locked non full leaf node m which k should
reco\ ery purposes be inserted

As we will see when we discuss the deletion process, It 1s
very easy to parameterlze the threshold, say tm, for mergmg
or rotation We may define any value of tm such that 0 <
tm < M Asslgnmg a value of tm less than M, ~111 further
increase concurrency because more DPs may place d-locks on
a node and a greater number of IFS may place I-locks on a
node with fewer pairs If tm - 0, all DPs wdl reach the leaf
node without e\ er try Ing TV reorgamze the tree This may be
useful when (a) It IS known a prlorl that deletions are not
directed to a small part of the tree, (b) the tree IS young and,
presumably, It IS growmg Notlce also, that when tm = 0 we
may ha\e empty leaf nodes and the protocol behaves almost
In the same way wrth the one presented m (LehmBl] where a
deletion process always deletes the par from a leaf regardless
of Its population Our solution, however, has the benefit that
this 1s done In a controlled way, that IS, we may dynamlcally
change tm to achieve the desired space utlhzatlon

I1 [lock root] set A = root, I-lock(A), push(stack S, A)

I2 [A IS leaf and I-safe]
If A 1s leaf and not full then
r-unlock(A), convert(l-re A), return A

I3 [A IS leaf and full]
If A IS leaf a,id full then

I3 1

I3 2

r-unlock(A), mloke leaf = Restructure(S, k)

E-lock(l, leaf),
e-unlock all e-locked nodes except leaf,
return leaf

Notations

The pair (K,,, , P, A), 0 < 1 d 2M - 1, exphcltly
declares the lth kev and p&nter of node A A request to con-
vert an I- or d-lock on A to e-lock IS expressed by the nota-
tlon convert(x+e, A), where x IS 1 or d We use the notation
E-lock(x, A) to mean the followmg three rndrurdual lock
requests x-lock(A), r-unlock(A), convert(x-+e, A), where x IS
I or d FInally, function Scan(A, k) reads node A, as If It had
no hnk pairs, and returns the pomter to the appropriate chdd
for an argument key k

14 [find and lock child]
C = Scan(A, k), r-unlock(A), l-lock(C),

15 [check If child has been spht]
C = CheckSplit(C, k), A = C

16 [A IS I-safe] If A IS not full then
while S not empty pop(S), I-unlock A’s ancestors

I7 push(S, A), repeat from step I2

For the majority of the cases the leaf node IS not full and the
IP stops at I2 If, however, the leaf IS full the Restructure
routine reorganizes the tree by mltlally, sphttmg the leaf
node Smce a new node has been created for the leaf node, a
new pair should be added on leaf’s parent and if the parent 1s
full the overflow propagates until the deepest safe node Smce
many IPs may operate on the same node simultaneously and
because of the Just mentioned upwards reorgamzatlon,
appropriate precautions should be taken agamst possible con-
currency anomahes while another IP goes down the tree to
find the proper leaf node This task IS undertaken by the
CheckSplit routme, whose Internals ~111 be explamed later

4 SEARCHING Restrueturmg Phase

A read process searches the tree for a key ‘k’ and returns
the r-locked leaf node on which k may exist, as follows

Sl [lock root] r-lock(root) and set A = root

$2 [leaf IS found] If A IS leaf then return A

$3 /lock child, unlock parent]
C = Scan(A, k), r-lock(C),
r-unlock(A), A = C,
repeat from step 2

On reachmg the full leaf node the IP’s scope ~111 be I-
locked, but still free for other IPs and RPs The IP Instead of
e locking Its, alread) l-locked, scope uses a technique slmllar
to the side branchmg one, reported m [Kung80] for bmary
trees and [Kwon82] for B-trees, as follows Let C be the full of
pairs leaf node The IP gets a new node B from the free
storage (assume, PI = P, = NIL for all new nodes), and exam-
mes the followmg posslblhtles

This simple lock+ouplmg techmque, [Baye77], IS sufficient for
the correctness of the RP’s operations

If k > h,, (B ~111 be a right branch), the M right most
pairs of C, (K, PM) through (KZMml, PZMeI) are read
mto B

5 INSERTION

An InsertIon Process uses I-locks on Its passage to a leaf
rlnde Since I lock lmphes r-lock It may read the node with no
other control In each node, the IP checks for the node’s safe-
nes5 and If the node 1s safe It r-unlocks all the ancestors An
r lark on the other hand, IS released lmmedlately after read
lrlg d node, regardless whether the I-lock IS kept or not The
*)ut lme of the InsertIon process follows

If k 6 KM,C (B ~111 be a left branch), the 21 left most
pairs of C, (K,, P,J, through (KM-,, PM-,), are read mto
B

The sphttmg propagates upwards m a slmdar way, 1 e readmg
half of the full node, with the addltlonal operation of addmg
the newly created node, on the lower level, as well as the new
separator The new separator which should be added on C’s
parent 1s always the K, key of C before Its sphttmg, regard-

162

less of the \alue of htb L and the dlrtctlon of B

Figure la shows the generatlon of a left (P) and right
branch (Q) III order to Insert key 29 In the tree of Figure la
(the hnk pars are shaded) Slmrlarly, Figure 5a shows the
generation of two left branches, P and Q, m order to msert
key 17 In the tree of Figure la It IS noteworthy that while
the IP creates the side branches (costly operations smce the
allocatlon of a free block may require two disk accesses), no
node m the orlgmal tree needs to be exclusively locked Also,
the side branches impose no addltlonal space overhead, smce a
full node has to be split any way

The update of the deepest safe node IS performed aa fol-
lows

(b)
Figure 4 Tree reorgamzatlon m order to Insert key 17

Flgure 5 Tree reorgamzatlon m order to insert key 29

4lgorlthm IjpdatrDeepestSafe It UpddtcS the deepr<t \dff
node A, given its unsafe child C and the newly created slbhng
B of C In cast that there IS no such deepest safe, node 4 1s
passed with value NIL (I e C IS the full of pairs root node)

Ul Ideepest soft= node A exists)
1fA f NIL then

Ul 1 convert(~-re, A), convert(l-re, C),
addBandKMMC the new separator, on A

u12 if B IS a right branch then (K+ , P, B) = (Kr c ,

Pr,c 1 and (K,,,) Pr,c 1 = (KM,, f d
u13 If B IS a left branch then (K,,B , P,,B) = (K,,,

p,,c) and (Kt,c y pt,c) = (KM,, 1 B) ’
u14 remove left (If B IS left branch) or right (If B IS right

branch) half of C

U2 \C IS the full of pars root node, see Figure 6a,bJ
If A - NIL then

u2 1 convert(l*e, C), get a node D from the free storage

U2 2a If B IS right branch, copy left half of C to D,

=tPCIC = D, (Kl,c 1 Pl,C 1 = (KM,, 7 B)
U2 2b If B ls’left branch, copy right half of C to D,

set P, c , = B, (Kl,c 7 ‘,,C) = (K,,C 1 D,
u2 3 set counter of root C to two

Figure 6 Root sphttmg for
(a) left and (b) right branch

Vote that If the root IS full, rts update IS done on place, that
IS, Its address never changes, Figure 6a,b Steps U1 2 and Ul 3
are needed m order to guarantee that even a very slow IP ~111
find Its path Assume the sltuatlon after an IP (say, IP,) has
removed the C’s right half Assume also, another IP (say,
IP,) that holdmg an r-lock on A, before IP, updated A, wants
to proceed to I-lock C because that’s the proper node for the
key that wants to Insert When IP, I-locks node C, half of
C’s pairs have been removed by IP, Even worst, It could be
the case that other IPs insert a number of pairs on C, causmg
rc splrttmg of C, perhaps before IP, managed to read thl?
node IP, IS able to find its path, through the CheckSpllt,
N hlch 1s described bellow

4lgorlthm CheckSpIlt Given an r- and I-locked node C and
a key k, check whether C or one of Its branches IS the proper
node for k

163

(1 li (Pr#21L dnd kb h,) then Branch = P,
elself (P,#NIL and k<h,) then Branch = P,
ells Branch = NIL

(2 appropriate node found1
If Branch = NIL then return C

c3 [transfer locks to branch node]
I- lock(Branch), r- and I-unlock(C), C = Branch,
repeat from step Cl

Since, steps Ul 1 or Ul 3 actually insert a new node to a lmear
Imked hst contammg some of A’s children, we lmmedlately
have that for any paw of nodes, z and y, wh:ch have the
same parent, rt can not be the case where z w reachable jrom
y and y 1s reachable from z Therefore, IPs can not deadlock
while movmg locks on slbhng nodes (step C3) Thus, we can
always check whether a node has been spht and If so which
node should be scanned m order to find the appropriate path
&ote also, that there IS no need to set the lmk pair on nodes
other than the highest unsafe, smce all IPs should first read
this node before they proceed to lower levels

The remammg task of the IP process IS to proceed to
lower lebel nodes and remove the appropriate half from those
nodes Its steps are summarized here

Algorithm Restructure It accepts the key k for msertlon,
and the 1 locked 1P’s scope It reorgamzes the tree and returns
d non full leaf node In which k should be inserted After com-
pletlon, all nodes In IP’s scope are e-locked

RI1 make branch for the leaf node, and call this node A

RI2 make branches upwards, until the highest unsafe node C

RI3 UpdateDeepestSafe

RI4 rf C IS leaf then return A

RI5 convert(l-te, child of C), remove left or nght half of C,
reset P, and P, of child to NIL, C = chdd

RI6 repeat from step 4

Figure 4b and 5b show the tree state after the Restructure
routme IS completed for the operations of the previous exan-
ples

6 DELETIOX

There are two major characterlstlcs of the way DPs
Morh First, reorgamzatlon of the tree IS always done m a top
down manner, secondly, each DP attempts to correct actions
taken by other DPs, never Its own The Idea of relaxing the
responslblhty of a process to fimsh Its own work IS also dls-
cussed m (Elh80a, Elh80b] f or AVL and 2-3 trees and m
,Manb84] for bmary trees On each level, the DP d-locks the
proper node, exammes whether this node has no less the tm
pairs, where tm IS the threshold for mergmg, and If so, It r-
and d unlocks the parent If It has less than tm pars, It
lmmedldtely unlocks this node, e-locks the parent and invokes
the Reorgamze routine which operates as follows

Algorithm Reorganlce It accepts an e-locked node A and a
key k, It reorganizes the subtree rooted on A and the child C
for key k, after the reorgamzatton, It returns the proper child
C and Its slblmg B

RDl [find child] C = Scan(A, k), E-lock(d, C), B = NIL

RD2 [C IS d-safe]
If C haa no less than tm children return C, B

RD3 [C 1s unsafe]
B = an Immediate srblmg node of C, E-lock(d, B)

RD4a imerging]
If total number of pairs m C and B IS less than 2M
then move all pairs of C mto B, delete child C from
A, FreeNode(interchange C and B

RD4b jrotatlon]
elseif C 1s a leaf node then rotate B mto C

RD5 return C and B

Our solution does not guarantee that every node has at least
tm pairs because, as we see from the above algorithm, only
merging IS performed on non leaf nodes The fact, hone\er
that two nodes can not be merged It lmphes that they have,
collectively, more than 2M pairs and therefore space underu-
tlhzatlon problems can not be raised because of this action
Rotations, on the other hand, may be performed on leaf
nodes

The problem of root IS handled m a slmllar manner ulth
IPs, In that the address of root does not change, simply the
contents of the root IS updated This ~111 happen off the root
has exactly one child The update IS done b> molmg all pairs
from this umque child to the root, Figure 7

Figure 7 Root update because of deletions

4lgorlthm ReorgameeRoot It fills up the root A with all
the pairs of Its unique child The address of root does not
change

RR1 [e-lock the root] r-unlock(A), convert(d+e, A),

RR2 [e-lock Its unique child] C = Po A , E-lock(d, C),
copy C to A, set P, of C to pomt to Itself

Notice that the unique child of the root IS not returned to the
free storage, This IS the only case where a node IS lost “for-
ever” We present now the deletion process

Algorithm FmdLeafToDelete Given a tree A and a key k,
It returns an e-locked leaf node from which k, If It exists,
should be deleted As It goes down, It re-adJusts nodes with
less than tm pairs

164

ibooltan ExL 1s true off the parent node IS e-locked]

Dl jd lock root]
make A the root, d-lock(A), set ExL = false,
If root A IS leaf then r-unlock(A) and convert(d-+e, A)

D2 [adjust root]
If root A has one child C, and A IS not leaf then
invoke ReorganmeRoot(A), e-unlock(C), ExL = true

D3 [leaf IS found] If A IS leaf then return A

D4 [find and lock child] C = Scan(A, k), d-lock(C)

D5a [child IS d-safe] If cluld C has no less then tm pairs then

D5a 1 If C IS leaf then r-unlock(C), convert(d-re, C)

D5a 2 [unlock parent] unlock node A, set A to be C, set
ExL to false

D5b [chlld IS not d-safe] If child C has less than tm pairs
then

D5b I junlock child, e-lock parent]
r-unlock(C), d-unlock(C),
If not ExL then r-unlock A, convert(dde, A)

D5b 2 ‘check node] If Pr, = A then e-unlock(A) and re-
peat from step Dl ’

D5b 3 Ireorgamze A] Invoke Reorganlze(A, k) which re-
turns child C, and Its sibhng B

D5b 4 e unlock(A), set A to be C and ExL to be true,
If B f lLIL then e-unlock(B)

D6 repeat from step D3

4n example of a deletion process ~111 be given m section 8,
M hlle we drscuss the reco\ ery mechanism

7 CORRECTNESS OF INTERACTION AND
DEADLOCK FREEDOM

In order to prove correctness, we will not prove that
log-sequence of events, produced by this protocol, are serlahz-
able ‘Esba76], because they are not 1 The sequence of low

lekel, rntermedlate, reads and writes 1s unimportant m thrs
appllcatlon as long as the results of the high level operations
search, Insert, and delete, are consistent (equlvaient to a serial
execution) The dlstmctlon between senahzablhty of log-
sequence of events and operation-sequences IS &cussed also
m ,Bern83 Ford84, Uoss86] We ~111 prove that all processes
can navigate correctly mto the tree, m order to find the
appropriate leaf node, given the mochficatlons winch are
Imposed by the updaters’ reorgamzatlons and that they never
deadlock We do that, by exammmg the synchromzatlon
achieved between the three types of processes

I 4ssume for example a tree of height four and a path
conslstmg of the nodes A, B, C, D on level one through four,
and two DPs, DPI and DP2 that pass through the above
nodes DPl may rearrange nodes A, B before DP2 reads these
nodes and DP2 may bypass DPl and rearrange C, D before
DPI reads C and D

In the followmg dlscusslon, nodes A nnd C are the
deepest safe and highest unsafe node, rcspectlvely The time
that a process P, IS granted an x-lock (x = r, I, d, or e) on
some node N, IS expressed by x,(N) LIkewise, the notation
xu,(N) means the time that P, x-unlocks node N

Read/Insert IPs do not perform any modlficatlon durmg
the searching phase, and for the part of the restructuring
phase from leaf to the deepest safe node Recall that, during
that time, side branches are not, yet, linked to the tree and
they are mvisible by RPs Therefore the compatlblhty of r-
and l-locks does not create any problem for RPs Vlstble
modifications are performed after the IP e-locks node A Let
e,(A), e,(C) be the time that II’, e-locks nodes A and C,
respectively Let also r2(A), rZ(C) be the time that an RP,
r-locks nodes A and C, respectively Because of the lock-
couphng technique we have either r,(A) < rz(C) < cl(A) <
e,(C) or e,(A) < el(C) < r2(A) < rz(C) In the first case
RP, reads C before half of Its pairs are removed and m the
latter RP, reads C after reading A which already has been
updated to mclude also the branch of C Thus, rn either case,
the RP does not have to read the hnk prs In summary,
once the IP e locks the deepest safe node, readers can not
interleave on the tree rooted on this node ’ Since, an RP and
an 13’ place their r- and e-locks, respectively, on nodes vlslble
by both m a top down way only, they can not deadlock

Insert/Insert Clearly, the pomt that needs dIscussIon 15 the
IPs operations on the deepest safe node Smce this IS the case
where man) IPs may coexist on a node while updates take
place Assume that an IP, say IP,, has already l-locked Its
scope, created all the side branches and It IS ready to update
the deepest safe node A Define e,(A), eI(C) to be the time
when IP, e-locks nodes A and C, respectIveI> Assume also,
the existence of another IP, say IP,, which path passes
through nodes A and C (before Its sphttmg) Let I~(4), In
be the time when IP, l-locks nodes A and C, respectively
Clearly, eI(A) < cl(C) and I*(A) < In 41~0, since node C
IS full, IP, can not l-lock C before IP, unlocks this node and
thus we have cl(C) < lz(C) Therefore, we have to examme
the followmg two cases

Case 1 e,(A) < cl(C) < 12(A) < la(C) or e,(A) < 12(A)
< el(A) < lZ(C) The Important part of both of these me-
quabhes IS that e,(A) < $A) which means that the side
branch (say, B) has already been added on A when IP, reads
this node and therefore IP, may access C or B m the usual
way (reading A, the parent of both C and B)

IP, reads A before Case 2 I*(A) < cl(A) < cl(C) < In
IP, adds B m this node, and reads C after IP, removes the
left or right part of C In this case, IP, makes use of the lmk
pairs to find Its path via the CheckSplIt routme Note that If
IP, delays to place Its l-lock request for node C (after e,(C)),
other IPs may bypass IP,, add pairs m C and re-split this

2 Strictly speaking, this IS required for recovery pur-
poses only The execution IS still correct even If readers inter
leave with an IP m Its scope, provided that the IP places Its
e-lock requests accordmg to the lock coupling technique

165

node This could happen at most 2M-fm-1 times?

IPs place their I- and e-locks m a top down manner,
except *hen a branch node (on the same level) should be I-
locked However, it has been shown that no cycles are posse-
blp among nodes of the same level and thus IPs can not
deddloc k

Read/Delete DPs always e-lock the parent node before
they e-lock and rearrange two of parent’s children Therefore,
becduse of the lock<ouplmg technique, readers can not Inter-
fere with DPs while updates take place Readers and DPs
place their r- and e-locks, respectively, m a top down way and
therefore they can not deadlock

Delete/Delete There are two places where a DP performs
its updates (a) to update the root (step D2) and (b) to reor-
gamze a node other than root (step D5b 3) We examme those
two cases

Case 1, ReorganizeRoot Assume a DP, say DP,, d-locks the
root A (step Dl) Since the root has exactly one chdd no
other DP may have any kind of lock on the root Let e,(A)
and cl(C) be the time when DP, e-locks A and Its umque
child C and updates the root Conflict may arise when another
DP, say DP,, holds a d- and r-lock on C and one of C’s chll-
dren, say D If D 1s unsafe, DP, r-unlocks C, ruZ(C), and con-
berts its d- to e-lock on C, e*(C) Although, the schedule
ruz(C) cl(C) e*(C) 1s not correct, DP, recovers by first check-
ing whether C 1s part of the tree (step D5b 4) and d It IS not
unlock C and It starts again from the root No other mterac-
tlon can create problems on the root

Case 2, Reorganize This subprocess starts workmg with the
parent node A being e-locked All subsequent operations are
done after children nodes, C and B, have been e-locked, at
e,(C), e,(B) respectively, (steps, RDl and RD3) Also, this
5ubprocess do not depend on values passed by the parent pro-
cess for their operations, I e It IS its own responsibility to find
the child for some key, the sibling et c Therefore, here we
have a sertaf execution between those subprocesses that act
on a subtree rooted on the same node The order of the serial
execution IS determined by the order m which e-locks are
placed on the parent node A The same IS not true, when
Reorganize subprocesses work on dlfferknt levels Assume a
DP, that holds a d- and r-lock on B as well as on one of B’s
children, say D If D has less than tm pans, DP, unlocks D
and then r-unlocks B, ruz(B), and converts its d- to e-lock on
B, e,(B), In order to reorganize B and C Agam, the schedule
ruz(B) e,(B) ez(B) IS not correct However, no pour has been
deleted from B, simply all pairs from C have been moved to
H Smce, the Reorganize subprocess invoked by DP, reads
node B after e,(B), no harm can be resulted from DP,‘s
dctlon on B

Insert/Delete Operations performed by IPs or DPs which
modify the tree are done on their scope which IS I- or d-

3 Lvery trme a sphttlng of C IS performed a new pair IS
added on A, when A reaches the point where It will have
exactly ZM-1 children and one I-lock, the IP2’s lock, no other
I lock may be placed on A

locked, respectlbely Since, these locks are not compatible
there I$ no Interference among these processes

8 RECOVERY

We know of two condltlons that should be satisfied so
that a locking protocol be recoverable (a) the locking granu-
larity must be at least as fine as the recovery granularity and
(b) obJects updated by a transactlon T, must be unavailable
to other transactions until T, commits (to avold cascading
roollbacks) While the first condition 1s satisfied, the latter IS
not That IS, we would like to unlock updated nodes on higher
levels on the tree before the transaction actually updates the
leaf node and commits, without sacrlficmg recoverablhty

Operations acting on a B-tree are actually a part of a
longer transaction running on the database For example, we
insert a key and a pointer to a B-tree because we insert a
tuple on a relation indexed by this tree We expect a transac-
tion to be atomic, that IS either happens or has no effect at all,
[GrayBl, Haer83] F or Instance, m the above example we do
not want to have neither the index updated with the new pair
wlthout the tuple m the relation, nor the tuple m the relation
wlthout the correspondmg pour m the tree In general, there-
fore, tree updates must be revocable until the transaction that
calls for those updates cornnuts Let’s, however, dlstmgulsh
the operations of the insert or delete processes mto two
categories In the first category belong operations that reor-
ganize the tree and m the second, the action of inserting
(deleting) a specific pair on (from) the leaf node Although,
those operations have been imtiated by the same transactJon,
they are not logically related That is, a&Ions of the first
category may be committed regardless of the fact that the
transactJon that mitlated the msertlon or deletion may later
abort Consider the case of msertlon after the tree IS reorgan-
ized and before the actual msertlon on the leaf IS performed
If we commit those updates, the tree IS consistent no matter
what wtll happen to the parent transactJon (the one that
called the IP) SlmJlarly, if a DP reorgamzes a part of the
tree, these updates could be cornnutted, the reorgamz&on on
that subtree has nothmg to do with the lack not only of the
parent transactlon but also of the Delete process Itself on a
lower level m the tree To summarize, there ~111 be never need
to undo updates that have to do with the reorgamzatlon of the
tree

In order to Implement the above Idea, we need a notion
slmllar, but not identical, to the transaction save point
/Gray811 We want the data manager to be able to perform a
subcommrt(T,) actlon which JS defined as follows

All update5 made by T, become permanent (not revoca
ble) and no loch held by this transactJon IS released The
parent transactlon IS the one which determmes when
lock? held by child transactrons will be released

166

lo IN ntort \,,t (lfl(iUh c~tr~lrrll5 nlt1~I In liwd M hc I, 1t1e fol

Ii,*trlg l Ul,llrlll’df tlollcI ltrnllndtt Rc+trurturc* (\tcl) l(l1)
Rcorg>ul/cRoot (51 c b, RR?). and Reorg,lnlze (stt p RD5)

\inre upddtr- bt com(permanent, e 1ock.s may be released to
Jncredst concurrent\ Which locks and when they will be
rcleasrd drpend5 on the transaction that Invoked the above
subtransactJons Tht InsertJon keeps the e-lock on the leaf
nnd unlocks all ttrc other nodes (step 1J ?), the deletion keep5
the c lock on the updated child and unlocks the vent (step
D5b 4) In either case insert or delete, an e-locked leaf node
IS rtturned to the parent transactJon If this parent transac-
tion folloas the 2F’L protocol the leaf will be unlocked at corn-
rnlt time If the transaction gets Jnto trouble Jt Js sufficient to
back up to the Jrnmechate precechng subcommlt rather than
undomg all the work

Example

4ssume the threshold for mergmg tm IS set to M, Jn the
tree of Figure le (1 e tm = 2), and that the followmg opera-
tions have been performed Jn thJs tree delete 38, delete 42,
delete 46, delete 40 which, accordmg to the algorithm,, Jt also
merges Nil Jnto Nl2 before deletmg 40 Figure 8a shows the
resulting tree after the abole operatrons Now, suppose that

(4 (b)
Figure 8 4 tree for the example of section 8

rIndLeaf
~--

Invoke T, , with k 44
d lock \ 1
hnd proptr child UI h I for 44 jrhdd 1, M
d lock 54, Iv4 ha les than 2 ps~
r- and d unlock Y4, r unlock NI, convert (d-e, ‘VI)
Invoke T, 2 wth N-N1 and h 44

E-lock N4 and h14
merge N4 Into N14
delete N4 from Nl, Frer(Y4)
return chdd=hc 14, .Iblmg=N4
and subcommIt lsee figure 2361
IT, 2’~ update. are now Irrevocable]

r-unlock NI and N4
find proper child of N14 for 44 [chdd IS I1121
d-lock N12, Y12 1s leaf and has les than 2 paws
r- and d-unlock N12, r-unlock N14, convert(d-e, N14)
Invoke T, 2 with N=N14 and k-44

E-lock N12 and N13
rotate N13 mto N12 through N14
return chdd=N12, slblmg=N13
and subcommlt
[T, 2’q updates are now trrrvocable]

e-unlock Nl4 and N13
return N12
[at tlus pomt only the leaf node, Y12, w e-locked]

delete (Nl2, 44)
delete tuple (44, Alex, Boston) from R

[do “other work”]

comrmt and relese all e-lock<

Note the difference of the desrrlbed scheme alth the
nested transactJon model [Reed78, Mos981’ The latter model
permJts transactions to be nested, however Jt requires that
transactions on the same level to be srrlallzable, which Js not
the case here For example, although we require the Reor-
ganize subtransactions to be seriahzable, the DP5 that are
calhng them are not A paper by Moss, Grlffeth and Graham
lloss861 presents a thorough discussJon of thJs concept

tran\nctton T, have been JnJtlated to perform the followmg
operations

delete tuple (44, Alex, Boston) from relation R(ld, name,
city) indexed by the tree of Figure 8 on the first attrl-
bute, and then do some “other work”

The mteractlon of T, with the various subtransa.ctJons are

Jllustrated bellou

9 PROTOCOL APPLICABILITY TO SIMILAR
STRUCTURES

Smce this protocol Js 50 light to the sperifics of the B-
tree structure, we may not expect to apply It to other slrnilar

structures “as it Js”, without sacrlficmg correctness and/or
performance For some structures, Jt wtll be required to

modify the algorithms for the three operations (whJch IS any
wav natural, Smce they act on a different tree), for some oth-
ers, however, the lockmg rules and/or the defimtion of I- and
d-safeness must, be changed Moreover, there JS nothmg to be
gaJned Jf we apply thJs protocol to structures Jn which we

167

hnou a prlorl that updaters modlfv all nodes on their access
path from root to the leaf node (e g OB-trees, lSton84]) In
the followmg we discuss the appropnate modlficatlons for
B+-trees, compressed B-trees [Come79], and R-trees
lGutt84j

B+-trees

Leaf nodes belonging to a B+-tree have pomters pomtmg
to their right sibling The Pr pointer of the right hnk pair can
also be used for this purpose The modlficatlon that IS
required IS to restrict the splitting of leaf nodes to right
branches only and set the P, to the right branch even when
the leaf IS not the deepest safe node The lockmg rules are the
same as in B-trees

Compressed B-trees

Key and pointer compression on a B-tree have been utll-
lzed as a mean to increase the capacity of each node and
therefore decrease the retrieval cost We examme the case of
key compression only Instead of definmg the safeness of a
node h as a function of the number of pairs stored m this
node, we may use another storage unit, e g a byte, and say
that N 1s I-safe off b storage units can be inserted without
forcing sphttlng of Y An I-lock request must have the form
I -lock (Y, b), where b 1s the number of storage units that a key
occupies Assume, for example, that the storage unit IS one
byte, a pointer occupies four bytes, and each tree node can
store from M up to 211 bytes Let s be the number of bytes
that are already occupied by keys and pomters on a node, and
rl the number of bytes reserved by IP processes already hold-
lng an I-lock on that node Each time the lock manager
accepts an 1 lock(h, h), rl IS set to rI+b+4 for the node N
The criterion for assignIng an I-lock ~111 be the folloumg

A request of an IP to l-lock a node (with associated

storage cost b) IS granted lff the node IS not e or d-
locked and

rl tb+4<2M-s or 11 = 0

Slmllar locking rules may be apphed for DPs

R-trees

R-trees are slrn&,r to B-trees and they may be used for
multl-dtmenslonal (spatial) searching Leaf nodes contain
Index records of the form (e, tuple-Identifier) where tuple-
ldentlher refers to a tuplc m a database and e IS the extend of
the object indexed, the extend being the smaller rectangular
surrounding the object Index records at higher levels are of
the form (e, N) where e IS the extend of the extend of all the
obJects being pointed b, the Indexes of the node N one level
below (mformally, node’s extend) Insertions of new obJects
ma) affect higher nodes even when the leaf node IS not full
(because the extend must be updated) Thus, the defimtlon of
the I safeness of a node should be modified as follows

4 node IS lsdfe when It contains less that 2M pairs and
the extend of the node covers the extend of the obJect
being inserted

The locking rules are the same as m B trees

10 CONCLUSION

We have given algorithms and lockmg rules to mampu-
late the concurrency control problem m B-trees, and we hale
discussed the appropriate modlficatlons which are required so
that they can be used for some of the B-tree’s variants hke
B+-trees, compressed B-trees and R-trees

The algorithms introduce some concurrency control
overhead with respect to the number of messages required to
be sent by an updater to the lock manager, for example, an
msertlon process h LS to sent three messages In order to e-lock
a node, while m other protocols this number IS lower, e g two
m ,Baye77, Kwon821 and one m ISama76, Lehm81, Sag1851
The storage model introduces some space overhead by requu-
mg each node to have two addItIonal pairs (the hnk pairs), but
as the order of the tree increases this overhead becomes
mslgmficant We behele, the protocol presented m this paper
enables a higher degree of concurrency by allo&rng a number
of msertlon or deletion processes to operate concurrently on a
node This effect IS achieved by using an operation specific
lockmg mechamsm m uhlch each of the three processes (read,
insert, delete) use dlffekent lock types to reach the leaf node
It also permits data sharing among processes and thus It ehm-

mates the cost associated with stormg multl-coples of the

same disk block m mam memory

Finally, ue have given a specific and simple recover)
mechanism which permits to unlock nodes updated bj some
transaction before this transaction cornnuts

Acknowledgments

I would hke to thank Profs M Feldman of George
Washington Umverslty, and N Rousopou1os of Cnr\ersltJ of
Maryland, for their valuable dlscusslons regarding an early
version of this protocol

Ba ye72

Baye77

Buch.85

Bern81

Bern83

REFERENCES

Bayer R and McCrelght E Organlzatlon and mamte-
nance of large ordered mdexes Acta Znformatroa Vol
1 No 3 1972 pp 173-189

Bayer R and Schkolmck M Concurrency of Opera-

tlons on B-trees Acta Znformatbca Vol 9 ‘vo 1 1977
pp 1-21

Buckley G and Sllberschat7 A Beyond Two-Phase

Lockmg Jatr~l of the ACM Vol 32 No 2 Apt11
1985 pp 314-326

Bernstem P A and Goodman N Concurrency Con-
trol m Dlstrlbuted Database Systems ACM Comptzng
Surveys Vol 13 No 2 1981 pp 185-221

Bernstein P Goodman N and La1 M Anal yzmg

Concurrency Control Algorithms when User and SYS-
tern Operations Dl5er IEEE Transactwns on Software
Engrneercng Vol SE-9 No 3 May 1983 pp 233-239

Come79 Comer D The ublqultous B-Tree ACM Computvag
Surveys Vol 11 ‘vo 2 pp 121-137 1979 and Vol 11

No 4 412 1979 pp s

168

C-ch80 (‘rober 4 2ldler I) 4 I), ndmlc 1 ree Lockmg Proto-
col Proc of the Second IE.% Itiernatronal Conference
on Data EngLneerq Los Angeles Callfornta February
1986 pp 49-57

Elh80a Ellis C Concurrent Search and Insertion m AVL
Trees IEEE Transacttons on Computers Vol C-29 No
9 September 1980 pp 811-817

Elh80b Elhs C Concurrent Search and msertlon m 2-3
trees Acta Znformatrca Vol 14 No 1 1980 pp 63-
86

Izswa76 Eswaren K Gray J Lorle R and Tralger 1 The

Ford84

Garc83

Gray8 1

bulb78

Gutt84

llderh3

hetleh3

helab

Notlons of Consistency and Predicate Locks m a Data-
base System Communscafzons of the ACM Vol 19 No
11 November 1976 pp 624-633

Ford R Calhoun J Concurrency Control and the
Serlallzablhty of Concurrent Tree Algorithms,
Proceedrngs of the ACM SIGACT-SIGMOD Symposzwn
on Prmnczples of Database Systems Waterloo Ontarlo
April 1984 pp 51-60

Garcia-Molma H Usmg Semantic Knowledge for
TransactIon Processing m a Distributed Database
ACM Transactwns on Database Systems Vol 8 No 2
June 1983 pp 186-213

Gray J McJones P Blasgen M Lmdsay B Lorae R
Price T Putzolu F and Tralger I The Recovery
Manager of the System R Database Manager ACM
Computurg Surveys Vol 13 No 2 June 1981 pp 223-
242

Gutbas C S Sedgewick R A Dlchromatlc Framework
for Balanced Trees Proc of the 19th Annual Symp
Foundatwn Camp Science 1978 pp 8-21

Guttman R R-Trees A Dynamic Index Structure for
Spatial Searchmg Proc of the ACM SIGMOD Int
Conference on Management of Data Boston June 1984
pp 47-57

Haerder T and Reuter A Prmclples of Transactlon-
Orlented Database Recoverv ACM Computrng Surveys
Co1 15 \o 4 December 1983 pp 287-318

kedem Z M and Sllberschatz A Lockmg Protocols
From Exclusive to Shared Locks Journal of the ACM
\ol 30 r\ro 4 October 1983 pp 787-804

hersten \l L and Tebra H Appllcatlon of an
Opttmlstlc Concurrency Control Method Software-

I+actrce and Experience Eds John Wiley and Sons
\ 01 14 \o 2 February 1984 pp 153-168

hung80 hung H T Lehman P L A concurrent database
mantpulatlon problem binary search trees ACM Tran-
yucrcons on Database Svstems v01 5 \o 1 1980 pp
339-353

kvr on82Kwong \r and Wood D A new method for con-
currency In B-trees IEEE Transactrons on Soft
Engtneerrng Vo18 No 3 1982 pp 211-222

Laus84 Lausen G Integrated Concurrency Control m Shared
B-Trees Compctrng Vol 33 No 1 Eds Sprmg-
Verlag New York 1984 pp 13-26

Lehm81 Lehman P L Yao S B Efficient Lockmg for Con-
current Operation on B-Trees ACM Transactzons on
Database Sysems Vol 6 Yo 4 1981 pp 650-670

Lynch3 Lynch N A MultIlevel Atomlclty - 4 Lew (orrect-
ness Crlterlon for Database Concurrency Control
ACM Transactrons on Database Systems Vol 8 Yo 4
December 1983 pp 484-502

Manb84Manber U Ladner R E Concurrency Control In a
Dynamic Search Structure ACM Transactrons on Data-
base Systems Vol 9 No 3 September 1984 pp 439-
455

Mena Menasce D A and Lande\ 0 Dynamic Crash
Recovery of Balanced Tress Proceedmgs of the Sympo-
swm on Reltabrbty an Dlstrbbuted Software and Database
Syztemr Computer Science Press July 1981 pp 131-
137

Ml1178 Miller R and Snyder I Multiple access to B-trees
Prooeedzngs of the 12th Annual Conference UI Informa-
twn Science und Systems March 1978

Mond85Mond Y and Raz Y Concurrency Control m B+-
Trees Databases Usmg Preparatory Operations Proc of
the llth Int Conference on Very Lurge Databases
Stockholm August 1985 pp 331-334

Moss81 Moss J E B Nested Trunsact&ons An Approach CO

Rehable Dtstrtied ComputLng Ph D Thesis Depart-
ment of Electrical Engmeermg and Computer Science
Massachusetts Insltute of Technology April 1981

Moss86 Moss J E B Grlffeth N D Graham M H Abstrac-
tlon m Recovery Management Proceedrngs of the ACM
SIGMOD Internutronul Conference on Management of
DQCQ Washington DC Mdy 1986 pp 72-83

Reed78 Reed D Namrng and Synchronrratwn cn Q Decentral-
rred Com@er System Ph D Thesis Department of
ElectrIcal Engmeermg and Computer Science was-
sachusetts Insltute of Technology June 1978

Sama Samad B B-trees m a system with multiple users

Fag185

Fpec83

Spec85

Ston84

Welk86

Informafron Processrng letters Vol 5 hJo 4 1976 pp
107-112

sag1v Y Concurrent Operations on B-trees with
Overtakmg Proc of the 4th ACM JJG4CT \ltiMOD
Symposrum on Prznccples of D&abase Systems Portland
Oregon March 1985 pp 28-37

Spector A and Schwartz P TransactIons 4 Con-
struct for Rehable Dlstrlbuted Computmg Operalmg
Systems Revrew Vol 17 ,lio 2 April 1983 pp 18-35

Spector A Z Butcher J Damels D S Duchamp D
J Eppmger J L Fmeman C E Heddaya A and
Schwarz P Support for Dlstrlbuted TransactIons m
the TABS Prototype iEEE Trunsuctwns on Software
Enguwerlng Vol SE-11 No 6 June 1985 pp 520-530

Stonebraker M Rowe L 4 Database Portals a hew
Appllcatlon Program Interface Proc of the 10th Int
Conference on Very Lurge Data bases Smgapore August
1984 pp 3-13

Welkum G A TheoretIcal Foundation of Multl-Level
Concurrency Control Proc FLch ACM SJGACT-
SIGMOD Symposrum on R~ncrples of Database Systems
Boston MA March 1986 pp 31-42

Yann79 Yannakakls M Papadlmltrlou C H and Kung T H
T Lockmg Pohcles Safety and Freedom from
Deadlock Prac 20th IEEE Symposium on Foundatrons
of Computer !kence October 1979 pp 286-297

169

