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ABSTRACT

Balanced structures. variations of B-trees. have been used as an access aid for both primarv
and secondary indexing for quite some time. This paper presents a deadlock-free locking
mechanism for B-trees in which different processes make use of different lock types in order to
reach the leaf nodes. The compatibility relations among locks on a node do not exclusively
depend on their type, but also on the node status and the number and kind of processes acting
currently on the node. As a result. a number of insertion or deletion processes can operate
concurrently on a node. The paper presents an appropriate recovery strategy in case of failure,
and discusses the protocol modifications that are required so it can be used in other similar
structures such as B~-trees, compressed B-trees, and R-trees for spatial searching.

1. INTRODUCTION

A great deal of the time spent during the database access is attributable to
the searching through indexes. The B-tree and its variants have become the \
most widely used access aids. Maximizing concurrency on them is one of the
factors contributing most to the overall degree of concurrency. Figure 1(a,
shows a B-tree of level three whose nodes may store from two up to four
(key.pointer) pairs. We may easily show that taking no precautions against the
anomalies of concurrency leads to incorrect results,

Assume that two processes act on the B-tree of Figure 1(a). The first is an
insertion for key 36, and the other is a search for kev 38. Now suppose the
sequence of operations in Table 1. It's obvious that the search operation makes
a wrong conclusion about the existence of key 38. Between the time the search
process finds the appropriate leaf (node N10. step 4) and the time it reads it
(step 8). the insert process has already moved 38 from N10 to N13 (step 6). and
therefore the searching is incorrect.

Similar problems exist among insertions and deletions. Consider the tree of
Figure 1(d), and suppose again the existence of two processes: a deletion of key
32, and an insertion for the key 31. Suppose also the sequence of operations in
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Fig. 1. (a) through (e) illustrate concurrency anomalies.
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TABLE 1

Insert 36

Search 38

find proper child of N1 for 36
[child is N3]

Find proper child of N3 for 36
[child is N10}

N10 is leaf and full

Add 36 in N10 =
split N10 into N10, N13
{see Figure 1(b)]

Add (36, N13)in N3 =
split N3 into N3, N14
[see figure 1(c)]

Add (24,N14) in N1
[see Figure 1(d)]

Find proper child of N1 for 38
(child is N3)

Find proper child of N3 for 38
(child is N10)

N10 is leaf, search N10 for 38
Key 38 not found!

TABLE 2

Delete 32

Insert 31

D 00~ N

Find proper child of N1 for 32
(child is N14)

Find proper child of N14 for 32
(child is N10)

N10 is leaf, delete 32 from N10
Add the rest of N10 in N13

Delete node N10 from N14
[see Figure 1(¢)]

Find proper child of N1 for 31
(child is N14)

find proper child of N14 or 31

"(child is N10)

N10 is leaf and not full
Add 31 in N10
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Table 2. The problem here is that the new key (31) has been added to a node
(N10) which is deleted later by the deletion process.

Essentially, all the known concurrency control techniques [4] can be em-
ployed to synchronize simultaneous access on the tree. It has been observed,
however, that semantic knowledge about individual objects that a process
manipulates, or about the operations that a process performs on an object, can
increase concurrency {13, 24, 34, 35, 6, 37]. For example, non-two-phase locking
protocols (graph protocols [38, 18, 3], tree protocols [39, 8]) have been proposed
where the additional information on the way that processes access the database
is used to increase concurrency.

Working on this direction, we developed a deadlock-free locking protocol
that takes advantage of how nodes are organized, how processes access nodes,
and what kind of modifications these processes can impose on a tree node. As a
result, many insertion or deletion processes can operate concurrently on a node.

We start the description of the proposed protocol by giving some back-
ground information in the next section. Section 3 discusses the locking rules
and the storage model. Sections 4, 5, and 6 present the algorithms for searching,
insertion, and deletion. In Sections 7 and 8, we present an informal proof of
correctness and suggest recovery strategies in case of failure. Finally, Section 9
discusses the protocol applicability to B-tree-like structures, and Section 10
summarizes this work.

2. BACKGROUND

DEFINITIONS

A B-tree of order M is a balanced tree with the following properties [1]:
Every node has between M and 2M children, except for the root which has
between two and 2 M. A leaf node with s pointers contains s keys. A nonleaf
node consists of s pointers (P,, Py,..., P,_,) to its children and s—1 keys
(K,,K,,..., K,_,) arranged in such a way that for every key K in the subtree
pointed to by P, the following relationships hold:

i=0 - K<K|,

0<i<s-1 - K <K<K

1+ 1>
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We assume that each node is organized sequentially, and the set of all keys
appears in the leaves. In case that P, belongs to a leaf node it will point to
records keeping actual data associated with the key K;. Data associated with
each key are of no interest in the following discussion and are omitted. The
operations to be performed, concurrently, on a B-tree structure will be of three
kinds: search, insert, and delete. The processes that perform these operations
are called read process (RP), insertion process (IP), and deletion process (DP),
respectively. IPs and DPs are collectively called updaters.

Most of the solutions to the problem of supporting concurrent operations in
B-trees make use of the following observations. There exists a node which is the
root of a subtree, above which no change in data and structure due to an
update can propagate. This node is called a safe node [2]. A node consisting of
less than 2 M children is called insertion-safe (i-safe), because a new key can be
added without forcing a split. A node with more than M children is called
deletion-safe (d-safe), because a key can be deleted without going below the
M-children minimum. The portion of the access path from the deepest safe
node to a leaf is called the scope of the updater. The child of the updater’s
deepest safe node on its scope is called the highest unsafe node.

RELATED RESEARCH

A number of solutions have been proposed for handling the concurrency
control problem on B-trees. Locking techniques {32, 2, 27, 15, 21, 28] require
each process to lock a node before it is accessed; appropriate lock relations
guarantee the correctness of each operation. In the first solution [32], only one
lock type is used, the exclusive lock, regardless of the operation to be per-
formed, while the other solutions provide at least two different lock types to be
used by searchers and updaters. None of these solutions, however, permits
concurrency among insertion or deletion processes. Lehman and Yao presented
an elegant solution in which many updaters may simultaneously access the tree
[23]. This, however, is done in such a way that (1) no data sharing among
processes is allowed and (92) successive deletions may cause storage underuti-
lization. An algorithm for compressing the tree in the previous solution is
considered in [33]. An optimistic technique [20] has been proposed to handle
concurrency on B-trees [19], which is not an efficient method when conflicting
operations are likely. Finally, Lausen has proposed a solution which switches
from locking to the optimistic method when conflicting operations are rather
seldom [22]. The drawback of this method is that the locking protocol that is
used is the one proposed in [32], an inappropriate solution in that all processes
(including readers) use exclusive locks.
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3. LOCKING SCHEME AND STORAGE MODEL

The protocol uses four types of locks, viz. read-lock, insert-lock, delete-lock,
and exclusive-lock (r-, i-, d-, and e-lock respectively). Let r/, il, and d/ be the
numbers of -, i-, and d-locks, respectively, currently placed on a node. The
compatibility and convertibility relations are given in Figure 2. The basic idea
of the protocol is that a node with s children could accept 2M — s i-locks by
2 M — s IPs and still be a safe node for all of them. In other words, we permit as
many IPs to place locks on a node as possible to that their collective action will
not require the node to be split. Likewise, a node with s children can accept
s — M d-locks by s — M DPs and still be safe for all of them. Readers, on the
other hand, are free for reading nodes that belong to a subtree being updated
by an insertion or deletion process. i- or d-locks do not give the right to an
updater to modify a node. They are used as reservations of free slots in the
node. Should an actual modification be required, they should be converted to
e-locks, a technique used also in [2, 21]. An important point that can not be
seen from these tables is that a request to i- or d-lock a node implies also a
request for an r-lock; e.g., if an i-lock request for node N is granted, N is both
i- and r-locked. When the reading is terminated, the updater must explicitly
r-unlock the node. Clearly, in this protocol compatibility relations among locks
are not static. The lock assignment on a node does not depend exclusively on
the lock type, but also on the status of the node and the kind and number of
processes acting currently on that particular node.

r i d e
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Fig. 2. (a) compatibility relations among locks (the table is asymmetric). (b) convertibility
relations among locks.
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STORAGE MODEL

We assume that the nodes of the tree are stored on disks. The disk is
partitioned into blocks which are the unit of both storage allocation and data
transfer. The size of the node is the same as the block size. The main memory is
shared by all processes. Each process may have its own private space, but this
has nothing to do with its right to read or modify a node in main memory.
Reads and updates of a node may be performed on a single copy in main
memory. This model is in contrast to the one in [23], where all processes should
copy the block which they want to read or write on its own private workspace;
e.g., in their model, if at some point in time n readers are reading anode, there
are n copies of the same disk block in main memory.

The following modification of the basic B-tree structure is required to
accommodate our solution. We assume that two auxiliary pairs exist on each
node, as shown in Figure 3. The (K,, P,) and (K|, P,) pairs of each node are
called the right and left link pair, respectively. The link pairs are used by IPs as
an additional method of reaching a newly created node; readers do not depend
on the values of the link pairs for their operation. The technique of using
additional paths to reach a node is also used in [23], where a link pair on each
node always points to the node’s right sibling, and in [26] for recovery purposes.

As we will see when we discuss the deletion process, it is very easy to
parametrize the threshold, say tm, for merging or rotation. We may define any
value of tm such that 0 < tm < M. Assigning a value of tm less than M will
further increase concurrency because more DPs may place d-locks on a node
and more IPs may place i-locks on a node with fewer pairs. If tm =0, all DPs
will reach the leaf node without ever trying to reorganize the tree. This may be
useful when (1) it is known a priori that deletions are not directed to a small
part of the tree, (2) the tree is young and, presumably, it is growing. Notice also,
that when tm =0 we may have empty leaf nodes and the protocol behaves
almost in the same way as the one presented in [23], where a deletion process
always deletes the pair from a leaf regardless of its population. Our solution,

{;lpl l s Py KPP Kom-1Paman l KP, l
(a)

[Ktpt | s KoPyo KPP Kom-1Pamar [ KP, ]
(b)

Fig. 3. (a) non-leaf and (b) leaf node with left and right link pairs.
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however, has the benefit that this is done in a controlled way; that is, we may
dynamically change tm to achieve the desired space utilization.

NOTATION

The pair (K, 4, P, 4), 0<i<2M -1, explicitly declares the ith key and
pointer of node 4. A request to convert an i- or d-lock on A to an e-lock is
expressed by the notation convert(x — e,(IA), where x is i or d. We use the
notation E-lock(x, A) to mean the following three individual lock requests:
x-lock(A), r-unlock(4), convert(x — e, 4), where x is i or d. Finally, function
Scan( A, (k) reads node 4, as if it had no link pairs, and returns the pointer to
the appropriate child for an argument key £.

4. SEARCHING

A read process searches the tree for a key & and returns the r-locked leaf
node on which k& may exist, as follows:

S1  [lock root]
r-lock(root) and set A = root
S2 {leaf is found]
if A is leaf then return 4.
S3 [lock child, unlock parent]
C = Scan( 4, k), r-lock(C), r-unlock(4), 4= C, repeat from step 2.

This simple lock-coupling technique [2] is sufficient for the correctness of the
RP’s operations.

5. INSERTION

An insertion process uses i-locks on its passage to a leaf node. Since i-lock
implies r-lock, it may read the node with no other control. In each node, the IP
checks for the node’s safeness, and if the node is safe, it i-unlocks all the
ancestors. An r-lock, on the other hand, is released immediately after reading a
node, regardless whether the i-lock is kept or not. The outline of the insertion
process follows:

ALGoRITHM FindLeafTolnsert. It searches the tree rooted at A for an
argument key k; it reorganizes the tree, if necessary, and returns an e-locked
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nonfull leaf node in which k should be inserted;

11 [lock root]
set A = root, i-lock(4), push(stack S, 4)
I2 {4 is leaf and i-safe]
if A is leaf and not full then r-unlock(4), convert(i — e, 4), return A
I3 [4 is leaf and full]
if A is leaf and full then
13.1 r-unlock(A), invoke leaf := Restructure(S, k)
132  E-lock(i,leaf), e-unlock all e-locked nodes except leaf,
return leaf
I4 [find and lock child]
C = Scan( 4, k), r-unlock(4), i-lock(C),
I5 [check if child has been split]
C := CheckSplit(C, k), 4:=C
16 [A is i-safe]
if 4 is not full then
while S not empty pop(S), i-unlock A4’s ancestors
I7 push(S, A), repeat from step I2.

For the majority of the cases the leaf node is not full and the IP stops at I2.
If, however, the leaf is full, the Restructure routine reorganizes the tree by
initially splitting the leaf node. Since a new node has been created for the leaf
node, a new pair should be added on leaf’s parent, and if the parent is full, the
overflow propagates until the deepest safe node. Since many IPs may operate
on the same node simultaneously and because of the just-mentioned upward
reorganization, appropriate precautions should be taken against possible con-
currency anomalies while another IP goes down the tree to find the proper leaf
node. This task is undertaken by the CheckSplit routine, whose internals will be
explained later.

RESTRUCTURING PHASE

On reaching the full leaf node the IP’s scope will be i-locked, but still free for
other IPs and RPs. The IP, instead of e-locking its (already i-locked) scope, uses
a technique similar to the side branching one, reported in [20] for binary trees
and {21} for B-trees, as follows. Let C be the full (of pairs) leaf node. The 1P
gets a new node B from the free storage (assume P, = P,=NIL for all new
nodes), and examines the following possibilities:

If k>K, (B will be a right branch), the M rightmost pairs of C,
(K, Py) through (K, i, Pry 1), are read into B.
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Fig. 4. Tree reorganization in order to insert key 17.

If k <Ky (B will be a left branch), the M leftmost pairs of C, (K. Fy)
through (K,,_1, Py_,), are read into B.

The splitting propagates upwards in a similar way, i.e. reading half of the full
node, with the additional operation of adding the newly created node, on the
lower level, as well as the new separator. The new separator, which should be
added to C’s parent, is always the K, key of C before its splitting, regardless
of the value of key k and the direction of B.

Figure 4(a) shows the generation of two left branches, P and Q, in order to
insert key 17 in the tree of Figure 1(a). Similarly, Figure 5(a) shows the
generation of a left (P) and right branch (Q) in order to insert key 29 in the
tree of Figure 1(a). It is noteworthy that while the IP creates the side branches
(costly operations, since the allocation of a free block may require two disk
accesses), no node in the original tree needs to be exclusively locked. Also, the
side branches impose no additional space overhead, since a full node has to be

split anyway.
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Fig. 5. Tree reorganization in order to insert key 29.

The update of the deepest safe node is performed as follows:

ALGORITHM UpdateDeepestSafe. It updates the deepest safe node A, given
its unsafe childe C, and the newly created sibling B of C. In case that there is
no such deepest safe, node A is passed with value NIL {i.e., C is the full (of
pairs) root node].

Ul [deepest safe node A exists]
if A+ NIL then
Ul.l convert(i — ¢, A), convert(i —¢,C), add B and K, . the new separa-
tor, on A
Ul.2 if B is a right branch then
(K, g Prp)=(K. ¢ P )and (K, . P )= (Ku.cr B)
Ul.3 if B is a left branch then
(K, 5 Prsy) = (K c P.c)and (K, c, P o) =(Ky c: B)
Ul.4 remove left (if B is left branch) or right (if B is right branch) half of
U2 [C is the full (of pairs) root node; see Figure 6(a), (b)]
if A= NIL then
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Fig. 6. Root splitting for (a) left and (b) right branch.

U2.1 convert(i — e, C), get a node D from the free storage
U22a if B is right branch, copy left half of C to D,
set Py =D, (K, ¢, P1c)=(Ky.c:B)
U2.2b  if B is left branch, copy right half of C to D,
set Py =B, (K ¢, Pi.c)=(Kyc, D)
U2.3 set counter of root C to two

Note that if the root is full, its update is done in place; that is, its address never
changes. Steps Ul.2 and U1.3 are needed in order to guarantee that even a very
slow IP will find its path. Assume the situation after an IP (say, IP)) has
removed the C’s right half. Assume also another IP (say, IP,) that, holding an
i-lock on A before IP, updated A4, wants to proceed to i-lock C because that’s
the proper node for the key that wants to insert. When IP, i-locks node C, half
of C’s pairs have been removed by IP,. Even worse, it could be the case that
other IPs insert a number of pairs in C, causing resplitting of C, perhaps before
IP, has managed to read this node. IP, is able to find its path, through
CheckSplit, which is described below:

ALGORITHM CheckSplit. Given an r- and i-locked node C and a key &,
check whether C or one of its branches is the proper node for k.

Cl if (P, # NIL and k > K,) then Branch:= P,
else if (P, # NIL and k < K;) then Branch :== P,
else Branch = NiL

C2 [appropriate node found]
if Branch = NIL then return C

C3 [transfer locks to branch node]
i-lock(Branch), r- and i-unlock(C), €= Branch.
repeat from step Cl.



OPERATION-SPECIFIC LOCKING 13

Since steps U1.1 and UL.3 actually insert a new node into a linear linked list
containing some of A’s children, we immediately have that for any pair of
nodes, x and y, which have the same parent, it cannot be the case that x is
reachable from y and y is reachable from x. Therefore, IPs cannot deadlock while
moving locks on sibling nodes (step C3). Thus, we can always check whether a
node has been split and if so, which node should be scanned in order to find the
appropriate path. Note also that there is no need to set the link pair on nodes
other than the highest unsafe, since all IPs should first read this node before
they proceed to lower levels.

The remaining task fo the IP process is to proceed to lower level nodes and
remove the appropriate half from those nodes. Its steps are summarized here.

ALGORITHM Restructure. It accepts the key k for insertion, and the i-locked
IP’s scope. It reorganizes the tree and returns a nonfull leaf node in which &
should be inserted. After completion, all nodes in IP’s scope are e-locked.

RI1 make branch for the leaf node, and call this node 4

RI2 make branches upwards, until the highest unsafe node C

RI3 UpdateDeepestSafe

RI4 if C is leaf then return A

RIS convert(i — e,child of C), remove left or right half of C, reset P, and P,
of child to N1L, C := child

RI6 repeat from step 4

Figures 4(b) and 5(b) show the tree state after the Restructure routine is
completed for the operations of the previous examples.

6. DELETION

There are two major characteristics of the way DPs work. First, reorganiza-
tion of the tree is always done in a top down manner; secondly, each DP
attempts to correct actions taken by other DPs, never its own. The idea of
relaxing the responsibility of a process for finishing its own work is also
discussed in [9, 10] for avL and 2-3 trees, and in [25] for binary trees. On each
level, the DP d-locks the proper node; examines whether this node has no less
the tm pairs, where tm is the threshold for merging; and if so, r- and d-unlocks
the parent. If it has less then tm pairs, it immediately unlocks this node, e-locks
the parent, and invokes the Reorganize routine, which operates as follows:



14 ALEXANDROS BILIRIS

ALGORITHM Reorganize. It accepts an e-locked node A and a key k; it
reorganizes the subtree rooted on A and the child C for key k; after the
reorganization, it returns the proper child C and its sibling B.

RD1 ({find child]
C = Scan( 4, k), E-lock(d,C), B:= NIL
RD2 [C is d-safe]
if C has no less than rm children return C,B
RD3 [C is unsafe]
B := an immediate sibling node of C, E-lock(d, B)
RD4a [merging]
If total number of pairs in C and B is less than 2M then move all
pairs of C into B, delete child C from A, FreeNode(C), interchange
C and B
RD4b  [rotation]
elseif C is a leaf node then rotate B into C
RD5 return C and B

Our solution does not guarantee that every node has at least tm pairs
because, as we see from the above algorithm, only merging is performed on
nonleaf nodes. The fact, however, that two nodes cannot be merged implies that
they have, collectively, more than 2M pairs and therefore space underutiliza-
tion problems cannot result from this action. Rotations, on the other hand, may
be performed on leaf nodes.

The problem of root is handled in a similar manner to IPs, in that the
address of root does not change; simply the contents of the root are updated.
This will happen iff the root has exactly one child. The update is done by
moving all pairs from this unique child to the root (Figure 7).

ALGORITHM ReorganizeRoot. It fills up the root 4 with all the pairs of its
unique child. The address of root does not change.

RR1 [e-lock the root]
r-unlock( A), convert(d — e, 4),

A A
7 |
c -
727 |

Fig. 7. Root update because of deletions.
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RR2 [e-lock its unique child]
C:= P, 4, E-lock(d, C), copy C to A, set P.of C to point to itself

Notice that the unique child of the root is not returned to the free storage;
This is the only case where a node is lost “forever.” We present now the
deletion process.

ALGORITHM FindLeafToDelete. Given a tree 4 and a key k, it returns an
e-locked leaf node from which k, if it exists, should be deleted. As it goes down,
it readjusts nodes with less than tm pairs.

[boolean ExL is true iff the parent node is e-locked]
D1 [d-lock root]
make A the root, d-lock(4), set ExL := false,
if root A is leaf then r-unlock(A4) and convert(d — ¢, 4)
D2 [adjust root]
If root A has one child C, and 4 is not leaf then
invoke ReorganizeRoot( 4), e-unlock(C), ExL == true
D3 (leaf is found]
If A4 is leaf then return 4.
D4 [find and lock child]
C = Scan( 4, k), d-lock(C)
D5a  [child is d-safe]
If child C has no less than tm pairs then
DSal If C is leaf then r-unlock(C), convert(d — e, C)
D5a2  [unlock parent]
unlock node A, set A to be C, set ExL to false
D5b  [child is not d-safe]
If child C has less then tm pairs then
D5b.1  [unlock child, e-lock parent]
r-unlock (C), d-unlock(C): if not ExL then r-unlock 4,
convert(D — ¢, 4)
D5b.2  [check node]
If P, = A then e-unlock(A4) and repeat from step D1
D5b.3  [reorganize A]
invoke Reorganize( A, k), which returns child C and its sibling B
D5b.4  e-unlock(A), set 4 to be C and ExL to be true; if B# NIL then
e-unlock( B)
D6 repeat from step D3

An example of a deletion process will be given in Section 8, where we discuss
the recovery mechanism.
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7 CORRECTNESS OF INTERACTION AND DEADLOCK FREEDOM

In order to prove correctness, we will nor prove that log sequences of events
produced by this protocol are serializable [11], because they are not.! The
sequence of low level intermediate reads and writes is unimportant in this
application as long as the results of the high level operations search, insert, and
delete are consistent (equivalent to a serial execution). The distiction between
serializability of log sequences of events and operation sequences is discussed
also in [5, 12, 30]. We will prove that all processes can navigate correctly into
the tree, in order to find the appropriate leaf node, given the modifications
which are imposed by the updaters’ reorganizations, and that they never
deadlock. We do that by examining the synchronization achieved between the
three types of processes.

In the following discussion, nodes A and C are the deepest safe and highest
unsafe node, respectively. The time that a process P, is granted an x-lock (x =T,
i, d, or €) on some node N is expressed by x,(N). Likewise, the notation
xu,(N) means the time that P, x-unlocks node N.

READ/INSERT

IPs do not perform any modification during the searching phase, and for the
part of the restructuring phase from leaf to the deepest safe node. Recall that,
during that time, side branches are not yet linked to the tree and they are
invisible to RPs. Therefore the compatibility of r- and i-locks does not create
any problem for RPs. Visible modifications are performed after the IP e-locks
node A. Let e(A4),e,(C) be the time that IP, e-locks nodes 4 and C,
respectively. Let also r,(4), ,(C) be the times that an RP, r-locks nodes A and
C, respectively. Because of the lock-coupling technique, we have either rn(A) <
rn(C) < e (4)<e(C)or e,(A) < e (C)<n(4)< r(C). In the first case RP,
reads C before half of its pairs are removed, and in the latter RP, reads C after
reading A, which already has been updated to include also the branch of C.
Thus, in either case, the RP does not have to read the link pairs. In summary,
once the IP e-locks the deepest safe node, readers cannot interleave on the tree
rooted on this node. Since an RP and an IP place their r- and e-locks,

!Assume for example a tree of height four and a path consisting of nodes 4, B.C, D on
levels 1 through 4. Assume also two DPs, DP, and DP;. passing through the above nodes. DP,
may rearrange nodes 4. B before DP, reads these nodes, and DP, may bypass DP, and
rearrange C, D before DP, reads C and D.

2Strictly speaking, this is required for recovery purposes only. The execution is still correct
even if readers interleave with an IP in its scope. provided that the IP places its e-lock requests
according to the lock-coupling technique.
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respectively, on nodes visible to both in a top down way only, they cannot
deadlock.

INSERT/INSERT

Clearly, the point that needs discussion is the IP’s operations on the deepest
safe node, since this is the case where many IPs may coexist on a node while
updates take place. Assume that an IP, say IP,, has already i-locked its scope
and created all the side branches, and it is ready to update the deepest safe
node A. Define e,(4),e,(C) to be the time when IP, e-locks nodes 4 and C,
respectively. Assume, also, the existence of another IP, say IP,, whose path
passes through nodes 4 and C (before its splitting). Let i,(4),i,(C) be the
times when IP, i-locks nodes 4 and C, respectively. Clearly, ¢,(4) < e;(C) and
i,(A) <i,(C). Also, since node C is full, IP, cannot i-lock C before IP, unlocks
this node, and thus we have e,(C) <i,(C). Therefore, we have to examine the
following two cases:

Case 1: €/(A) <e(C)<iy(A) <ip(C) or el(A) <iy(4) <e(C) <i(C).
The important part of both of these inequalities is that e (A) <i;(A), which
means that the side branch (say, B) has already been added to 4 when 1P,
reads this node and therefore IP, may access C or B in the usual way (reading
A, the parent of both C and B).

Case 2: iy(A) <e(A)<e(C)<i(C). IP, reads A4 before IP; adds B in
this node, and reads C after IP, removes the left or right part of C. In this case,
IP, makes use of the link pairs to find its path via the CheckSplit routine. Note
that if IP, delays placing its i-lock request for node C [after e,(C)], other IPs
may bypass IP,, add pairs in C, and resplit this node. This could happen at
most 2M — tm —1 times.?

IPs place their i- and e-locks in a top down manner, except when a branch
node (on the same level) should be i-locked. However, it has been shown that
no cycles are possible among nodes of the same level and thus IPs cannot
deadlock.

READ/DELETE

DPs always e-lock the parent node before they e-lock and rearrange two of
parent’s children. Therefore, because of the lock-coupling technique, readers

*Every time a splitting of C is performed, a new pair is added to A: when A reaches the
point where it has exactly 2M ~1 children and one i-lock (the IP:’s lock), no other i-lock may
be placed on A.
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cannot interfere with DPs while updates take place. Readers and DPs place
their - and e-locks, respectively, in a top down way, and therefore they cannot
deadlock.

DELETE/DELETE

There are two places where a DP performs its updates: (1) to update the root
(step D2) and (2) to reorganize a node other than the root (step D5b.3). We
examine those two cases.

Case I: ReorganizeRoot. Assume a DP, say DP,, d-locks the root 4 (step
D1). Since the root has exactly one child, no other DP may have any kind of
lock on the root. Let e,(4) and e,(C) be the times when DP, e-locks A and its
unique child C and updates the root. Conflict may arise when another DP, say
DP,, holds a d- and an r-lock on C and one of C’s children, say D. If D is
unsafe, DP, r-unlocks C, ru,(C), and converts its d- to an e-lock on C, e,(C).
Although the schedule ru,(C)e (C Ye,(C) is not correct, DP, recovers by first
checking whether C is part of the tree (step D5b.4) and if it is not, it unlocks C
and starts again from the root. No other interaction can create problems on the
root.

Cuase 2: Reorganize. This subprocess starts working with the parent node
A being e-locked. All subsequent operations are done after child nodes, C and
B, have been e-locked, at ¢,(C) and e,( B) respectively (steps, RD1 and RD3).
Also, this subprocess does not depend on values passed by the parent process
for their operations; i.e., it is its own responsibility to find the child for some
key, the sibling, etc. Therefore, here we have a serial execution between those
subprocesses that act on a subtree rooted on the same node. The order of the
serial execution is determined by the order in which e-locks are placed on the
parent node A. The same is not true when Reorganize subprocesses work on
different levels. Assume a DP, that holds a d- and an r-lock on B as well as on
one of B’s children, say D. If D has less than tm pairs, DP, unlocks D and
then r-unlocks B, ru,(B), and converts its d- to an e-lock on B, e,(B), in order
to reorganize B and C. Again, the schedule ru,(B)e,(B)e,(B) is not correct.
However, no pair has been deleted from B; simply all pairs from C have been
moved to B. Since the Reorganize subprocess invoked by DP, reads node B
after e,(B), no harm can be resulted from DP,’s action on B.

INSERT/DELETE

Operations performed by IPs or DPs which modify the tree are done on their
scope which is i- or d-locked, respectively. Since these locks are not compatible,
there is no interference among these processes.
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8. RECOVERY

We know of two conditions that should be satisfied so that a locking
protocol be recoverable: (1) the locking granularity must be at least as fine as
the recovery granularity, and (2) objects updated by a transaction T; must be
unavailable to other transactions until T, commits (to avoid cascading roll-
backs). While the first condition is satisfied, the latter is not. That is, we would
like to unlock updated nodes on higher levels on the tree before the transaction
actually updates the leaf node and commits, without sacrificing recoverability.

Operations acting on a B-tree are actually a part of a longer transaction
running on the database. For example, we insert a key and a pointer to a B-tree
because we insert a tuple on a relation indexed by this tree. We expect a
transaction to be atomic, that is, either happen or have no effect at all {14, 17}.
For instance, in the above example we do not want to have either the index
updated with the new pair without the tuple in the relation or the tuple in the
relation without the corresponding pair in the tree. In general, therefore, tree
updates must be revocable until the transaction that calls for those updates
commits. Let’s, however, distinguish the operations of the insert or delete
processes into two categories. In the first category belong operations that
reorganize the tree, and in the second, the action of inserting (deleting) a
specific pair in (from) the leaf node. Although those operations have been
initiated by the same transaction, they are not logically related. That is, actions
of the first category may be committed regardless of the fact that the transac-
tion that initiated the insertion or deletion may later abort. Consider the case of
insertion after the tree is reorganized and before the actual insertion on the leaf
is performed. If we commit those updates, the tree is consistent no matter what
will happen to the parent transaction (the one that called the IP). Similarly, if a
DP reorganizes a part of the tree, these updates can be committed; the
reorganization on that subtree has nothing to do with the lack either of the
parent transaction or of the delete process itself on a lower level in the tree. To
summarize, there will never be a need to undo updates that have to do with the
reorganization of the tree.

In order to implement the above idea, we need a notion similar, but not
identical, to the transaction “save point” {14]. We want the data manager to be
able to perform a subcommit(T}) action, which is defined as follows:

All updates made by 7; become permanent (not revocable), and no lock held
by this transaction is released. The parent transaction is the one which deter-
mines when locks held by child transactions will be released.

To be more specific, subcommits must be issued when the following sub-
transactions terminate: Restructure (step RI4), ReorganizeRoot (step RR2), and
Reorganize (step RDS). Since updates become permanent, e-locks may be
released to increase concurrency. Which locks, and when they will be released,
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depends on the transaction that invoked the above subtransactions. The inser-
tion keeps the e-lock on the leaf and unlocks all the other nodes (step 13.2); the
deletion keeps the e-lock on the updated child and unlocks the parent (step
D5b.4). In either case, insert or delete, an e-locked leaf node is returned to the
parent transaction. If this parent transaction follows the 2PL protocol, the leaf
will be unlocked at commit time. If the transaction gets into trouble, 1t is
sufficient to back up to the immediate preceding subcommit rather than
undoing all the work.

EXAMPLE. Assume that the threshold for merging tm is set to M, in the tree
of Figure 1(e) (ie., tm=2), and that the following operations have been
performed in this tree: delete 38; delete 42; delete 46; delete 40, which,
according to the algorithm, also merges N11 into N12 before deleting 40.
Figure 8(a) shows the resulting tree after the above operations. Now, suppose
that transaction 7, have been initiated to perform the following operations:

delete tuple (44, Alex, Boston) from the relation R(id, name, city) indexed
by the tree of Figure 8 on the first attribute, and then do some “other work.”

The interaction of T, with the various subtransactions are illustrated in Table 3.

Note the difference between the scheme described and the nested transaction
model {31, 29]. The latter model permits transactions to be nested; however, it
requires that transactions on the same level be serializable, which is not the case
here. For example, although we require the Reorganize subtransactions to be
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Fig. 8. A tree for the example of section 8.
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serializable, the DPs that are calling them are not. A paper by Moss, Griffeth,
and Graham [30] presents a thorough discussion of this concept.

9. PROTOCOL APPLICABILITY TO SIMILAR STRUCTURES

Since this protocol is so tight to the specifics of the B-tree structure, we
might not expect to apply it to other similar structures “as it is,” without
sacrificing correctness and/or performance. For some structures, it will be
required to modify the algorithms for the three operations (which is natural
anyway, since they act on a different tree); for some others, however, the
locking rules and/or the definition of i- and d-safeness must be changed.
Moreover, there is nothing to be gained if we apply this protocol to structures
in which we know a priori that updaters modify all nodes on their access path,
from root to the leaf node (e.g. OB-trees [36]). In the following, we discuss the
appropriate modifications for B*-trees, compressed B-trees [7], and R-trees
[16].

BT -TREES

Leaf nodes belonging to a B-tree have pointers pointing to their right
sibling. The P, pointer of the right link pair can also be used for this purpose.
The modification that is required is to restrict the splitting of leaf nodes to right
branches only and set the P, to the right branch even when the leaf is not the
deepest safe node. The locking rules are the same as in B-trees.

COMPRESSED B-TREES

Key and pointer compression on a B-tree have been utilized as a mean to
increase the capacity of each node and therefore decrease the retrieval cost. We
examine the case of key compression only. Instead of defining the safeness of a
node N as a function of the number of pairs stored in this node, we may use
another storage unit, e.g. a byte, and say that N is i-safe iff b storage units can
be inserted without forcing splitting of N. An i-lock request must have the form
i-lock(N, b), where b is the number of storage units that a key occupies.
Assume, for example, that the storage unit is one byte, a pointer occupies four
bytes, and each tree node can store from M up to 2M bytes. Let s be the
number of bytes that are already occupied by keys and pointers on a node. and
il the number of bytes reserved by IP processes already holding an i-lock on
that node. Each time the lock manager accepts an i-lock(N,b), i/ is set to
il + b+4 for the node N. The criterion for assigning an i-lock will be the
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following:

A request of an IP to i-lock a node (with associated storage cost b) is
granted iff the node is not e- or d-locked and

il+b+4<2M—s or il=0.

Similar locking rules may be applied for DPs.

R-TREES

R-trees are similar to B-trees, and they may be used for multidimensional
(spatial) searching. Leaf nodes contain index records of the form (e, tuple-iden-
tifier) where tuple-identifier refers to a ruple in a database and e is the extend
of the object indexed, the extend being the smallest rectangular surrounding the
object. Index records at higher levels are of the form (e, N), where e is the
extend of the extend of all the objects pointed at by the indexes of the node N
one level below (informally, the node’s extend). Insertions of new objects may
affect higher nodes even when the leaf node is not full (because the extend must
be updated). Thus, the definition of the i-safeness of a node should be modified
as follows:

A node is i-safe when it contains less than 2M pairs and the extend of the
node covers the extend of the object being inserted.

The locking rules are the same as in B-trees.

10. CONCLUSION

We have given algorithms and locking rules to manipulate the concurrency
control problem in B-trees, and we have discussed the appropriate modifica-
tions which are required so that they can be used for some variants of the
B-tree such as B*-trees, compressed B-trees, and R-trees.

The algorithms introduce some concurrency control overhead with respect to
the number of messages required to be sent by an updater to the lock manager;
for example, an insertion process has to send three messages in order to e-lock a
node, while in other protocols this number is lower, e.g. two in [2, 21) and one
in [32, 23, 33]. The storage model introduces some space overhead by requiring
each node to have two additional pairs (the link pairs), but as the order of the
tree increases this overhead becomes insignificant. We believe the protocol
presented in this paper enables a higher degree of concurrency by allowing a
number of insertion or deletion processes to operate concurrently on a node.
This effect is achieved by using an operation-specific locking mechanism in
which each of the three processes (read, insert, delete) uses different lock types
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to

reach the leaf node. It also permits data sharing among processes and thus

climinates the cost associated with storing multiple copies of the same disk
block in main memory.

Finally, we have given a specific and simple recovery mechanism which

permits us to unlock nodes updated by some transaction before this transaction
commits.
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