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ABSTRACT 

One of the most important problems of dafabase 
management systems for CAD applications is support for 
evolving design objects. In this paper we provide an 
integrated solution for three very important issues: design 
project decomposition into subprojects, design synchroniza- 
tion among engineers working on different parts of a r!arge 
design, and documentation of the design process. We dis- 
cuss the interaction of versioning with time and we show 
how these two orthogonal concepts can be used in the docu- 
mentation of the design process in an engineering design 
environment. 

1. Introduction 

A CAD product is an aggregation of design objects 
and associated documents. For instance, a product in a 
mechanical application is associated with a variety of draw- 
ings such as detail and assembly drawings, exploded assem- 
bly drawings, etc. These design objects are frequently called 
representations. A design object may have many versions. 
Each version represents a particular description of the 
design object as it has been defined by a user at some point 
in time. 

A version of an object may reference any number of 
objects that in turn may be referenced (shared) by any 
number of other objects. Such objects that are composed of 
other objects are called complez, (Lori83], or com,posite, 
[Bane87], and the hierarchical composition of a complex 
object is referred to as the configuration hierarchy of the 
object. 

The design process starts when some requirements 
and specifications for a particular design object are defined 
to be met. Design libraries in a CAD installation contain 
objects that are used in the construction of new objects, 
which in turn may be included in that library. If some 
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parts of the object under development ha.ve already been 
designed as part of a previous project, then they need to be 
integrated in the larger design. When none of the existing 
library components match the desired behavior for some of 
the components of the larger design, the construction of 
these components proceeds in parallel with the larger 
design. 

This design activity must somehow be coordinated. 
In this paper we describe an integrated :mechanism for a 
database system to support the following. 

Design project decomposition. Typically, teams of 
designers are needed to design a large pro’duct. The design 
project is decomposed into smaller subprojects until a fairly 
manageable and well specified piece of work can be defined. 
The design activity of each individual designer to whom 
such a piece of work is assigned may produce many ver- 
sions. Since the design of components proceed in parallel 
by different designers in different subprojects, a version 
being designed in one subproject may reference objects that 
are themselves under construction in another subproject. 
This brings us to the next issue. 

Design synchronization. Traditional database systems 
provide an inappropriate transaction model in that they 
support a large volume of short duration transactions (few 
seconds). Design applications need support for a small 
volume of long duration transactions lasting days. Apply- 
ing the same transaction techniques to design objects, it 
would severely restrict the opportunity ,for parallel design,, 
(I,ori83]. More specifically, users should be able to syn- 
chronize their designs by being aware of new (perhaps 
incomplete) versions rapidly as they are being produced by 
other designer, and at the same time prevent premature 
disclosure of a version, that is shared arnong users working 
on the same project, to other designers. 

Design documentation. A person being involved in the 
design process for a particular product should be able to 
look back in time and see how a design was evolved. More 
specifically, users must be able to 

. track the evolution of a design by ‘walking through 
versions’ of this design, and also 

. track the evolution of a single version of a design 
object over time. 
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1.1. Related Research 

A generally accepted system architecture, for Perfor- 
mance reasons, of an engineering design system is the one 
where a central server is connected to powerful workstations 
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through a local area network (Katz84, Kim84, Lori83]. In 
many proposals this model has been extended so that a 
hierarchy of (logical) databases can be established between 
the server and workstations, (Kim84, Banc85, Klah85, 
Chou86, Ditt87, Katz87, Bili89a]; these databases are 
called group, project or semi-public databases. Some of 
these models, augment the transaction manager with new 
mechanisms to handle design transactions. [Kim841 cou- 
ples project databases with nested transactions, and 
[Klah85] introduces a new kind of transaction, called group 
transaction, to coordinate teamwork. In (Banc85] each pro- 
ject database corresponds to a set of cooperating transac- 
tions that consist of a set of short duration subtransactions. 
On the contrary, in [Lori83, Ditt87, BiliBSa] complimen- 
tary mechanisms, on top of existing transaction mechan- 
isms, are used for access control and synchronization. 

An important issue that research in this area has 
identified is the need for two kinds of reference: static and 
dynamic (also called, generic), (Atwo85, Bato85, Chou86, 
Ditt88, Bane87, Beec88, Land86). A static reference is a 
reference to a specific version of an object. A dynamic refer- 
ence refers to a generic object that somehow represents the 
set of versions of the (semantically) same object; the exact 
version is left unspecified. Thus, a design object may refer- 
ence an object z that is itself under development without 
prematurely binding this reference to a specific version of z 
that happens to be currently available. Instead, a contezt 
(function) is used to map z to one of its versions, [Chou86, 
Beec88, Ditt88]. The set of contexts currently active in a 
particular workspace defines the environment in which 
designs are materialized in this workspace. A user can 
establish a number of environments and, by switching from 
one environment to another, can see various alternative 
configurations of the design version. 

1.2. Outline of our Work 

The paper is organized as follows. Section 2 briefly 
describes some data modeling issues related to vemioning; 
[Bili89b] provides detail description of the data model. In 
Section 3 we review our previous work on project decompo- 
sition and synchronization, (Bili89al. We describe the 
design database hierarchy that represents the subprojects of 
a large project. This hierarchy in turn is used to define the 
rules for access control. Updates (through the 
checkout/checkin mechanism) are always performed on new 
versions, [Rehm88, Ditt87j. In effect, concurrency control 
problems caused by multiple writes are transformed into 
problems of version management rather than concurrent 
access. Versions are entered into the database and become 
accessible to other designers in a well controlled way. 

Section 4 discusses documentation of the design pro- 
cess. Keeping old versions intact enables designers to go 
back and start working from a previously designed version 
(not necessarily the last one). Clearly, design versions can 
not been seen as a linear list of states of an object over 
time. Thus, all of the solutions we are aware of maintain a 
hierarchy to indicate the derived-from relationship among 
versions. However, it is not sufficient to know all versions 
of an object as they are now. We need also to know how 
these versions were at some point in the past. Thus, in this 
section we introduce time in an orthogonal dimension to 
versioning. We explain our choices and provide implemen- 

tation mechanisms for temporal data associated with ver- 
sions. Finally, in Section 5 we summarize our work. 

2. Data Model 

The database is a collection of (database) objects, 
each identified by a system generated id, called oid. Every 

object is of a given type; it is said to be an instance of that 
type. The type provides the attribute specifications shared 
by all of its instances. Each attribute specification defines 
the type of the attribute value. An object maintains its 
own storage for the values of the attributes defined in its 
type. The slate of an object is given by the values of these 
attributes at any point in time. A type constructor is pro- 
vided so that an attribute value can be defined to be a 
reference (simple or part-of) to an object of a given type. 

A type T can be defined to be versionable; a user can 
define the attributes that a generic object of this type must 
have as well as the attributes of the versions of this generic 
object. In effect this creates two types: T, whose instances 
are generic objects, and TVemion whose instances are ver- 
sion objects. Generic object attributes include, in addition 
to the ones defined by the user, a default version, the 
number of versions, a version descriptor for each of its ver- 
sions, etc. The attribute values of a generic object are 
shared by all of its versions. For example, if an AdderChip 
(a generic object) has four pins, then all its versions have 
four pins too. This kind of sharing between an instance of 
T and its versions in TVersion is enforced by the model. 
The reader is referred to [Bili89b] for a complete description 
of the model. For our purposes, this minimal definition is 
sufficient. 

A version is identified (at the language level) by the 
name of its generic object suffixed with a version number. 
Version numbers are not reused and they are assigned to 
versions when they are created. z.Vl indicates version 1 of 
object z. 

3, Decomposition, Synchronization 

For each project in a particular installation there is a 
design database to store versions produced by designers 
working on that project. The design database hierarchy 
represents the work breakdown of a large project into 
smaller subprojects that in turn are subdivided into smaller 
tasks until a fairly manageable piece of work can be 
defined. Each such piece of work is then assigned to a 
design engineer. Thus, leaf databases in the hierarchy 
represent private databases while the non leaf represent pro- 
ject databases. Design databases form a directed acyclic 
graph (DAG), not necessarily a tree structure. In the fol- 
lowing we shall use the term database to mean design data- 
base; the term shared database refers to the collection of 
project databases. 

In addition to the role of the design database hierar- 
chy to describe the work breakdown of a large product, it 
also encapsulates information about access control, i.e., 
read and write rights on versions and version ownership. 
Note that to handle these rights on disjoint objects is quite 
easy. But our objects participate in the configuration of 
many objects. Thus, we have overlapping (shared) objects 

and a clear understanding for access control is needed. 
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3.1. Access Control 
Every designer is assigned (owns) a private database 

and there is an owner for every database. Each version has 
a single home database as its main residence; multiple 
copies of it may exist in other databases. As the ve:si,on is 
being moved from database to database, its home database 
changes too. Version ownership is esclusively determined by 
its home property; the owner of a version’s home database 
is also the owner of this version. 

Designers in a cooperative design environment need 
to exchange their designs for partial evaluation, even 

though their designs are incomplete. Clearly, exchange of 
incomplete designs is meaningful only among designers 
working on the same project, i.e., designers who are direct 
or indirect members of a common database. This is the 
reason why the database hierarchy establishes the following 
visibility rule: a version V is uisible (i.e., it can be refer- 
enced or read) from a particular database d, if V’s home 
database is d itself or one of d’s direct or indirect parent 
databases. 

Write access rights are granted on a generic object, 
not for each individual version. A private database d can 
checkout a version from an indirect database p only if all 
databases in the path from p to d grant this right to their 
immediate children in that path. Note that a da.tabase 
may grant checkout rights to more than one of its children 
databases at the same time. The purpose of granting these 
rights is not to somehow control concurrency. Updates are 
always performed on new versions of the original version. 

3.2. Version Mutability 
The mutability of a version is indicated by its status 

which can be in-progress, stable, frozen, or released. An 
in-progress version resides in a private database only and 
thus it is visible to its owner only. Any operation can be 
applied to an in-progress version, including deletion, 
modification, etc. When a version becomes frozen all 
dynamic references are mapped to specific references and 
the version can not be altered in any way. A stable version 
is like a frozen version except that its generic references are 
not statically mapped; the binding is done at access time. 
A stable or a frozen version can be deleted by its, owner. 
Finally, a released version of an object can not be deleted 
or modified. The status of a version restricts also the status 
of its referenced versions. The following table summarizes 
the characteristics of versions with respect to their status. 

readable 
deletable 

context 
sensitive 

modifiable 
status of 

referenced 
versions 

m-progress stable 

yes yes 
yes yes 

frozen 

yes 
yes 

released 

Yes 
no 

yes yes no 
b---l 

no 
ves I no I no no 

any kmd stable, frozen, 
frozen, released 

released 

3.3. Design Sessions 
A designer starts interacting with the shared system 

by initiating a design session. He then may checkout a ver- 
sion z.Vn from a project database. This operation creates a 

new in-progress version 5:.Vm, a copy of x.Vn, in his 
private database. The new version is (considered to be 
derived from z.Vn. This relationship among versions forms 
a hierarchy, called version derivation hierarchy. Many ver- 
sions can be derived from the same version. if the checked 
out version was stable, its generic references are mapped to 
specific versions at checkout time and in the environment 
defined at the private database. Many subsequent checkout 
operations can be performed on another or the same object. 
When the engineer is satisfied with the results of his design, 
he places some of these versions (not n~ecessarily the last 
one) back into a project database for further consideration 
by performing a corresponding checkin operation. A chec- 
kin of a version z.Vm to a project database p makes p the 
current home of z.Vm. The version can optionally be 
specified to be frozen as a parameter of the checkin opera- 
tion (the default status is stable); aIternatively, the current 
owner of the version can promote it to frozen (and subse- 
quently to released) at any time. When the version 
becomes frozen each reference to an ob,ject of versionable 
type is mapped to one of its versions that are currently 
available. The current owner of a vewion can moue the 
version to another database; the status is not affected by 
this operation. A designer can cancel the checkout of a ver- 
sion by issuing an uncheckout operation which removes 
from the database the fact that someone has checked out a 
version and removes the version itself from his private 
workspace. 

A design session spans MMY days and 
logins/logouta. When the designer ends the session, an 
implicit uncheckout operation is issued for all objects that 
have been checked out in his worksp,ace but not subse- 
quently checked in. Note that there is no way to undo a 
checkin operation. The design session is not the unit of 
recovery, [Lori83, Eck187, Rehm88]. If such an action is 
required the current owner of the checked in version should 
explicitly deleted it. 

4. Versions and Time 

A user being involved in the development of a design 
object can see how this object has been evolved by follow- 
ing successor or predecessor versions in the derivation 
hierarchy. This hierarchy in conjunction with the version 
creation time associated with each version provides a his- 
torical picture of when and from which version a particular 
version V was created. Although, this is a useful piece of 
information, it does not tell us perhaps the most important 
thing: how was that version V at some point in the past. 
Clearly, we are not interested to track every single change 
performed on a version in a private database; that would 
be impractical. However, this problem exists even for ver- 
sions that have been checked into the shared system and 
therefore can not be modified. The problem originates 
from the fact that versions in the shared system might be 
stable and as such they contain generic references that 
might be resolved to different versions at different times. 
This is illustrated in the following example. Consider a 
stable version z.V referencing object y (a generic object 
with one version, y.Vl), and that generic references to y are 
resolved to y’s most recent version. Assume that y.V2 
becomes visible to z.V at time t. A reference today to z.V 
maps y to y.V2 whereas if this reference was evaluated at 
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version erivation 
dhierarchy 

I 

V2 

VlC- 

/ 
time 

now 

Figure l.The evolution of a design object can be tracked 
either by walking through the derivation 
hierarchy, or for a single version by walking 
through time. V2 has been deleted at some time 
prior to ‘now’ and thus, it is not included in the 
current derivation hierarchy. 

any time prior to t, it would have been mapped to the then 
most recent version of y, i.e., y.Vl. Clearly, the time at 
which a reference is evaluated can alter the actual version 
Of the referenced component. Therefore, version 
identification alone is not enough to fully describe a version 
object in the past; a temporal dimension should be intro- 
duced. Figure 1 shows the life span of each version of an 
object and its derivation hierarchy. 

We are interested to track the evolution of a design 
in two dimensions; by following predecessor/successor ver- 
sions in the derivation hierarchy, and by tracking the 
configuration hierarchy of versions in the shared system as 
of some time in the past. Our goal is to provide an under- 
standing of how this can be economically achieved in CAD 
applications and not to present a general purpose high level 
language that deals with time (see [Snod87, Clif85, Gadi88, 
Caru88j). 

4.1. Temporal Semantics 

The subtle semantic difficulties caused by the intro- 
duction of time are discussed in this section. We provide a 
classification of attributes which is an augmentation of the 
time related concepts presented in (Snod87, Clif85, Sege871 
with versioning. 

l A time attribute is an attribute whose value type is 
time. The value of such attribute is a kind of time 
information that is defined by and it is of interest to the 
user only; it is called user defined time in [Cope84]. For 
example, ‘creation date’ and ‘review date’ are time 
attributes while ‘designer name’ is not a time attribute. 

. A temporal attribute (TA) is an attribute whose value is 
a function of time. If the attribute value does not 
change over time it is called a constant attribute. For 
example, ‘salary’ is a temporal attribute. On the other 
hand, the version number of a version can not change 
over time and therefore this is not a temporal attribute. 

l A version attribute (VA) is an attribute whose value 
type T is versionable. A VA’s value can be a reference 
either to a generic object of T (a generic reference) or to 
a version object of TVersion (a static reference). In the 
first case the context mechanism is used to resolve the 
reference. Note that a type whose some of its attributes 
are VAs is not necessarily a versionable type. 

The first two as well as the last two attribute types are 
orthogonal, and the set of version attributes and the set of 
time attributes are mutuatly exclusive, see Figure 2. For 
example, the ‘home’ attribute of a version is a temporal 
attribute, ‘creation date’ is only a time attribute, while 
‘date of last review’ is both. Similarly, a version attribute 
may be either temporal or constant attribute. Note, that an 
attribute A of Tl of value type T2 can be defined to be 
temporal when Tl is defined. This is not true for version 
attributes; A is a VA iff T2 is versionable. 

‘ 
attributes 

I 

time 
at tributes 

Figure 2. Classification of attributes 

If time is going to be supported, the next question is 
what kind of time. Research in the area of time in data- 
bases has identified two important kinds of time [Snod87). 
Valid time corresponds to the actual time at which an 
event occurs. Transaction time is the time at which infor- 
mation about a real world event is stored in the database, 
i.e., it is the time in which an event in the real world 
becomes known to the database. The example that is fre- 
quently given to explain the difference is the following. 
Assume the salary attribute of a person is given the value 
$1,000 on l/80 (see the table below), and that this value is 
changed to $2,000 on l/85. Now, suppose that on l/86 the 
salary is to be changed to $2,500 but retroactive to l/84. 
In other words, the salary value between l/84 and l/86 
was mistakenly inserted in the database and this error was 
corrected on l/86. Finatly, the salary is increased to $3,000 
on l/87. 

salary 

The two kinds of time provide a distinction between what 
was previously known to be the state of the database at 
some time 1 and what is now known to be the state at the 
same time t. 
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4.2. Our Approach 
First, we have chosen to deal with a system main- 

tained time indicating when an update was registered in 
the database and therefore, we treat transaction time and 
valid time as identical. Our choice is justified for the fol- 
lowing reasons. There is no difference between the time in 
which a real world event happens and the time that this 
event is known to the database. Updates (check-ins) on 
design venions can not be effective retroactively. The fact 
of the matter is that all design changes in a design version 
are performed to correct a mistake, something that was pre- 
viously thought to be correct; however, it is exactly the ver- 
sioning mechanism that deals with such updates (by creat- 
ing new versions) and not some kind of temporal relation- 
ships. On the other hand, updates that become effective 
some time in the future, instead of the past, are both possi- 
ble and desirable. It would be useful, for instance, to 
specify that a version will be frozen in two months horn 
today. Such ‘effective-time’ attribute can be treated as 
time attribute that can be changed by the user at will. 

Second, we have chosen to deal with step-wise con- 
stant data, [Sege87], where the value of an attribute at a 
given time t, is the one recorded in the database at a time 
closest to but not later than t. For instance, the ‘count’ 
attribute attached to an object, indicating the number of 
times referenced by other objects, exhibits the above 
behavior as illustrated in Figure 3. 

Third, we want to have the choice to select the attri- 
butes of an object that must be treated as TAs. This is 
because there is no question that time support will be 
costly. It would be very unlikely that users will walnt all 
attributes of an object to be treated as TAs. Finally, we 
want to be able to group attributes that exhibit the same 
temporal behavior. For instance, when a review is com- 
pleted, several attribute values are set at the same time, 
such as reviewer’s name, review documents, suggested 
actions, etc. The semantics of such grouping is that the 

above modifications are timestamped together as a unit. 

We require that access to current data to have the 
same performance as if time was not supported and this, 
regardless whether the accessed attribute is temporal or not. 
This is because queries accessing current data will substan- 
tially dominate temporal queries. Similarly, updates per- 
formed on non TAs must be as fast as if time was not sup- 
ported. On the other hand, it is reasonable to expect that 
operations that involve searching or update on TAs will be 
slowed down. 

4.3. Implementation Issues 
An attribute (or a set of attributes) A is defined to 

be temporal at the type level. A set is allocated to hold 
temporal values of A; we call this set the history uaul!2 of A, 
HV(A). A single HV stores temporal data of an attribute 
for all objects of that type. Each entity in a HV(A) con- 
tains, in addition to the temporal values of A, the follow- 
ing fields: 

oid the system generated object identifier of the object 
whose A value is recorded in this entity. 

time the time in which the update is stored in the data- 
base 

r count 

I 

p y-y 

t1 t2 t3 
/ 

time 
Figure S. Step-wise constant data 

oflag a valid-flag; a false value indicates that the value in 
the entity is no longer valid 

Operations are performed as follows. When a tem- 
poral attribute A is updated, two operations take place. 
First, a new entity is inserted into HV(A) which contains 
the new replacement value and with aid,, time, and uflog 
set to to the oid of the object, current time, and true, 
respectively. Second, the current value of A is overwritten 
to reflect the new value. When an object is (logically) 
deleted all HVs associated with the object’s type are 
updated by adding a new entity with time set to current 
time and vjlag set to false. The value of an attribute A of 
an object o as of some time t is found by searching the his- 
tory vault of A for the entity whose oid is the oid of o and 
time is closest to but no later than t. 

To view a version V as it was at some point in the 
past the user should set the system time dial to the desired 
time. If V was frozen or released at that time, no further 
searching in HVs is required. However, if V was stable, the 
system has to reconstruct the configuration hierarchy of V 
with the versions that were available and visible to V as of 
that time. To do this, the status and home database of 
each version, as well as the database hierarchy as of that 
time should be maintained in HVs. No’te, that VAs need 
not be treated as TAs. VAs’ values of a currently frozen 
version V are stored with the version itself. Since, the 
current version Vn of the referenced objject is known, the 
system can find the generic object z of Vn and from that 
the version Vm to which z would have been mapped if V 
was accessed at that earlier time. Thus, VAs values as of 
some time can always be derived from t,he above informa- 
tion. 

We emphasize that the storage strategy that will be 
used to store versions (e.g., see (Katz841) is independent 
from the storage strategy of historical data related to a ver- 
sion. Accessing the current value of any attribute, tem- 
poral or not, involves no access to history vaults. 

Finally, there is the indexing problem; we expect 
most queries against HVs to be multidimensional. Optical 
discs are excellent choice for archival storage; they are more 
reliable and less expensive than magnetic disks, they offer 
longer life expectancy than magnetic tapes, and they are 
easily removable to off-line and then back to the optical 
disk drive using some kind of mechanical robot (similar to 
juke-box). Although, the write-once ch[aracteristic of opti- 
cal discs is not a problem for temporal data, it imposes 
some problems on indexing, [Ston87]. This is because, por- 
tions of the index may need to be moved to optical discs 
and most of the access methods require some kind of reor- 
ganization. We are planning to invefstigate multidimen- 
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sional searching algorithms such as R-trees [Gutt84], and 
z-ordering lOren86], in conjunction with Write-Once B- 
trees [EastSG], to see which one might be used easily on 
both medium. 

5. Summary 

In this paper we have given mechanisms to handle in 
an integrated way some of the most important problems of 
data management for CAD applications: synchronization 
and documentation. We discussed how the design database 
hierarchy can be utilized to provide a simple and meaning 
ful way to designers to synchronize their designs, by con- 
trolling the visibility of each version they produce. Finally, 
we have shown how a temporal dimension should be intro- 
duced, in addition to the derivation hierarchy, to fully cap- 
ture the evolution of a design object. 

This project is part of an ongoing effort to analyze 
the requirements for data representation, constraint 
management and triggering, configuration management, 
and life cycle control for engineering data. 
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