
Database Support for Evolving Design Objecrts

A fezandros Biliris’
Computer Science Department

Boston University, Boston, MA 02215
E-mail: bilirisabu-cs.bu.edu

ABSTRACT

One of the most important problems of dafabase
management systems for CAD applications is support for
evolving design objects. In this paper we provide an
integrated solution for three very important issues: design
project decomposition into subprojects, design synchroniza-
tion among engineers working on different parts of a r!arge
design, and documentation of the design process. We dis-
cuss the interaction of versioning with time and we show
how these two orthogonal concepts can be used in the docu-
mentation of the design process in an engineering design
environment.

1. Introduction

A CAD product is an aggregation of design objects
and associated documents. For instance, a product in a
mechanical application is associated with a variety of draw-
ings such as detail and assembly drawings, exploded assem-
bly drawings, etc. These design objects are frequently called
representations. A design object may have many versions.
Each version represents a particular description of the
design object as it has been defined by a user at some point
in time.

A version of an object may reference any number of
objects that in turn may be referenced (shared) by any
number of other objects. Such objects that are composed of
other objects are called complez, (Lori83], or com,posite,
[Bane87], and the hierarchical composition of a complex
object is referred to as the configuration hierarchy of the
object.

The design process starts when some requirements
and specifications for a particular design object are defined
to be met. Design libraries in a CAD installation contain
objects that are used in the construction of new objects,
which in turn may be included in that library. If some

’ This research was supported in part by
Computerrision, a division of Prime Inc., undLer
contract AA290424.

parts of the object under development ha.ve already been
designed as part of a previous project, then they need to be
integrated in the larger design. When none of the existing
library components match the desired behavior for some of
the components of the larger design, the construction of
these components proceeds in parallel with the larger
design.

This design activity must somehow be coordinated.
In this paper we describe an integrated :mechanism for a
database system to support the following.

Design project decomposition. Typically, teams of
designers are needed to design a large pro’duct. The design
project is decomposed into smaller subprojects until a fairly
manageable and well specified piece of work can be defined.
The design activity of each individual designer to whom
such a piece of work is assigned may produce many ver-
sions. Since the design of components proceed in parallel
by different designers in different subprojects, a version
being designed in one subproject may reference objects that
are themselves under construction in another subproject.
This brings us to the next issue.

Design synchronization. Traditional database systems
provide an inappropriate transaction model in that they
support a large volume of short duration transactions (few
seconds). Design applications need support for a small
volume of long duration transactions lasting days. Apply-
ing the same transaction techniques to design objects, it
would severely restrict the opportunity ,for parallel design,,
(I,ori83]. More specifically, users should be able to syn-
chronize their designs by being aware of new (perhaps
incomplete) versions rapidly as they are being produced by
other designer, and at the same time prevent premature
disclosure of a version, that is shared arnong users working
on the same project, to other designers.

Design documentation. A person being involved in the
design process for a particular product should be able to
look back in time and see how a design was evolved. More
specifically, users must be able to

. track the evolution of a design by ‘walking through
versions’ of this design, and also

. track the evolution of a single version of a design
object over time.

hmission to copy without fee all orpart of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by pcrmissioo of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1.1. Related Research

A generally accepted system architecture, for Perfor-
mance reasons, of an engineering design system is the one
where a central server is connected to powerful workstations

Paper 18.2
26th ACM/IE!EE Design Automation Conference@

258 G> 1989 ACM O-89791-31 O-8/89/0006/0258 $1.50

through a local area network (Katz84, Kim84, Lori83]. In
many proposals this model has been extended so that a
hierarchy of (logical) databases can be established between
the server and workstations, (Kim84, Banc85, Klah85,
Chou86, Ditt87, Katz87, Bili89a]; these databases are
called group, project or semi-public databases. Some of
these models, augment the transaction manager with new
mechanisms to handle design transactions. [Kim841 cou-
ples project databases with nested transactions, and
[Klah85] introduces a new kind of transaction, called group
transaction, to coordinate teamwork. In (Banc85] each pro-
ject database corresponds to a set of cooperating transac-
tions that consist of a set of short duration subtransactions.
On the contrary, in [Lori83, Ditt87, BiliBSa] complimen-
tary mechanisms, on top of existing transaction mechan-
isms, are used for access control and synchronization.

An important issue that research in this area has
identified is the need for two kinds of reference: static and
dynamic (also called, generic), (Atwo85, Bato85, Chou86,
Ditt88, Bane87, Beec88, Land86). A static reference is a
reference to a specific version of an object. A dynamic refer-
ence refers to a generic object that somehow represents the
set of versions of the (semantically) same object; the exact
version is left unspecified. Thus, a design object may refer-
ence an object z that is itself under development without
prematurely binding this reference to a specific version of z
that happens to be currently available. Instead, a contezt
(function) is used to map z to one of its versions, [Chou86,
Beec88, Ditt88]. The set of contexts currently active in a
particular workspace defines the environment in which
designs are materialized in this workspace. A user can
establish a number of environments and, by switching from
one environment to another, can see various alternative
configurations of the design version.

1.2. Outline of our Work

The paper is organized as follows. Section 2 briefly
describes some data modeling issues related to vemioning;
[Bili89b] provides detail description of the data model. In
Section 3 we review our previous work on project decompo-
sition and synchronization, (Bili89al. We describe the
design database hierarchy that represents the subprojects of
a large project. This hierarchy in turn is used to define the
rules for access control. Updates (through the
checkout/checkin mechanism) are always performed on new
versions, [Rehm88, Ditt87j. In effect, concurrency control
problems caused by multiple writes are transformed into
problems of version management rather than concurrent
access. Versions are entered into the database and become
accessible to other designers in a well controlled way.

Section 4 discusses documentation of the design pro-
cess. Keeping old versions intact enables designers to go
back and start working from a previously designed version
(not necessarily the last one). Clearly, design versions can
not been seen as a linear list of states of an object over
time. Thus, all of the solutions we are aware of maintain a
hierarchy to indicate the derived-from relationship among
versions. However, it is not sufficient to know all versions
of an object as they are now. We need also to know how
these versions were at some point in the past. Thus, in this
section we introduce time in an orthogonal dimension to
versioning. We explain our choices and provide implemen-

tation mechanisms for temporal data associated with ver-
sions. Finally, in Section 5 we summarize our work.

2. Data Model

The database is a collection of (database) objects,
each identified by a system generated id, called oid. Every

object is of a given type; it is said to be an instance of that
type. The type provides the attribute specifications shared
by all of its instances. Each attribute specification defines
the type of the attribute value. An object maintains its
own storage for the values of the attributes defined in its
type. The slate of an object is given by the values of these
attributes at any point in time. A type constructor is pro-
vided so that an attribute value can be defined to be a
reference (simple or part-of) to an object of a given type.

A type T can be defined to be versionable; a user can
define the attributes that a generic object of this type must
have as well as the attributes of the versions of this generic
object. In effect this creates two types: T, whose instances
are generic objects, and TVemion whose instances are ver-
sion objects. Generic object attributes include, in addition
to the ones defined by the user, a default version, the
number of versions, a version descriptor for each of its ver-
sions, etc. The attribute values of a generic object are
shared by all of its versions. For example, if an AdderChip
(a generic object) has four pins, then all its versions have
four pins too. This kind of sharing between an instance of
T and its versions in TVersion is enforced by the model.
The reader is referred to [Bili89b] for a complete description
of the model. For our purposes, this minimal definition is
sufficient.

A version is identified (at the language level) by the
name of its generic object suffixed with a version number.
Version numbers are not reused and they are assigned to
versions when they are created. z.Vl indicates version 1 of
object z.

3, Decomposition, Synchronization

For each project in a particular installation there is a
design database to store versions produced by designers
working on that project. The design database hierarchy
represents the work breakdown of a large project into
smaller subprojects that in turn are subdivided into smaller
tasks until a fairly manageable piece of work can be
defined. Each such piece of work is then assigned to a
design engineer. Thus, leaf databases in the hierarchy
represent private databases while the non leaf represent pro-
ject databases. Design databases form a directed acyclic
graph (DAG), not necessarily a tree structure. In the fol-
lowing we shall use the term database to mean design data-
base; the term shared database refers to the collection of
project databases.

In addition to the role of the design database hierar-
chy to describe the work breakdown of a large product, it
also encapsulates information about access control, i.e.,
read and write rights on versions and version ownership.
Note that to handle these rights on disjoint objects is quite
easy. But our objects participate in the configuration of
many objects. Thus, we have overlapping (shared) objects

and a clear understanding for access control is needed.

Paper 18.2

259

3.1. Access Control
Every designer is assigned (owns) a private database

and there is an owner for every database. Each version has
a single home database as its main residence; multiple
copies of it may exist in other databases. As the ve:si,on is
being moved from database to database, its home database
changes too. Version ownership is esclusively determined by
its home property; the owner of a version’s home database
is also the owner of this version.

Designers in a cooperative design environment need
to exchange their designs for partial evaluation, even

though their designs are incomplete. Clearly, exchange of
incomplete designs is meaningful only among designers
working on the same project, i.e., designers who are direct
or indirect members of a common database. This is the
reason why the database hierarchy establishes the following
visibility rule: a version V is uisible (i.e., it can be refer-
enced or read) from a particular database d, if V’s home
database is d itself or one of d’s direct or indirect parent
databases.

Write access rights are granted on a generic object,
not for each individual version. A private database d can
checkout a version from an indirect database p only if all
databases in the path from p to d grant this right to their
immediate children in that path. Note that a da.tabase
may grant checkout rights to more than one of its children
databases at the same time. The purpose of granting these
rights is not to somehow control concurrency. Updates are
always performed on new versions of the original version.

3.2. Version Mutability
The mutability of a version is indicated by its status

which can be in-progress, stable, frozen, or released. An
in-progress version resides in a private database only and
thus it is visible to its owner only. Any operation can be
applied to an in-progress version, including deletion,
modification, etc. When a version becomes frozen all
dynamic references are mapped to specific references and
the version can not be altered in any way. A stable version
is like a frozen version except that its generic references are
not statically mapped; the binding is done at access time.
A stable or a frozen version can be deleted by its, owner.
Finally, a released version of an object can not be deleted
or modified. The status of a version restricts also the status
of its referenced versions. The following table summarizes
the characteristics of versions with respect to their status.

readable
deletable

context
sensitive

modifiable
status of

referenced
versions

m-progress stable

yes yes
yes yes

frozen

yes
yes

released

Yes
no

yes yes no
b---l

no
ves I no I no no

any kmd stable, frozen,
frozen, released

released

3.3. Design Sessions
A designer starts interacting with the shared system

by initiating a design session. He then may checkout a ver-
sion z.Vn from a project database. This operation creates a

new in-progress version 5:.Vm, a copy of x.Vn, in his
private database. The new version is (considered to be
derived from z.Vn. This relationship among versions forms
a hierarchy, called version derivation hierarchy. Many ver-
sions can be derived from the same version. if the checked
out version was stable, its generic references are mapped to
specific versions at checkout time and in the environment
defined at the private database. Many subsequent checkout
operations can be performed on another or the same object.
When the engineer is satisfied with the results of his design,
he places some of these versions (not n~ecessarily the last
one) back into a project database for further consideration
by performing a corresponding checkin operation. A chec-
kin of a version z.Vm to a project database p makes p the
current home of z.Vm. The version can optionally be
specified to be frozen as a parameter of the checkin opera-
tion (the default status is stable); aIternatively, the current
owner of the version can promote it to frozen (and subse-
quently to released) at any time. When the version
becomes frozen each reference to an ob,ject of versionable
type is mapped to one of its versions that are currently
available. The current owner of a vewion can moue the
version to another database; the status is not affected by
this operation. A designer can cancel the checkout of a ver-
sion by issuing an uncheckout operation which removes
from the database the fact that someone has checked out a
version and removes the version itself from his private
workspace.

A design session spans MMY days and
logins/logouta. When the designer ends the session, an
implicit uncheckout operation is issued for all objects that
have been checked out in his worksp,ace but not subse-
quently checked in. Note that there is no way to undo a
checkin operation. The design session is not the unit of
recovery, [Lori83, Eck187, Rehm88]. If such an action is
required the current owner of the checked in version should
explicitly deleted it.

4. Versions and Time

A user being involved in the development of a design
object can see how this object has been evolved by follow-
ing successor or predecessor versions in the derivation
hierarchy. This hierarchy in conjunction with the version
creation time associated with each version provides a his-
torical picture of when and from which version a particular
version V was created. Although, this is a useful piece of
information, it does not tell us perhaps the most important
thing: how was that version V at some point in the past.
Clearly, we are not interested to track every single change
performed on a version in a private database; that would
be impractical. However, this problem exists even for ver-
sions that have been checked into the shared system and
therefore can not be modified. The problem originates
from the fact that versions in the shared system might be
stable and as such they contain generic references that
might be resolved to different versions at different times.
This is illustrated in the following example. Consider a
stable version z.V referencing object y (a generic object
with one version, y.Vl), and that generic references to y are
resolved to y’s most recent version. Assume that y.V2
becomes visible to z.V at time t. A reference today to z.V
maps y to y.V2 whereas if this reference was evaluated at

Paper 18.2

260

version erivation
dhierarchy

I

V2

VlC-

/
time

now

Figure l.The evolution of a design object can be tracked
either by walking through the derivation
hierarchy, or for a single version by walking
through time. V2 has been deleted at some time
prior to ‘now’ and thus, it is not included in the
current derivation hierarchy.

any time prior to t, it would have been mapped to the then
most recent version of y, i.e., y.Vl. Clearly, the time at
which a reference is evaluated can alter the actual version
Of the referenced component. Therefore, version
identification alone is not enough to fully describe a version
object in the past; a temporal dimension should be intro-
duced. Figure 1 shows the life span of each version of an
object and its derivation hierarchy.

We are interested to track the evolution of a design
in two dimensions; by following predecessor/successor ver-
sions in the derivation hierarchy, and by tracking the
configuration hierarchy of versions in the shared system as
of some time in the past. Our goal is to provide an under-
standing of how this can be economically achieved in CAD
applications and not to present a general purpose high level
language that deals with time (see [Snod87, Clif85, Gadi88,
Caru88j).

4.1. Temporal Semantics

The subtle semantic difficulties caused by the intro-
duction of time are discussed in this section. We provide a
classification of attributes which is an augmentation of the
time related concepts presented in (Snod87, Clif85, Sege871
with versioning.

l A time attribute is an attribute whose value type is
time. The value of such attribute is a kind of time
information that is defined by and it is of interest to the
user only; it is called user defined time in [Cope84]. For
example, ‘creation date’ and ‘review date’ are time
attributes while ‘designer name’ is not a time attribute.

. A temporal attribute (TA) is an attribute whose value is
a function of time. If the attribute value does not
change over time it is called a constant attribute. For
example, ‘salary’ is a temporal attribute. On the other
hand, the version number of a version can not change
over time and therefore this is not a temporal attribute.

l A version attribute (VA) is an attribute whose value
type T is versionable. A VA’s value can be a reference
either to a generic object of T (a generic reference) or to
a version object of TVersion (a static reference). In the
first case the context mechanism is used to resolve the
reference. Note that a type whose some of its attributes
are VAs is not necessarily a versionable type.

The first two as well as the last two attribute types are
orthogonal, and the set of version attributes and the set of
time attributes are mutuatly exclusive, see Figure 2. For
example, the ‘home’ attribute of a version is a temporal
attribute, ‘creation date’ is only a time attribute, while
‘date of last review’ is both. Similarly, a version attribute
may be either temporal or constant attribute. Note, that an
attribute A of Tl of value type T2 can be defined to be
temporal when Tl is defined. This is not true for version
attributes; A is a VA iff T2 is versionable.

‘
attributes

I

time
at tributes

Figure 2. Classification of attributes

If time is going to be supported, the next question is
what kind of time. Research in the area of time in data-
bases has identified two important kinds of time [Snod87).
Valid time corresponds to the actual time at which an
event occurs. Transaction time is the time at which infor-
mation about a real world event is stored in the database,
i.e., it is the time in which an event in the real world
becomes known to the database. The example that is fre-
quently given to explain the difference is the following.
Assume the salary attribute of a person is given the value
$1,000 on l/80 (see the table below), and that this value is
changed to $2,000 on l/85. Now, suppose that on l/86 the
salary is to be changed to $2,500 but retroactive to l/84.
In other words, the salary value between l/84 and l/86
was mistakenly inserted in the database and this error was
corrected on l/86. Finatly, the salary is increased to $3,000
on l/87.

salary

The two kinds of time provide a distinction between what
was previously known to be the state of the database at
some time 1 and what is now known to be the state at the
same time t.

Paper 18.2

261

4.2. Our Approach
First, we have chosen to deal with a system main-

tained time indicating when an update was registered in
the database and therefore, we treat transaction time and
valid time as identical. Our choice is justified for the fol-
lowing reasons. There is no difference between the time in
which a real world event happens and the time that this
event is known to the database. Updates (check-ins) on
design venions can not be effective retroactively. The fact
of the matter is that all design changes in a design version
are performed to correct a mistake, something that was pre-
viously thought to be correct; however, it is exactly the ver-
sioning mechanism that deals with such updates (by creat-
ing new versions) and not some kind of temporal relation-
ships. On the other hand, updates that become effective
some time in the future, instead of the past, are both possi-
ble and desirable. It would be useful, for instance, to
specify that a version will be frozen in two months horn
today. Such ‘effective-time’ attribute can be treated as
time attribute that can be changed by the user at will.

Second, we have chosen to deal with step-wise con-
stant data, [Sege87], where the value of an attribute at a
given time t, is the one recorded in the database at a time
closest to but not later than t. For instance, the ‘count’
attribute attached to an object, indicating the number of
times referenced by other objects, exhibits the above
behavior as illustrated in Figure 3.

Third, we want to have the choice to select the attri-
butes of an object that must be treated as TAs. This is
because there is no question that time support will be
costly. It would be very unlikely that users will walnt all
attributes of an object to be treated as TAs. Finally, we
want to be able to group attributes that exhibit the same
temporal behavior. For instance, when a review is com-
pleted, several attribute values are set at the same time,
such as reviewer’s name, review documents, suggested
actions, etc. The semantics of such grouping is that the

above modifications are timestamped together as a unit.

We require that access to current data to have the
same performance as if time was not supported and this,
regardless whether the accessed attribute is temporal or not.
This is because queries accessing current data will substan-
tially dominate temporal queries. Similarly, updates per-
formed on non TAs must be as fast as if time was not sup-
ported. On the other hand, it is reasonable to expect that
operations that involve searching or update on TAs will be
slowed down.

4.3. Implementation Issues
An attribute (or a set of attributes) A is defined to

be temporal at the type level. A set is allocated to hold
temporal values of A; we call this set the history uaul!2 of A,
HV(A). A single HV stores temporal data of an attribute
for all objects of that type. Each entity in a HV(A) con-
tains, in addition to the temporal values of A, the follow-
ing fields:

oid the system generated object identifier of the object
whose A value is recorded in this entity.

time the time in which the update is stored in the data-
base

r count

I

p y-y

t1 t2 t3
/

time
Figure S. Step-wise constant data

oflag a valid-flag; a false value indicates that the value in
the entity is no longer valid

Operations are performed as follows. When a tem-
poral attribute A is updated, two operations take place.
First, a new entity is inserted into HV(A) which contains
the new replacement value and with aid,, time, and uflog
set to to the oid of the object, current time, and true,
respectively. Second, the current value of A is overwritten
to reflect the new value. When an object is (logically)
deleted all HVs associated with the object’s type are
updated by adding a new entity with time set to current
time and vjlag set to false. The value of an attribute A of
an object o as of some time t is found by searching the his-
tory vault of A for the entity whose oid is the oid of o and
time is closest to but no later than t.

To view a version V as it was at some point in the
past the user should set the system time dial to the desired
time. If V was frozen or released at that time, no further
searching in HVs is required. However, if V was stable, the
system has to reconstruct the configuration hierarchy of V
with the versions that were available and visible to V as of
that time. To do this, the status and home database of
each version, as well as the database hierarchy as of that
time should be maintained in HVs. No’te, that VAs need
not be treated as TAs. VAs’ values of a currently frozen
version V are stored with the version itself. Since, the
current version Vn of the referenced objject is known, the
system can find the generic object z of Vn and from that
the version Vm to which z would have been mapped if V
was accessed at that earlier time. Thus, VAs values as of
some time can always be derived from t,he above informa-
tion.

We emphasize that the storage strategy that will be
used to store versions (e.g., see (Katz841) is independent
from the storage strategy of historical data related to a ver-
sion. Accessing the current value of any attribute, tem-
poral or not, involves no access to history vaults.

Finally, there is the indexing problem; we expect
most queries against HVs to be multidimensional. Optical
discs are excellent choice for archival storage; they are more
reliable and less expensive than magnetic disks, they offer
longer life expectancy than magnetic tapes, and they are
easily removable to off-line and then back to the optical
disk drive using some kind of mechanical robot (similar to
juke-box). Although, the write-once ch[aracteristic of opti-
cal discs is not a problem for temporal data, it imposes
some problems on indexing, [Ston87]. This is because, por-
tions of the index may need to be moved to optical discs
and most of the access methods require some kind of reor-
ganization. We are planning to invefstigate multidimen-

Paper 18.2

262

sional searching algorithms such as R-trees [Gutt84], and
z-ordering lOren86], in conjunction with Write-Once B-
trees [EastSG], to see which one might be used easily on
both medium.

5. Summary

In this paper we have given mechanisms to handle in
an integrated way some of the most important problems of
data management for CAD applications: synchronization
and documentation. We discussed how the design database
hierarchy can be utilized to provide a simple and meaning
ful way to designers to synchronize their designs, by con-
trolling the visibility of each version they produce. Finally,
we have shown how a temporal dimension should be intro-
duced, in addition to the derivation hierarchy, to fully cap-
ture the evolution of a design object.

This project is part of an ongoing effort to analyze
the requirements for data representation, constraint
management and triggering, configuration management,
and life cycle control for engineering data.

References

(AtwoSS] Atwood, M. T., “An Object-Oriented DBMS
for Design Support Applications,” IEEE, Proc. Computer
Aided Technologies, 1985, pp. 299-307.

[Bane851 Banchilhon, F., Kim, W. and Korth, H. F., “A
Model of CAD Transactions,” Proc. Int. Conf. on Very
Large Data Bases, Stockholm, Sweden, 1985, pp. 25-31.

(Bane871 Banejee, J., Chou H., Garza J. F., Kim W.,
Woelk D., Ballou N., and Kim H., “Data Model Issues for
Object-Oriented Applications,” A CM Trans. on Ofice Inf.
Systems, Vol. 5, No. 1, January 1987, pp. 3-26.

[Bat0851 Batory, D. S., and Kim, W., “Modeling Con-
cepts for VLSI CAD Objects,” ACM Trans. on Database
Systems, Vol. 10, No. 3, Sept. 1985, pp. 322-346.

lBeec86) Beech, D., and Mahbod B., “Generalized Ver-
sion Control in an Object Oriented Database,” Proc. IEEE
Data Engineering Conference, February 1988, pp. 14-22.

[Bili89a] Biliris, A., and H. Zhao, “Design Venions in a
Distributed CAD Environment,” IEEE, Int. Phoeniz Conf.
on Computers and Communications, Phoenix, Arizona,
March 1989.

[Bili89b] Biliris, A., “Management of Objects in Engineer-
ing Design Applications,” BU, Comp. SC., TR 89-005.

[CaruSS] Caruso, M., and E. Sciore, “Context and
MetaMessages in Object-Oriented Database Programming
Language Design,” ACM SIGMOD Int. Conf. on Manage-
ment of Data, June 1988, pp. 56-65.

[ChouSB] Chou, H., and Kim, W., “A Unifying Frame-
work for Version Control in a CAD Environment,” Proc.
Int. Conference on Very Lorge Data Bases, Kyoto, August
1986, pp. 336-344.

[Clif85) Clifford, J., and A. Uz Tansel, “An Algebra for
Historical Relational Databases: Two Views,” Proc. ACM
SIGMOD Int. Conference on Management of Data, Austin,
Texas, May 1985, pp. 247-265.

(Cope84] Copeland, G. P., and Maier, D., “Making
Smalltalk a Database System,” Proc. ACM SIGMOD Int.
Conference on Management of Data, June 1984.

[Ditt87] Dittrich, K., “Controlled Cooperation in
Engineering Database Systems,” IEEE, Proc. Data

Engineering Conference, February 1987, pp. 510-515.

[Ditt88] Dittrich, K. R., and Lorie, R., “Velgion Support
for Engineering Database Systems,” IEEE Trans. on
Software Engineering, Vol. 14, No. 4, April 1988, pp. 429-
437.

[East86] Easton, M., “Key-Sequence Data Sets on Indeli-
ble Storage,” IBM Journal Res Deu., Vol. 30, No 3, May
1986, pp. 230-241.

(Eckl87] Ecklund, D. J., Ecklund E. F. Jr., Eifrig R. O.,
and Tonge F. M., “DVSS: A Distributed Version Storage
Server for CAD Applications,” Proc. Int. Conf. on Very
Large Databases, England, 1987, pp. 443-454.

[GadiSS] Gadia, S. and Yeung, C., “A Generalized Model
for a Relational Temporal Database,” Proc. ACM SIG-
MOD, Int. Conf. on Management of Data, June 1988, pp.
251-259.

[GuttSd) Guttman R., “R-Trees: A Dynamic Index Struc-
ture for Spatial Searching”, Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, Boston, June 1984,
pp. 47-57.

[Katz841 Katz, R., H., and Lehman T. J., “Database
Support for Versions and Alternatives of Large Design
Files,” IEEE, Trans. on Software Engineering, Vol. SE-lo,
No. 2, March 1984, pp. 191-200.

[Katz871 Katz, R. H., and Chang E., “Managing Changes
in a Computer-Aided Database,” Proc. Int. Conf. on Very
Large Databases, Brighton, 1987, pp. 455-462.

[Kim841 Kim, W., Lorie, R., McNabb, D., and Plouffe,
w.9 “Transaction Mechanism for Engineering Databases,”
Proc. Int. Conf. on Very Large Data Bases, Singapore,
August 1984, pp. 355-362.

(Kim871 Kim, W., Banejee J., Chou H., Garza J., and
Woelk D., “Composite Object Support in an Object-
Oriented Database System,” Proc. ACM, OOPSLA,
October 1987, pp. 118-125.

[Klah85) Klahold, P., G. Schlageter, R. Unland, W.
Wilkes, “A Transaction Model Supporting Complex Appli-
cations in Integrated Information Systems,” Proc. ACM
SIGMOD Int. Conf. on Management of Data, Austin,
Texas, 1985, pp. 388-401.

(Land861 Landis, S. G., “Design Evolution and History in
an Object-Oriented CAD/CAM Database,” IEEE, Proc.
COMPCON, 1986, pp. 297-303.

(LoriBt] Lorie, R., and Plouffe, W., “Complex Objects
and Their Use in Design Transactions,” IEEE, Database
Week - Engineering Resign Applications, 1983, pp.115-121.

[Oren86) Orenstein, J., “Spatial Query Processing in an
Object-Oriented Database System,” Proc. A CM, SIGMOD,
lnt. Conf. on Management of Data, Washington, D.C.,
1986, pp. 326-339.

(Rehm88] Rehm, S., et. al., “Support for Design Processes
in a Structurally Object-Oriented Database System,” 2nd
Int. Workshop on Object-Oriented Database Systems,
Springer-Verlag, LNCS 334, 1988, pp. 80-96.

(Sege87) Segev, A., and Shoshani, A., “Logical Modeling
of Temporal Data,” Proc. ACM SIGMOD Int. Conf. on
Management of Data, May 1987, pp. 454-466.

[Snod87] Snodgrass, R., “The Temporal Query Language
TQuel,” ACM, Trans. on Database Systems, Vol. 12, No.
2, June 1987, pp. 247-298.

(StonSI] Stonebraker, M., “The Design of the Postgres
Storage System,” Proc. Int. Conj. on Very Large Data
Bases, England, 1987, pp. 289-300.

Paper 18.2

263

