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Abstract

Design objects in CAD applications have versions and
participate in the construction of other more complex
design objects. In this paper we describe data model
aspects of an experimental database system for CAD
applications, called Pegasus. Our model is based on
previously published work on eztensible and object-
oriented database systems. The novel idea of Pegasus
that ts presented in this paper is the reconciliation of
two subtyping (inheritance) mechanisms: the first,
called refinement, is based on the usual semantics of
schema copying and the second, called extension, ts
based on the inheritance semantics between proto-
types and their extensions. We use these modeling
elements to show how generic and version objects as
well as component occurrences of (generic or ;)ersion}
components can be modeled.

1. Introduction

A CAD product is an aggregation of design
objects and associated documents. For example, a
product in a mechanical application is associated
with a variety of drawings such as detail and assem-
bly drawings, exploded assembly drawings, etc.
These design objects are frequently called representa-
tions, [Katz87). A design object may have many ver-
stons. Each version represents a particular descrip-
tion of the design object as it has been defined by a
user at some point in time. The object that
represents all versions of the (semantically) same
object is called generic, [Ditt88]; it keeps data about
its versions, their relationships, and their common
properties. A version object is associated with exactly
one generic object. Versions of a single generic object
z form what is frequently called the version set of z.

A design object may reference (consist of) a
number of other objects that in turn may be the con-
stituents of other objects. Such objects that are com-
posed of other objects are called complex, [Lori83), or
composite, [Bane87|, the hierarchical composition of
a complex object is referred to as the configuration
hierarchy of the object, and the constituent objects
are called components. For example, the design item
Car (a composite object) consists of a frame, wheels,
doors, seats, etc., which are the component objects of
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Car. Of course, a component object (generic or ver-
sion) is by itself another design object and as such it
may have its own components.

Each reference by a complex object to one of its
components corresponds to a component occurrencel
of the referenced object. For example, each of the
four wheels that are components of the design item
Car, correspond to four different component
occurrences of the same single design object Wheel.
Figure 1 shows two generic design objects, Wheel and
Frame; currently, there are three versions of Wheel
and two versions of Frame available to engineers to
design a car. The figure shows four component
occurrences of Wheel and one of Frame. Each com-
ponent occurrence describes how the component
object participates in the composite object. In this
example, attributes of component occurrences of
wheels may include a name (e.g., left front wheel),
and a transformation matrix that describes where the
component is located relative to the composite
object. As we may see from the figure, the designer of
the car has chosen version vl of Frame to be used in
his design. On the other hand, component
occurrences of Wheel reference the generic object. A
generic reference leaves the exact version unspecified.
Generic references provide the means to an engineer
to postpone specific decisions about non essential
details for a later time. They also provide the means
to reference an object z that is itself under develop-
ment, perhaps by another group of engineers, without
prematurely binding this reference to a specific ver-
sion of z that happens to be currently available (if
there is one available at all). This is important
because in large design projects different users edit
different components concurrently.

Briefly, the minimum requirements of a data-
base management system for design applications
include the following:

I'In [Bato85| a component occurrence is called
component instance. We avoided the word
wnstance since it is used in a different context in
object-oriented languages.
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Figure 1.Generic and version objects of design
objects ~Wheel and Frame. Each
component occurrence describes specific
information related to the participation of
the above design objects in the composite
object Car (not shown).

o It should support the design process. This includes
support for design project decomposition, syn-
chronization and documentation. The first is
needed because large projects are always broken
down to smaller pieces and then assigned to
different (group of) designers. Since the design
proceeds in parallel by different users in different
subprojects, there is a need to synchronize this
activity. Finally, the whole design process must be
well documented so that a user can go back in time
and see how a particular design was evolved.

e It should provide data modeling elements so that
design objects and their relationships can be natur-
ally mapped into the database. This includes sup-
port for objects of arbitrary complexity and size.
It should allow declaration and manipulation of
generic and version objects in a way that is
appropriate for the application; thus, the mechan-
isms that implement generic or version objects
should not be somehow build-in in the system. The
mapping of generic references to a specific version
should be under user control (when the mapping
should be done and to which version). Sharing
and re-use of components stored in a design library
or produced by other designers should be allowed
and encouraged.

e It should provide a computing environment con-
sisting of workstations and server(s) in which the
performance of the whole system is acceptable by
the designers.

1.1. Related Work

Several approaches have been proposed to han-
dle the above requirements. Early work includes
extensions of relational systems to support complex
objects and the design process, [Hask82, Lori83,
Bato85). However, relational systems have been criti-
cized, for a long period of time, for lack of modeling
elements that can efficiently capture the complex
relationships in a CAD application, [Atwo85,
Land86]. Object-oriented and extensible database
systems are emerging as a very promising solution to
handle CAD applications because they greatly sur-
pass conventional record-based systems in modeling
power and performance. Included among the new
modeling elements are support for arbitrarily com-
plex objects with no constraints on structure or size,
object reference, type inheritance, derived attributes
(operations), and others. Since, the most common
operations of CAD tools are navigation among object
relationships and simple retrieval of design objects,
the first two modeling elements, in particular, can
substantially improve performance; the reason is that
costly, value-based, joins that are necessary in rela-
tional systems to pull out the pieces of the design of
interest can be mostly eliminated. A survey of the
above modeling constructs can be found in {Hull87],
and a collection of papers in object orientedness can
be found in a recently published book, [Kim89)].
Finally, a comprehensive list of why object-oriented
systems can deliver the performance that conven-
tional systems did not is given in [Maie89}.

Specific approaches to support complex objects
and/or versions have also been proposed [Depp86,
Katz87, Kim87, Rehm88, Beec88, Nara88, Wilk89)|.
In [Katz87] a version server is described which expli-
citly supports configuration, version derivation, and
equivalence relationships; it runs on top of a file sys-
tem in which design objects are stored. On the con-
trary, the schemes for versioning described in
[Kim87, Rehm88, Beec88, Nara88}, and for composite
objects described in [Depp86, Kim87, Rehm88,
Wilk89)] are integrated into their database model.

The notion of context has been proposed to
resolve references to generic objects, {Ditt88, Chou88,
Beec88]. A context is a function that maps generic
references to an object z into specific versions of z.
The set of contexts currently active in a particular
workspace defines the environment in which designs
are materialized in this workspace. A user can estab-
lish a number of environments in his workspace and,
by switching from one environment to another, can
see various alternative configurations of the design
version. Alternatively, generic references to com-
ponents can be resolved based on a default version
supplied by either the referenced generic object itself
or the referencing composite object.



Mechanisms for design synchronization are
presented in [Lori83, Kim84, Klah85, Banc85,
Eckl87, Horn87, Rehm88, Pu88, Bili89a|. Some of
these proposals introduce new transaction models
[Kim84, Klah85, Banc85, Horn87, Pu88|, while oth-
ers are complimentary to existing transaction systems
[Lori83, Rehm88, Bili89a]. Issues related to the
interaction of time versions and design versions with
respect to the configuration management of design
objects are discussed in [Bili89c|.

1.2. Outline of our Work

The data model design of Pegasus is presented
in Section 2. Subtyping, discussed in section 2.1,
can be defined either as a refinement or as extension.
The first, is based on the usual semantics of schema
copying and the second is based on the inheritance
semantics between prototypes and their extensions,
i.e., sharing of object behavior and state. Section
2.2 compares the inheritance mechanism of other
data models with ours. For a discussion of other
modeling elements of Pegasus, such as support for
relationships and replication of relationship attribute
values in the participant objects, the reader is
referred to [Bili89b)].

Section 3 describes how the above modeling
elements can be used by the user to define generic
and version objects as well as component occurrences.
Versions of generic objects are modeled as extensions
of their generic object and component occurrences are
modeled as extensions of the object (generic or ver-
sion) that participates in the composite object.
Finally, Section 4 presents our conclusions.

2. Data Model

Pegasus starts with the modeling elements pro-
vided in EXTRA data model, [Care88]. We selected
this model, as our starting point, because of its clar-
ity in all of its basic modeling concepts. We will try
to keep the discussion brief on modeling elements
that are similar to EXTRA, and elaborate on those
issues that present some difference, mainly in the
subsequent section where we discuss the type hierar-
chy.

The database is a collection of (database)
objects, each identified by a system generated id,
called oid. Every object is of a given type; it is said
to be an instance of that type. The type provides the
attribute specifications shared by all of its instances,
the operations that can be performed on these
instances, and the constraints that attribute values of
these instances must satisfy. The state of an object
is given by the values of the attributes at any point
in time. The attributes, operations and constraints
of an object are collectively called the properties of

the object. As an example, the types Employee and
Department are defined in Figure 22,

define type Employee:

(
ssn: int4;
name: (fname: char(20}; Iname: char{20]);
dob: Date;
salary: int4;

worksln: ref Department, inverseof emps;
);
operations:

age returns int4;

manager returns Employee;
end Employee;

define type Department:

(

name: char{20];

manager: ref Employee;

numemps: int4;

emps: {ref Employee}, inverseof worksIn;
)
constraints:

cl: emps.count >=1;
end Department;

create Empsl, Emps2:
create Deptsl, Depts2:

{ own ref Employee};
{ own ref Department};

Figure 2. A simple database schema.

Each attribute specification defines the type of
the attribute value. Primitive types (integers, charac-
ters, etc.), user defined abstract data types (such as
Date in the Employee definition), type constructors
(tuples, arrays, and sets) and the three kinds of attri-
bute value semantics (own, ref, and own ref) were
taken directly from EXTRA, [Care88). An own
attribute, which is the default, is simply a value; it
lacks object identity [Khos86]. A ref attribute is a
reference to another object in the database. Finally,
an own ref is a reference to an object with the addi-
tional semantics of that the referenced object is
deleted when the referencing object is deleted. Thus
an object can not be referenced through an own ref
attribute by more than one object. Instances of a
given type are classified into user-maintained sets;
i.e., the definition of a type and the classification of
the instances of this type are separated from each
other. For example, the schema of Figure 2 creates
two sets of Employee objects, Empsl and Emps2,
and two sets of Department objects, Deptsl and
Depts2.

2 The pairs n(n n)n’ n{u n}n, and n[n ||]n
denote  tuple-, set-, and array-objects,
respectively.



Attribute values and operations defined for an
object are accessed using the dot notation (regardless
of the type of the accessed attribute, see [Care88]).
For example, the 'manager’ function of Employee is
implemented as this.worksIn.manager", where this
is a special variable implicitly bound to the object to
which the function is applied. Inclusion of operation
and constraint definitions with the types in Figure 2
is rather cosmetic, since operations and constraints
can be defined after the definition of the types, as in
[Care88| for operations.

Constraints defined in a type T, specify a predi-
cate (and optionally a name) that should be satisfied
for all instances of T in the database. For example,
cl, in Figure 2, specifies that for every instance d of
Department, d.emps should have at least one
member. A constraint can also be defined on indivi-
dual objects to strengthen the type level constraints
(if they exist at all). For example, the following con-
straint specifies that members of Deptsl should be
large departments only (with more than 100 employ-
ees).

constraint cl: Deptsl.emps.count > 100

The inverseof clause that appears in the example
schema defines a many-one binary relationship
between instances of Employee and Department
objects. Pegasus will enforce the following referential
integrity constraint:

for each Employee e, Department d, d 1s
the value of e.worksln, if and only if e is
a member of d.emps.

Binary as well as higher level relationships and rela-
tionship types, roles, and replication are discussed in
length in [Bili89b].

2.1. Type Hierarchy

Types in Pegasus, as in all object-oriented sys-
tems, are related with the supertype/subtype rela-
tionship. This relationship among types form the
type hierarchy. where, an edge from a type T1 to T2
indicates that T2 is a subtype of T1 (and T1 a super-
type of T2). Although, all object-oriented systems
that we are aware of maintain some kind of type
hierarchy, the semantics of inheritance implied by
this hierarchy is not the same. We discuss the two
inheritance mechanisms provided by Pegasus,
namely refinement and eztension, and at the end of
this section we compare them with inheritance
mechanisms of other systems.

When T2 refines T1, the property definitions
of T1 are applicable to T2 and a T2 object maintains
its own storage for all values of all attributes defined
in T2 and T1. In this kind of subtyping, a real world

object is mapped to exactly one database object that
is an instance of the object’s most refined type. This
is shown in Figure 3; undirected lines indicate the
type of an object. Instances of T1 and T2 are
independent from each other, e.g., updating an
instance of T1 does not affect any instance of T2, and
vice versa.

A
2
B ol
refines
C
v
D 02

Figure 3.T2 refines T1; instances of T1 and T2 are
independent from each other.

When a type T2 extends T1 then the follow-
ing existence constraint is implied: for every instance
02 of T2 there exists an instance ol of T1 whose
attribute values are inherited by o02. The object ol
whose values are inherited by o2 is called the proto-
type of 02, and the dependent instance o2 is called an
extension of its prototype. Subtyping through exten-
sion is illustrated in Figure 4. There is always a spe-
cial link from an extension object to its prototype,
called proto-link. In general, inheritance works as fol-
lows: if z.P is requested from an object z of type T
and P is not defined in T, searching for P will be for-
warded to the object referenced in z.proto and recur-
sively to z.proto.proto..., until we find an object for
which P is defined. The prototype of an extension
object should be specified when the extension is
created in the database.

In both cases, a subtype T2 may add more pro-
perties and it may also strengthen the properties
defined in its supertype. Thus, an instance of T2 can
be used anywhere an instance of T2’s supertype is
used.

The type hierarchy is a DAG and therefore it is
possible for a type to inherit properties from several
supertypes (multiple inheritance). Figure 5 shows a
type T4 that refines T1 and T2, and it extends T3.
It also shows two objects of T4, o4 and 05, to share
the values of the same T3 object. Checking for
conflicting definitions in the supertypes is done in the
same way for refinement and extension, and no
attempt is made to automatically resolve them. If
conflicting definitions are found, the system will
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Figure 4.T2 extends T1; for every instance 02 of T2
there exists an instance ol of T1 whose
attribute values are inherited by o2.

reject the operation. Notice that the proto-link of 02,
in Figure 5, may actually reference any object whose
type, say T8, is a subtype of T1, and an inheritance
conflict may arise. For example, attribute C may
have also been defined in T3. This kind of conflict,
however, does not create any problem because search-
ing for an attribute value always starts from the
current object, in this case 02.
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Figure 5. T4 refines T1 and T2, and it extends T3

From the application’s point of view there is no
difference whether subtyping is realized through
refinement or extension. In both cases, if T2 is a sub-
type (refinement or extension) of T1, and T1 includes
the attribute definition A, the application can request
the value of A from an instance of T2. The
difference in the semantics between the two kinds of
inheritance is simply in the implementation of inheri-
tance and it is the one between schema copying and
value sharing.

As an example, the following schema defines
the Employee type as a refinement of Person:

define type Person:

(
ssn: int4;
name: (fname: char(20]; Iname: char(20]);
dob: Date;
)i
operations:
age returns int4;
end Person;

define type Employee refines Person:

(
salary: int4;
worksIn: ref Department;
%
operations:
manager returns Employee;
end Employee;

Each Employee object will store the values of the
three attributes defined in Person and the two attri-
butes defined in Employee. The function ’age’
applied to an Employee object ¢ will find the ’dob’
value of e in e itself.

To denote subtyping through extension, we
introduce an additional kind of attribute value
semantics, called extends. An extends attribute is
like a ref attribute which carries the additional value
inheritance semantics discussed previously. The
definition of Employee as an extension of Person is as
follows®:

deflne type Employee:

(
person: extends Person;
salary: int4;
worksln: ref Department;
)i
operations:

manager returns Employee;
end Employee;

Each Employee object will store the values of the
three attributes defined in Employee only, and it will

3 An alternative type definition syntax for
extends would be like the one we used for
refines; i.e., "define type T2 extends T1:
(...); end T2;", and have the system add a
"proto: extends T1;" attribute definition in T2.
We have chosen the first approach because we
may want to associate additional information
with the proto-link, such as a possible
participation in a relationship.



share the attribute values of the object that is refer-
enced in ’person’. In this case, to evaluate the 'age’
function, we must visit e.person. Notice, that
e.person may actually reference an object of any type
that is a subtype of Person, e.g., it may reference
another Employee object.

A question that is raising because of the
existence of the two mechanisms is when someone
should use refinement and when extension. If we
look at this question from a performance point of
view, the answer is refinement because the entire
state of an object is packed together in one place.
With extension, once the object of interest is brought
in main memory, we may need additional disk
accesses to bring the prototype, its prototype, etc.

Clustering the prototype object with the extension,

as a general policy, does not make sense because the
prototype may have many extensions. The drawback
of refinement is when we want to formulate queries
on all objects that logically belong to the same type
T, because we must first union all sets that have
instances of T and all of T’s subtypes; e.g., to find
the names of all persons we must first find all Person
objects, then all Employee objects, etc. In the exam-
ples that we present here and in [Bili89b], we use
extension only when it is needed, this is the case
when we want to model objects whose state must be
shared by many other objects. In any other case, we
use refinement.

2.2. Discussion

The terms prototype and eztension appear in
actor languages, [Lieb86, Unga87|, where an (exten-
sion) object is created by specifying a list of its proto-
types as well as local behavior idiosyncratic to the
object itself. Inheritance is performed by a process
called delegation; when an extension object receives a
message that can not respond to, it forwards
(delegates) the message to one of its prototypes.
However, the similarities with our system stop here.
In these languages no types are associated with
objects. There is no way to determine whether an
object z can respond to a message unless the message
itself is delegated to its prototype (and recursively to
the prototype’ prototype, etc.). Data models based
on the idea of prototypes include [Nara88] and
[Caru87| where attributes can be added to an object
after its creation. On the contrary, in our model the
type of an object z determines its fixed structure and
whether z is an extension object as well as the type
of its prototype. Thus, some error checking and
optimization techniques can be applied at compile
time, and storage clustering becomes feasible.

Inheritance through refinement is exactly the
kind of inheritance provided in some extensible and
object-oriented systems such as Postgres [Rowe87a),

ORION [Bane87|, GemStone [Maie86|, and EXTRA
[Care88]. On the contrary, in other systems such as
TAXIS [Mylo80, GALILEO [Alba85], and Iris
[Lyng86] a real world object is mapped to a number
of database objects each being an instance of the type
that this object (logically) possesses. For instance
assume that both Student and Employee are sub-
types of Person. Then a given Student z is mapped
to two database objects: s, an instance of Student,
and p, an instance of Person, each representing the
two different roles of the same object z. If later on,
this student becomes a TA a third database object e
will be created as an instance of type Employee to
represent the role of z as an employee. Database
objects s and e will share the values of p; e.g., if the
value of the 'name’ attribute in p is changed, the new
value is inherited by both s and e. Although, this
mechanism does provide a notion of sharing,
instances can not be individually addressed by the
user. In other words, sharing is permitted only
among database objects that represent different roles
of the same real world object.

Therefore, in both of the two classes of systems
we described above, it would be impossible to
represent a situation where many instances of the
same type inherit the values of a single object. In the
next section, we will see that this is precisely the
relationship that we want to capture between a gen-
eric object and its version as well as between com-
ponent occurrences and (generic or version) com-
ponents.

8. Modeling Design Objects

Version and generic objects are treated as any
other ordinary object and as such they are of a given
type. The type of the generic object is not the same
as the type of its versions. A user can independently
define the attributes that a generic object must have
and the attributes of the versions of this generic
object. The attribute values of a generic object are
shared by all of its versions. For example, if an
AdderChip (a generic object) has four pins, then all
its versions have four pins too. This suggests that
version objects should be defined as extensions of
their generic object. The system provides two types:
Generic and Version to capture the common behavior
of generic and version instances, respectively. The
mechanism of using these types to define new user
types is discussed shortly. We first provide the
definition of type Generic shown in Figure 6.



defilne type Generic :

(

defaultVersion: ref Version;

nextVid: int4;

vcount: int4;

vd: array(] of own ref VDescriptor;
)i
operations:

last Version returns Version;

last Versions returns {Version};

versionSet returns {Version};

version{vid: int4) returns Version;
creationDate(vid: int4)returns Date;
home(vid: int4) returns Database;
status(vid: int4) returns VersionStatus;
successors(vid: int4) returns {Version};
successorsAll (vid: int4)returns {Version};
predecessors(vid: int4) returns Version;
[* etc */

end Generic;

Figure 6. Definition of type Generic.

The ’defaultVersion’ determines the version
that should be chosen when a generic reference (a
reference to an instance of type Generic) is mapped
to a specific version. The ’nextVid’, which is zero
initially, is the version id that will be assigned to the
next version of the object that will be created, and
‘veount’ is the number of versions of the generic
object. Finally, 'vd’ is an array of version descrip-
tors, one for each version that has been created. The
definition of VDescriptor follows.

define type VDescriptor :

(

version: own ref Version;

created:  Date;

home: ref Database;

status: VersionStatus;

succ: {ref VDescriptor}, inverseof pred;
pred: ref VDescriptor, inverseof succ;

)

end VDescriptor;

Attribute ’version’ references the actual version
object, and ’created’, home’, and ’status’ indicate,
respectively, the version creation date, the current
home database in which the version resides and its
status which can be one of the following: in-progress,
stable, frozen, or released, [Bili89c¢|. Finally, ’succ’ is
a set of references to the descriptors of those versions
that have been derived by this one and ’pred’ is a
reference to the one from which this version was
derived from.

Operations defined in Generic provide data

associated with versions if the access is done through
a generic object (similar operations are defined for

version objects). For example, the function
home(vid: int4) returns "this.vd|vid].home", and the
function versionSet is implemented as "range of
descriptor is this.vd retrieve descriptor.version.

Types Generic and VDescriptor are not built-
in, in the sense that they can be enriched to fit the
application needs at a particular installation. One
can add attributes in VDescriptor to show whether
the version has been archived and when, the date
that the version was installed in the shared system,
the creator of the version, a list of approvals, etc.
Similarly, users at a particular installation may need
the capability to choose a subtree of the version
derivation hierarchy to be the active derivation sub-
tree. This means that nodes of this subtree would be
the only ones from which new versions can be derived
thus, effectively, blocking out all other versions in the
hierarchy. If such need exists, we can define an attri-
bute ’activeRoot’ in Generic to indicate the root ver-
sion of the active subtree. Once, however, these
types have been fixed all applications running in that
installation use the same type definitions.

Figure 7 shows the definition of the type Ver-
sion with ’generic’ being the proto-link to a version’s
generic object.

define type Version:

(

generic: extends Generic;
vid: int4;

)i

operations:
creationDate returns Date;
home returns Database;
status returns VersionStatus;
successors returns {Version};
successorsAll returns {Version};
Predecessors returns Version,

end Version;

Figure 7. Definition of type Version.

The value of *vid’ provides the version number of the
version. Some of the operations in Version are imple-
mented by performing the corresponding operations
on the version’s generic object. For example, the
function ’home’ may be implemented as
"this.generic.home(this.vid)". Notice that all opera-
tions in Version are overloaded because Version
inherits the operations defined in Generic. Thus, if
‘home’ is applied to a version instance v with no
arguments, i.e., v.home, the above piece of code will
be executed and the home database of v will be
returned. If, however, the function 1is called on v
with a single integer argument, e.g., v.home(5), the
system will delegate this operation to the version pro-
totype, ie., its generic object. Thus,



"this.generic.home(5)" will be executed which returns
the home of version 5 of v’s generic object.

8.1. Versionable Types

Now, let us turn our attention on how a user
can proceed to define a versionable type T. Assume
that G-properties are the properties that we want to
associate with generic objects and V-properties the
properties that we want to associate with versions of
these generic objects. The G-properties of a generic
object z represent the common characteristics of all
versions of z. They can be though of as forming the
interface of z’s versions. The V-properties represent
deviations in the defined characteristics of z. The
variation that each version possesses is considered to
be small enough to constitute valid membership in
the version set of a generic object. Although, deter-
mination of G-properties and V-properties is applica-
tion specific we can say that, in general, the V-
properties are those properties that do not change the
form, fit, and function of the generic object (i.e., all
versions are interchangeable within a higher level
assembly). For example, assume a generic object
obitAdder and that all versions of this item must
have a certain number of pins. Then, this informa-
tion should be associated with 2bitAdder itself; i.e.,
versions of 2bitAdder must have this specific number
of pins or otherwise, they can not be considered to be
versions of 2bitAdder. The definition of a type T
whose instances are generic objects looks like this:

define type T refines Generic:
G-properties
end T;

Each (generic) instance of T maintains its own state
for the attributes defined in Generic and T, not
shared by any other instance of T. Any type that
refines Generic is called versionable. For any version-
able type T there should be a type, TVersion, that
defines versions of T objects. The definition of TVer-
sion is going to look like this:

define type TVersion refines Version:
generic: extends T;
V-properties

end TVersion;

A TVersion instance inherits the ’vid’ attribute from
Version. However, the ’generic’ proto-link definition
is strengthened to be a reference to an instance of T
rather than just a reference to an instance of Generic.
Thus instances of TVersion will share the properties
of one of T’s instances.

As we described in the introduction, a com-
ponent occurrence indicates how a subordinate object

participates in another more complex object. A com-
ponent occurrence of an object z (generic or version)
is distinct from other component occurrences of the
same object z, and each shares the same z properties.
They may also have attributes that are not inherited
such as a name and a location. Type TOccurrence
will look like the following definition, where O-
properties are the component occurrence specific pro-
perties.

define type TOccurrence:
occurrenceOf: extends T;
O-properties;

end TOccurrence;

The resulting type hierarchy after the definition of
the above types and an example of instances of these
types are shown in Figure 8a,b. Type TOccurrence
extends T through the ’occurrenceOf’ reference.
Thus, a particular component occurrence can refer-
ence and share the values of a generic object instance
of T, or one of its versions of type TVersion. Note
that from a user point of view a component
occurrence is seen as a copy of the referenced com-
ponent and the user can request any property defined
for that component. If the ’occurrenceOf’ attribute
value did not carry the semantics of value inheri-
tance, it would be an ordinary reference and all func-
tions defined in TVersion (including the ones inher-
ited from T and Version) would have to be explicitly
redefined for TOccurrence objects.

A specific mechanical design example that
involves simple (non assembled) parts as well as
assemblies is presented in [Bili89b).

4. Conclusion

In this paper we have presented the dual sub-
typing mechanism of Pegasus, an object-oriented
model targeted to support CAD applications. We
have shown that this simple modeling element is

powerful enough to enable users to define generic and

version objects in a way that fits the particular needs
of their application. This is unlike other version
schemes where generic objects are somehow build-in
in the system, [Chou88].

The modeling of a component occurrence of a
(generic or version) component as extension of the
component object itself, allows CAD applications to
see this occurrence as a whole copy of the referenced
component. This is true even if multiple designs are
using the same component. In contrast, in some sys-
tems component objects are considered to be
exclusively owned by the composite object to which
they are components, [Bane87, Lori83]. This intro-
duces a number of problems. Specifically, it does not



Generic

T Version

TOccurrence TVersion

TOccurrence

TVersion
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Figure 8.(a) schema definition for T, TVersion and TOccurrence. (b) an example of instances of these types; all
arrows indicate the proto-links of the objects to their prototypes.

permit two or more designs to share the same com-
ponents, and it can not model composite objects that
are being designed as assemblies of other already
existing components. Furthermore, when the com-
plex design is deleted from the database, its com-
ponents have to be deleted, and when a version is
copied to derive a new version, new versions for all
components should be created. Our view is that each
component is an independent design object by itself
and whether it should be deleted or new versions of it
should be created has nothing to do with where this
component is used.
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