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Abstract 
One of the most important problems of database management 
systems for CAD applications is modeling design objects and the 
complex relationships among them. Design objects have versions 
and participate in the construction of other more complex- design -- 
objects. In this paper we describe the preliminary data model 
design of a database system for CAD applications, named " 
Pegasus. Our model is based on previously published work on 
extensible and object-oriented database systerc~. Novel ideas of 
our model that are presented in this paper, include relationship 
objects as a modeling construct to represent relationships of any 
degree, replication, and the reconciliation of two subtyping 
mechanisms: the first, called refinement, is based on the usual 
semantics of schema copying and the second, called extension, is 
based on the inheritance semantics between prototypes and their 
extensions. We use these modeling elements to show how parts 
and assemblies (with their versions, components, etc.) can be 
modeled in the world of mechanical assembly design. 

1. Introduction 
Extensible and object-oriented database systems are 

emerging as a very promising solution to handle complex CAD 
applications because they greatly surpass pure relational systems 
in modeling power and performance. A comprehensive list of 
why object-oriented systems can deliver the performance that 
conventional systems do not is given in [Maie89], and a collec- 
tion of papers on object-orientation can be found in a recently 
published book, [Kim89]. 

A CAD product is an aggregation of design objects and 
associated documents. A design object may have many represen- 
tations each having many versions, [Katz87, Ditt88]. Each ver- 
sion represents a particular description of the design object as it 
has been defined by a user at some point in time. The object that 
represents all versions of the (semantically) same object is called 
generic; it keeps data about its versions, their relationships, and 
their common properties. A version object is associated with 
exactly one generic object. Versions of a single generic object x 
form what is frequently called the version set of x. A design 
object may reference (consist of) a number of other objects that in 
turn may be the constituents of other objects. Such objects that 
are composed of other objects are called complex [Lori83] or 
composite [Bane87], the hierarchical composition of a complex 
object is referred to as the configuration hierarchy, and the con- 
stituent objects are called components. A component object (gen- 
eric or version) is by itself another design object and as such it 
may have its own components. A component occurrence 
describes how the component object participates in a composite 
object. (It is called component instance in [Bato85].) References 
to generic objects are called generic references;, they provide the 
means to an engineer to postpone specific decisions about non- 
essential details for a later time. They also provide the means to 
reference an object x that is itself under development, perhaps by 
another group of engineers, without prematurely binding this 
reference to a specific version of x that happens to be currently 
available (if there is one available at all). This is important 

because in large design projects different users edit different com- 
ponents concurrently. 

Specific approaches to support complex objects and/or ver- 
sions have been proposed [Katz87, Kim87, Ditt87, Beec88, 
Nara88, Ditt88; Wilk89]. In [Katz87] a version server is 
described which explicitly supports configuration, version deriva- 
tion, and equivalence relationships; it runs on top of a file system 
in which design objects are stored. On the contrary, the schemes 
for versioning described in [Kim87, Ditt87, Beec88, Nara88], and 
for composite objects described in [Kim87, Dirt87, Wilk89] are 
integrated into their data model. Considerable work in this area 
has also been reported in [Zdon86, Kemp87, Hard88]. 

This paper presents our own research in this area, and it is 
a summary of [Bili89a]. We present the basic elements of the 
PEOASUS data model in Section 2. Subtyping is discussed in Sec- 
tion 3. In Section 4 we discuss relationships and relationship 
objects. Replication of attribute values of objects participating in 
a relationship is introduced in Section 5. The modeling elements 
introduced in the above sections are explained with the help of 
examples that deal with employees and departments. Section 6 
provides an example of modeling mechanical CAD objects. 
Finally, Section 7 presents our conclusions. 

2. Basics of  the Data M o d e l  

PEGASUS Stalls with the modeling elements provided in the 
EXTRA data model, [Care88]. We will tat to keep the discussion 
brief on modeling elements that are similar to EXTRA, and ela- 
borate on those that present some difference. 

The database is a collection of objects, each identified by a 
system generated id, called oid. Every object is of a given type; it 
is said to be an instance of that type. The type provides the attri- 
bute spoeifications that are common to all of its potential 
instances, the operations that can be performed on these 
instances, and the constraints that attribute values of these 
instances must satisfy. The attributes, operations and constraints 
of an object are collectively called the properties of the object. 
Instances of a given type are classified into user-maimained sets; 
i.e., the definition of a type and the classification of the instances 
of this type are separated from each other. For example, the 
schema of Figure 1 defines the types Person, Employee and 
Department mad creates two sets of Employee objects, Empsl and 
Emps2, and two sets of Department objects, Deptsl and Depts2. 

Attribute values and operations defined for an object are 
accessed using the dot notation (regardless of the type of the 
accessed attribute, see [Care88]). For example, the function 
Employee.manager is implemented as 'this.worksFor.manager', 
where this is a special variable implicitly bound to the object to 
which the function is applied. Additional operations for types 
that have already registered in the database can be defined as in 
[Care88]. 

Each attribute specification defines the type of the attribute 
value. Primitive types (integers, characters, etc.), user defined 
abstract data types (such as Date in Person type), type construc- 
tors (tuples, arrays, and sets) and the three kinds of attribute value 
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define type Person: ( 
ssn: int4; 
name: (fname: char[20]; lname: char[20]); 
dob: Date 
address: char[30]; 

); 
operations: 

age returns int4; 
end Person; 

define type Employee refines Person: ( 
salary: int4; 
worksFor: ref Department inverseof emps; 

); 
operations: 

manager returns Employee; 
end Employee; 

define type Department: ( 
name: char[20]; 
manager: ref Employee; 
emps: { ref Employee } inverseof worksFo~, 

): 
end Department; 

create Empsl, Emps2: { own refEmployee}; 
create Deptsl, Depts2: { own ref Department}; 

A simple database schema. The character pairs ( ) ,  { }, 
ote tuple-, set-, and array-objects, respectively. 

semantics (own, ref, and own ref) were taken directly from 
EXTRA, [Care88]. An own attribute, which is the default, is 
simply a value; it lacks object identity [Khos86]. A ref attribute is 
a reference to another object in the database; the value of the attri- 
bute is either null or the oid of the referenced object. Finally, an 
own ref attribute is a reference to an object with the semantics 
that the referenced object is both: (1) dependent on the referene- 
hag object, i.e., it is deleted when the referencing object is 
deleted; (2) exclusively referenced by the referencing object, i.e., 
the referenced object can not be referenced through an own ref 
attribute by more than one object. 

We further refine own ref  attributes into two kinds of 
reference semantics, exclusive ref and dependent  ref, each satis- 
fying only one of the above constraints, own ref  is treated here as 
a synonym for exclusive dependent  ref attribute. An 
exclusive ref implies that the referenced object can not be refer- 
enced by another object through an exclusive ref or 
dependent ref attribute. However, the referenced object is not 
deleted when the referencing object is deleted. For example, we 
could extend our Department type with an additional field to keep 
track of the cars given to each department by adding the attribute 
'car: exclusive ref Vehicle'. This implies that two departments 
may not reference the same car. However, when a department 
object is deleted, the referenced car does not disappear automati- 
cally from the database; it exists and it may later on be referenced 
by another deparmaent. A dependent  ref implies a shared owner- 
ship of the referenced object, i.e., .the referenced object is deleted 
when all objects that reference it through a dependent  ref attri- 
bute have been deleted. For example, we could extend our 
Employee type with an additional field to keep track of 
employee's kids by adding the attribute 'kids: {dependent ref 
Person}'. This implies that one or more employees may reference 
the same Person object through their kids attribute. When an 
employee is deleted, his/her kids are deleted only if no other 
employee references them. 

Other modeling elements shown in the schema of Figure 1, 
such as refines and inverseof are discussed in subsequent sec- 
tions. 

3 .  I n h e r i t a n c e  

Types in PEGASUS, as in all object-oriented systems that we 
are aware of, are related with the supertype/subtype relationship 
in a type hierarchy [Card85]. I fX  is above Y in this hierarchy we 
say that X is a supertype of Y, and Y a subtype of X. PEGASUS 
provides two subtyping mechanisms, namely refinement and 
extension. Before we explain the difference we first give the 
interpretation of subtyping: 

If Y is a subtype (refinement or extension) of X, it 
implies that an instance of Y can be used every 
where an instance of X is expected. 

Thus, Y supports all properties defined in X and it may have 
additional properties; operations defined in X may be re- 
implemented in Y, and attributes may be redefined so that their 
permitted values are more restricted. In the following we discuss 
the two kinds of subtyping. 

Refinement (Schema Inheri tance)  

When a type Y refines a type X,  an instance of Y main- 
rains its own storage for the values of all attributes defined in Y 
and X. In this kind of subtyping, a real-world object is mapped to 
exactly one database object that is an instance of the object's 
most refined type. This is shown in Figure 2(a). Instances of X 
and Y are independent of each other, e.g., updating an instance of 
X does not affect any instance of Y, and vice versa. An example 
of refinement is shown in the schema of Figure 1 where the 
Employee type is defined as a refinement of Person. Each 
Employee object holds the values of the three attributes defined in 
Person and the two attributes defined in Employee. Inheritance 
through refinement is exactly the kind of inheritance provided in 
some extensible and object-oriented systems such as Postgres 
[Rowe87a], ORION [Bane87], GemStone [Maie86a], and 
EXTRA [Care88]. 

refines 

prototype 

p 

~----q,2lb21e21d21 

(a) 

extends 

Co) 

extension -NN 

~ o  (a) Refinement: instances of Y maintain their own 
r the attributes defined in Y and X; instances of X and 

Y are independent of each other. (b) Extension: all attribute 
values of x are shared by y .  (Undirected lines indicate the type of 
an object.) 

Extension (Value Inheri tance)  

When a type Y extends X, the following is implied: for 
every instance y of Y there exists an instance x of X (or any sub- 
type of X)  whose atm'bute values are inherited (shared) by y.  The 
object x whose values are inherited by y is called the prototype of 
y,  and y is called an extension of its prototype, see Figure 2(b). 
The prototype of an object is referenced through a new kind of 
ref attribute, called proto ref attribute 1. The above existential 

1 In [Bili89c], it was called extends ref. 
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constraint implies that an object referenced by one or more 
objects tl~ough pro to  ref  attributes can not be deleted, and the 
value of  a proto ref  attribute of an extension object can not be 
null. Otherwise, a pro to  re f  attribute is treated as any other ref 
attribute; it 's value can be explicitly queried or updated by a user. 
The latter implies that an extension object may have different pro- 
totypes over time. 

Value irtheritence works as follows. Assume P to be a 
proto ref  attribute of  an object y of  type Y. A request to access 
(read or write) an attribute y.A that has not been defined in Y is 
forwarded to y.P and recursively to yap 's  prototype until we find 
an object x for which A has been defined, and the access is per- 
formed on x .  Likewise, when an operation O is applied on y and 
O has not been defined ha Y, the prototypes of  y are recursively 
visited until such operation is found, then that O is applied on y .  
The terms prototype and extension appear ha object-oriented 
languages presented ha [Lieb86, Unga87]. The process of  for- 
warding a message that an extension object can not respond to to 
its prototype is called delegation. In these languages, however, no 
types are associated with objects. Any object can serve as a proto- 
type; an extension is created by defining a list of  its prototypes as 
well additional properties idiosyncratic to the object itself. 

Figure 3 shows types Employee and Student defined as 
extensions of type Person (Person is defined ha Figure 1). Each 
Employee object e will store the values of  the three attributes 
defined in Employee only, and it will share the attribute values of  
the object that is referenced in e .person. Similarly, a Student 
object s will hold the values of  person and gpa attributes, and it 
will share the attribute values of  s.person. For example, assume 
that s.person references an instance of  Person. A request to get 
s .ssn is resolved by the system by retrieving e .persorhssn, s .dob 
is resolved to s.person-dob, etc. Similarly, the 'age '  function, 
defined for Person objects to return 'today - this.dob', can be 
applied on s ,  i.e., s.age, and the system will return 'today - 
this.person-deb'. 

define type Employee: ( 
person: proto ref Person; 
salary: int4; 
worksFor: ref Depamnent 

) 
operations: 

manager returns Employee; 
end Employee; 

define type Student: ( 
person: proto ref Person; 
gpa: float4; 

); end Student; 

Figure  3. Employee and Student as extensions of  Person. 

In the above example, s .person may actually reference an 
object of  any type that is a subtype (refinement or extension) of  
Person. In particular, s.person may reference an Employee 
object. We may see how easy it is to model a student s who also 
works for a particular department, without even introducing a 
new type for these kinds of  objects; s will inherit the attribute 
values of s .person (an Employee object) and recursively the ones 
of s .person-person (a Person object). 

Selective At t r ibute  Value Shar ing  

Our interpretation of  attribute value sharing lreats read and 
write requests the same way. An attempt to update y.A of the 
object y shown ha Figure 2(b) results on an update of  yaU.A, i.e., 
x.A is updated. I f  there are other extensions of  x ha the database, 
the new x.A value is automatically shared by them. In many 
cases this situation is exactly what we want from the semantics of  

attribute value sharing (as the name implies). 

It is also possible, however, that we may want extensions 
to have their own values for some of the attributes defined in a 
prototype. Consider the schema of Figure 3. A Student may have 
two addresses, one in which she regularly leaves, and another one 
while she is ha College. Assume that when we do not know her 
on campus address (e.g., during the summer) we want to use her 
permanent address. One way to model such situations ha PEGASUS 
is through the local (attribute-list) clause attached to a proto  ref  
attribute definition. It specifies two things: (a) updates on attri- 
butes in attribute-list are performed locally on the extension, and 
(b) when no value is set for one of  these attributes ha the exten- 
sions, the corresponding value of  the prototype is taken as default. 
Extension objects that localize some attributes of  their prototypes 
keep a flag, called local-flag, for each such attribute to indicate 
whether the attribute value has been updated on the extension 
object. The system defined operation 'default(attribute-list)' can 
be applied on an extension object to unset the local-flag associ-. 
ated with the attributes in attribute-list after an update on that 
attribute has been performed. For the above example, the Student 
type would have been defined as follows: 

define type Student: ( 
person: proto ref Person local (address); 
gpa: float4; 

); end Student; 

A Student s will now hold the values of  attributes person, dob, 
and address, and it will keep a local-flag for the address attribute. 
The rules of accessing s .address are as follows. 

Write: always performed locally on s.address (the prototype 
s.person remains unaffected), and the local-flag of 
s .address is set. 

Read: I f  the local-flag of  s.address is set, the value of s .address 
is returned; otherwise, the request is forwarded to 
s .person. 

Note the difference between the above approach with the one in 
which "address' is defined in Student type as any other attribute. 
In the second approach, s.address is independent from 
s .person-address. Assume that when a student goes home during 
the summer period we set the value of s .address to whatever is 
the current value of  s .person-address; this could not work if after 
this update s .person-address is updated, i.e., the student moves to 
another permanent address. Note also the implications of  defining 
a 'campus-address' attribute ha Student type of  Figure 3. Now we 
can no longer apply on s those operations of  Person that access 
the address value of an object, if  the value that we want to be 
accessed is s.campus-address. These operations have to be re- 
implemented for Student objects and the benefits of  inheritance 
are partially lost. 

Although, the above problems are perhaps minor when we 
try to model students and their addresses, they are very important 
ha CAD applications as we will see in the example ha the last sec- 
tion. 

Multiple  Inher i tance  

The type hierarchy is a DAG; it is possible for a type to 
inherit properties from several supertypes (multiple inheritance). 
The problem with multiple inheritance is the naming conflict aris- 
hag when identically named properties have been defined ha the 
supertypes. Such conflicts that may occur when a type T is 
defined are resolved as follows. Let us call SR and SE the sets of 
supertypes of  which T is a refinement and an extension, respec- 
tively. We first check for conflicts among types in SR only, with 
the algorithm described ha [Care88]. If  the conflicting names in 
the supertypes originate (i.e., they have been inherited) from a 
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common ancestor in the type hierarchy the conflict is resolved 
automatically. Otherwise, conflicting names should be renamed in 
T by the user; i.e., no attempt is made by the system to resolve 
them automatically. Then we check for conflicts among types in 
SE only, exactly the same way. After this step is successfully 
finished and there are conflicting names between types in SR and 
SE we give priority to the names defined in SR over those 
defined in SE. (Of course, the definer of T may alter this 
behavior by renaming.) 

Figure 4 shows a type W that refines X and Y, and it 
extends Z through the proto ref attribute P .  The net result of 
this definition is that an instance w of W will hold the values of 
attributes A ,B, C ,D (whose definition is inherited by X and Y), 
the values of attributes F , G , P  (defined in W), and it will share 
the value of attribute E of the object referenced in w.P. 

Z 
x , 

• W ~w25lbS[c5ld5[fSlgS[ I 

~ Type W has been defined as: define type W refines (X, 
; G: ...; P: proto ref Z;); end W;. That is, W refines X 

and Y, and it extends Z. 

4. Re la t ionsh ips  
The object-oriented paradigm of modeling has been criti- 

cized for lack of support for relationships and referential integrity 
constraints [Rumb87]; we believe that these are very important 
modeling elements that should be explicitly supported by an O-O 
DBMS. In this section we propose mechanisms that would allow 
the user to define binary relationships as well as relationships of 
degree three or more. 

Assume types X and Y (not necessarily distinct), and attri- 
butes X.a and Y.b (not necessarily distinct). When X.a and Y.b 
are defined to be references to instances of Y and X, respectively, 
and inverse of each other, a binary relationship is established 
between instances of these two types for which PEGASUS actively 
enforces the following cross-referential integrity constraint: 

for every X object x, the value of x.a is either null or a 
reference to_an object y whose y.b value is x, and 
for every Y object y, the value of y.b is either null or a 
reference to an object x whose x.a value is y. 

The attributes through which two objects participate in a relation- 
ship are indicated in the type definition by matching inverseof 
clauses. The mapping cardinality of a relationship, which 
expresses how many instances of one type can be associated with 
how many instances of another type, is simply determined by the 
number of references that each inverseof attribute can accept as 
values. 

Here are some examples. The worksFor and emps attribute 
definitions of Figure 1 establish a many-one relationship from 
Employee to Department objects and the following constraint is 

enforced: for every Employee e, Department d, the value of 
e.worksFor is d, if and only if e is a member of d.emps. 
PEGASUS el'lSttres that the emps attribute of a department is 
updated properly whenever the worksFor attribute of an employee 
is updated, or an employee is fired or hired. If employees were 
working in many departments, worksFor would have to be 
defined as 'worksFor: {ref Department} inverseof emps' which 
establishes a many-many relationship between Employee and 
Department objects. Similarly, a one-one relationship can be 
established if both of the lnverseof attributes have been defined to 
have single reference values. For instance, assume that at most 
two employees may be assigned the same office. The attribute 
definition 'officemate: ref Employee inverseof officemate' in 
Employee type defines a one-one relationship between Employee 
instances, and the following constraint is enforced: for every 
Employee objects e 1 and e2, the value of e 1.officemate is e2 if 
and only if the value of e 2.officemate is e 1. 

Binary relationships can be defined for individual objects 
only. Consider the schema of Figure 1. Suppose we want to 
enforce cross-referential constraints for members of Emps2 and 
Depts2 only, and not for any instance of Employee and Depart- 
ment. Then, we should not had included the inverseof clauses 
with the types. Instead, we can define this relationship for 
members of the above sets only, as follows: 

iavn-seof Emps2.worksFor, Depts2.emps 

This means that for every e in Emps2, d in Depts2, the value of 
e.worksFor is d if and only if e is in d.emps. An employee in 
Emps2 can no longer work for a department in Deptsl, and a 
department in Depts2 can no longer have employees that are in 
Empsl. 

Relationship Types 

The relationships we discussed above do not introduce 
new database objects and do not, in any way, change the structure 
of the participating objects; they are binary relationships only and 
have no attributes associated with the relationship itself. How- 
ever, relationships of degree higher than two may have to be 
defined. A ternary (or n-ary, in general) relationship can be bro- 
ken down into three (or more, respectively) binary relationships. 
It is well known, however, that in general the set of the resulting 
binary relationships is not always equivalent to the original n-ary 
relationship (see a database textbook, e.g., [Elma89], page 58.) In 
addition, and regardless of the degree of the relationship, one may 
want to associate some attributes with the relationship to describe 
how two or more objects are related to each other. Such situations 
can be modeled in PEGASUS through relationship types; instances 
of relationship types are called relationship instances or relation- 
ship objects. 

A relationship type R of degree n,  n>2, will have n 
inverseof attributes, each defined as a single reference to an 
instance of the participant types, and zero or more attributes that 
provide additional information about R. Relationship objects 
represent relationships among existing database objects; thus, 
their inverseof attributes can not have null references. 

As an example, assume that employees are assigned by 
different departments to work on a number of different projects 
and different departments may assign employees to work on the 
same project. We are interested in knowing the number of hours 
that each employee works on a given project and the department 
that assigned this job. Figure 5a shows how this ternary relation- 
ship can be established by the definition of the Assignment rela- 
tionship type (the mode clause appearing in Employee is 
explained shortly). Each 4-tuple Assignment object (e, d ,p ,  h)  
implies that an employee e has been assigned by department d to 
work on project p for h hours per week. The matching attribute 
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define relationship Assignment: ( 
employee: ref Employee inverseof worksOn; 
department: ref Department inverseof assignments; 
project: ref Project inverseof assignments; 
hours: intl; 

); end Assignment; 

define type Employee: ( 
worksOn: {refAssignment} inverseof employee mode (r); 
coordinates: { ref Project} inverseof leader, 
ssn: int4; name: char[20]; salary: int4; 

); end Employee; 

define type Department: ( 
ass*gnments: { ref Assignment} inverseof department; 
name: char[20]; manager: ref Employee; 

); end Department; 

define type Project: ( 
f l ame-"  

leader:. 
startDate: 
assignments: 

); end Project; 

char[30]; 
ref Employee invecseof ooordinates; 
Date; 
{ ref Assignment} inverseof project mode (r); 

(a) 

Employee ] worksOn (m) _ ~ assignments (m) employee'l V department'l I~P~mment I 

assignments (m) ]project - l  

leader (1) 
coordinates'* ( m ) I  P'Jact I 

(b) 
~ (a) A database schema (b) Object-Relationship di- 

the schema defined in (a); only inverse, of attributes are 
shown. Rectangles represent ordinary types and diamonds 
represent relationship types. 

pairs (Employee.worksOn, Assignment.employee), 
(Department.assignments, Assignment.deparnnent), and 
(Project.assignments, Assignment.project) collectively specify the 
following: 

For every Employee e ,  Department d ,  Project p ,  Assignment a ,  
a is a member of e.worksOn and d.assignments and 
p .assignments if and only if the value of a .employee is e and the 
value of a .deparlrnent is d and the value of a .project is p .  

In addition, instances of types Employee and Project participate 
in a binary relationship through their coordinates and leader attri- 
butes, respectively. The diagram of Figure 5b, similar to Entity- 
Relationship diagram, captures all the relationships between the 
above objects. The numbers inside the parenthesis attached to 
some attributes designate the mapping cardinalities of the rela- 
tionships, hiverseof attributes of a relationship are always single 
references and thus no number is attached to them. 

The mode clause specifies whether application programs 
are permitted to read, write or initialize an lnverseof attribute 
value (this is identical to the allows clause of [Onto87]). If no 

mode is specified all operations are permitted. The system can 
always update an lnverseof a~ibute to compensate other actions 
performed by users. The schema of Figure 5 specifies that no 
user can update the worksFor attribute of an Employee object e,  
and the assignments attributes of a Project object p .  These attri- 
butes will be updated by the system only when an assignment 
object that relates e or p is deleted, created or modified. 

Roles 

Objects may participate in a relationship in different roles. 
We illustrate roles with the help of an example that models the 
mother-father-child relationship among persons, shown in Figure 
6. The different roles that an object may play in a relationship are 
indicated by the attribute names through which the object partici- 
pates in the relationship. Attribute asParent of Person has been 
defined as lnverseof (mother, father) whickis-intecpreted as-being 
the inverse of mother or father. That is, for every Person object 
p ,  MFC object r ,  r is in p .asParent if and only if the value of 
r .mother is p or  the value of r .father is p .  Thus, a Person object 
may participate in a MFC relationship either as a child or as a 
parent, and furthermore a Person object that plays the role of a 
parent may play the role either of a mother or a father. MFC is a 
many-one relationship from (Person (as mother), Person (as 
father)) to Person (as child). 

deline type Person: ( 
asParent: {ref MFC} inverseof (mother, father); 
asChild: ref MFC inverseof child; 

); end Person; 

deltne relationship MFC: ( 
mother: ref Person inverseof asParent; 
father, ref Person inverseof asParent; 
child: ref Person inverseof asChild; 

); end MFC; 

Person 

asperent (m) 
mother'*, father'* 

asChild (I) 
child -t 

The ternary MFC (Mother-Father-Child) relationship 
on objects. 

The reader may wonder why we did not define in type Per- 
son three attributes (asMother, asFather, and asChild) each indi- 
caring the very distinct roles that a person may play in MFC rela- 
tionship. Certainly, for this particular example, we could. We 
have chosen the approach shown in Figure 6 just to show how 
object relationships can be modeled when the roles that objects 
may play in the relationship can not be distinguished in a mean- 
ingful way. This is the case of all relationships that are sym- 
metric. Consider the case of a relationship R (part1, part2) which 
represents connections between two parts. If p l  is connected to 
p2, then p2 is connected to p l .  What would be the meaning of 
saying that p l  plays the role of part1 and p2 plays the role of 
part2 (or vice versa)? We are simply interested in whether p l  and 
p2 participate in the relationship; their role is unimportant. Thus, 
a type definition for parts would include an attribute of type '{ref 
R} lnverseof (pard, part2)' simply to indicate the participation of 
a part in R and not its particular role. 
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Semantics of Update Operations 
So far, we have assumed that lnverseof attributes are not 

arrays. The reason is that arrays imply an ordering among its ele- 
ments that only the application knows. For example, when a 
reverse reference which happens to be the i-th element of an 
array a has to be deleted, the system could not know whether to 
set a[i] to null or shrink the array. Similarly, the system could 
not know where in the array a reverse reference should be 
inserted. For these reasons lnverseof a r ray  attributes are permit- 
ted only if the matching inverseof attribute is not an array and its 
mode is read-only. In that case, the user manipulates the array 
and the system updates the matching attribute. 

Deleting (or creating) an object x will require a participant 
object y to update the value of its attribute a through which it 
supposed to reference x.  The functions used by PEGASUS to anset 
and set a reference ofy.a to x work as follows: 

unsetReverseRef (y ,a ,x ) 
ff y.a is a set of references then delete x from this set, else 
(i.e., y.a is defined as a single reference) set the value of y.a 
to null. 

setReverseRef (y , a ,x ) 
if y.a is a set of references then insert x into this set, else (i.e., 
y.a is defined to be a single reference) set the value ofy.a to 
X 

Below are the steps followed by PEGASUS when objects participat- 
ing in relationships are delete from the database. 

D1. Delete a relationship object r .  
For each object p referenced by one of r ' s  inverseof attri- 
butes, unsetReverseRef (p, a,  r) where a is the matching 
inverseof attribute of p .  Then, delete r itself from the 
database. 

D2. Delete a non-relationship object p .  
For each object y referenced by an lnverseof attribute of 
p ,  if y is a relationship object then delete y as in D1, else 
unsetReverseRef (y, a ,p ), where a is the matching inver- 
seof attribute of y.  Then, delete p itself from the database 

As an example, consider the schema of Figure 5; when a a project 
p is deleted, the following actions are taken by PEGASUS: 

for each Assignment object a referenced i n p  .assignments { 
delete a from a .department.assignments 
delete a from a .employee.worksOn 
delete a itself from the database } 

deletep f romp .leader.coordinates, 
delete p itself from the database. 

Symmetric actions are taken when objects participating in rela- 
tionships are inserted in the database or they are being updated; 
see [Bili89a]. 

Discussion 

-Perhaps, an interesting question is whether the introduction 
of relationship objects is necessary, e.g., can w e  model the 
Assignment relationship type shown in Figure 5 as any other (not 
relationship) type that includes exactly the same inverseof 
clauses? There are many reasons why we believe relationships 
should be treated in a different way. Below we summarize the 
differences between ordinary and relationship objects. First, 
while the value of an inverseof attribute of an object might be 
null, the value of an inverseof attribute of a relationship object 
can not. Second, the inverseof attributes of a relationship type 
should be defined as single references (not sets or arrays) to 
objects of the participant types. Although, there is nothing funda- 
mentally wrong in having set lnverseof attributes in a relationship 
object, the strategies that should be employed to enforce cross- 
referential constraints will be significantly more complex than 

those we have described in previous sections. Third, and perhaps 
most important, is the issue of update semantics. When a rela- 
tionship object is deleted, the participant objects are updated (not 
deleted). On the other hand, when a participant object is deleted 
all the relationship objects in which it participates are deleted too. 
This can not be modeled with some kind of exclusive rer or 
dependent ref or both (i.e., own ref), each for obvious reasons. 

Note that user defined constraints can not be used to 
enforce eross-referential integrity constraints between participant 
objects. Constraints defined by users are passively enforced by 
the system, i.e., an operation that violates such a constraint is sim- 
ply rejected. Cross-referential integrity constraints are actively 
enforced by the system, i.e., when such a constraint is going to be 
violated the system performs certain additional compensating 
operations in order to satisfy the constraint. Other proposals to 
handle cross-referential constraints include the use of rules in an 
active database system [Daya88], and exceptions [Onto87]. 
Although, there is no question that these mechanisms are valuable 
in a database system for advanced applications, the use of these 
general (and complex) mechanisms to implement such fundamen- 
tal and frequently used modeling construct/s questionable. 

Finally, we note that relationship objects and ordinary 
objects are distinguished only at the data definition level. The 
language for queries and updates may treat both kinds of objects 
exactly the same way. 

5. Replication 
The presence of relationship objects requires that access 

from one participant object to another be done through the rela- 
tionship object. This might be awkward in expressing queries and 
it incurs performance penalties when the participant objects are 
accessed frequently from each other. Let us take as an example 
the schema of Figure 5. To lind the names of all employees to 
whom a particular department d has assigned a job, we should 
retrieve for each a in d.assignments, a.employee.name. This 
might involve two disk accesses for each a in d .assignments; one 
to retrieve a itself, and then one more to retrieve a .employee. If 
the employees working for a department are accessed frequently, 
this performance penalty may be unacceptable. 

For the above reasons, PEGASUS provides a mechanism to 
replicate attribute values of objects of one participant type and 
place the replica with objects of another participant type. Attri- 
butes holding replicated values can not be updated by the user, 
i.e., they are read-only attributes. The following definition makes 
each instance d of the Department type, shown in Figure 5, to 
hold in d.emps the value of a.employee of each a in 
d .assignments: 

ddine type Deparlment: ( 
asslgran~ats: { ref Assignmem} in verseof departme~nt; 
crops: replicates assignments (employee); 

); end '~ar lment ;  

The overhead associated with keeping consistent replicated 
values in objects participating in a relationship is minimal. In the 
above example, d.assignments is inverseof a .department; thus, 
when a is updated we know precisely the object d (it is the value 
of a .deparlment) whose emps attribute has to be updated. Simi- 
larly, when a new Assignment object a is inserted in the data- 
base, we simply insert a .employee in a .department.emps. When 
a is deleted we simply remove a.employee from 
a .department.emps. 

The above example is a special ease of the replicates 
clause. In general, an attribute may be defined to replicate the 
values of more than one attribute of a participant object (provided 
all attribute values are of the same type). In the following we 
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present the general form of a replicates elausse and subsequently 
we provide an example. 

Assume the following X and Y types: 

typeX 
has attributes A = (at,  a ~  • • - ,  a t ,  at+x, • • • am), with 
al,  a2, " " , a k :  r e f Y  lnve r seo fb ;  

type Y 
b:  {ref X } lnverseof  (a 1, a2, "" ", a~); 
c : replicates b A 1; 
d:  replicates b (A1 lnverseof  I1, A2 lnverseof  I2, ...); 

Where A1, A2 . . . . .  are subsets of  A, and I1, I2 . . . .  are subsets of  
(al, a2, " "  ,ok). The  attribute definitions Y.c and Y.d imply the 
following, for every instance y of  type Y: 

Y.c : y.c replicates each x.A 1 value of every x in y .b .  

Y.d: y .d replicates all x .A1 values if  at least one of  x .I1 values 
is y ,  and all x .A2  values if  at least one of  x 222 values is y ,  
and so on and so forth. 

Or equivalently, for every instance x of  X:  

Y.c: each x.4 1 value is replicated in x.a x.c, and x.az .c ,  "" • ,  
and x.at .c.  

Y.d: each x.A 1 attribute value is replicated in x.a~ .d (for all at 
in I1), and each x.A 2 attribute value is replicated in x .a j .d  
(for all aj  in I2), and so on and so forth. 

As an example, we take the Person type that is shown in Figure 6, 
and we redefine it so that it includes some replicated values from 
MFC relationship. The new Person type is shown in Figure 7. 

define type Person: ( 
asPareat: { ref MFC } inverseof (mother, father); 
asChild: ref MFC Inverseof child; 
kids: replicates asParent (child); 
panmts: rep!!r~to~ asChild (mother, father); 
hasKidsWith: 

replicates asParent 
(mother inverseof father, father inverseof mother); 

); end Person; 

~ Possible replication of  attribute values of  MFC objects 
objects. 

Assume a Person object p .  p akids holds references to all children 
of p ; p .parents replicates p .asChild.mother and p .asChild.father 
Finally, p .hasKidsWith replicates from each MFC object m in 
p .asParent, the m .mother value if re.father is p ,  and the m .father 
value if  m.mother is p .  Note that if we had defined hasKidsWith 
as ' repl icates  asParent (mother, father)' we would have different 
results because p would have been included in p ahasKidsWith. 
In other words, when a MFC object m is inserted in the database 
the following actions are taken: 

1. insert m. child in m .mother.kids and ra .father.kids 

2. insert re.mother and m .father in re.child.parents 

3. insert m .mother in rn .father3aasKidsWith, and m .father in 
m .mother.hasKidsWith. 

Replication, as we described it this section, is performed through 
attributes that define a direct relationship between two object, i.e., 
the objects are directly crossed-referenced through these attri- 
butes. If  this constraint is not satisfied we have no way of know- 
ing the objects that have copies of  an attribute value of another 
object, unless reverse indices are maintained by the system. 
[Maie86b] and very recently [Shek89] describe the design of such 
reverse indices in the Gemstone and EXODUS system, respec- 
tively. 

6.  M e c h a n i c a l  C A D  O b j e c t s ,  E x a m p l e _  

In this section we present an outline of how generic 
objects, version objects, and their component occurrences can be 
represented in modeling mechanical design objects that represent 
parts (hereafter referred to as designs, design parts  or simply 
parts)  7- . The following assumptions are made about the problem. 
A part may be simple (non-composite) or it may have two or 
more component parts which in turn may be simple or composite. 
A design part may be a component in many higher level designs 
(e.g., i t 's  a library component). Each design has many versions 
each being a version of  a single design. Parts can be connected to 
each other at some specific points that we call handles. We 
assume that each handle is a hole and that to connect two parts we 
usse a bolt to tighten them together, a nut, and a lock washer that 
prevents nuts from becoming loose under vibration. 

Generic and version objects are treated-as-any-other-ordi- 
nary object and as such they are of  a given type. The properties 
of a generic object g represent the common characteristics of all 
versions of  g .  They can be though of  as forming the interface of  
g ' s  versions. Version properties represent deviations in the 
defined characteristics of  g .  Although, determination of  generic 
and version properties is application specific we can say that, in 
general, the latter are those properties that do not change the 
form, fit, and function of the (generic) design object (i.e., all ver- 
sions of  a design are interchangeable within a higher level assem- 
bly). 

A component occurrence c of a (generic or version) design 
object x indicates a particular usage of x in another more com- 
plex object; it is distinct from other component occurrences of x, 
and each shares the same x properties. For example, assume that 
a designer of  a bike makes use of  two already designed wheels for 
her design; each of  the two wheels that are components of  bike 
corresponds to two different component occurrences of  the same 
wheel design. Each component occurrence describes how the 
component object participates in the composite object; it may 
have such attributes as a name (e.g., front wheel), and a transfor- 
marion matrix that describes where the component is located rela- 
tive to the composite object. 

Figure 8 shows the type Part of  generic part objects, and 
the type PartVersion of  their versions. We have chosen the attri- 
butes of  a generic part object g to be the name and a description 
of g ,  an array of  handles showing how g can be connected to 
other parts, and a drawing that provides a sketchy picture of  the 
part and its handles. Attribute occurrences holds all occurrences 
of g in other more complex parts that use g .  Each Part object 
also holds a set of  references to its versions. 

A PartVersion object v shares the attribute values of its 
generic object referenced in v .generic, except for the occurrences 
attribute which has been defined in PartVersion too. Thus, if v is 
a version of g ,  v .occurrences will give us the composite parts that 
explicitly use v ,  while the same operation applied on g will give 
us those objects that use g in a generic way. A version v may 
have its own sketchy drawing or it may share the one specified in 
v .generic. In addition, each version v includes a version id, vari- 
ous drawings and a set of  references to the part occurrences of the 
parts being used in v ;  for a non composite part version the sub- 
parts attribute value will be the empty set. Attributes of type 
Image have been defined as dependent  ref;  this is because we 
may want to permit two or more different parts to have the same 
appearance for certain kinds of  drawings, e.g, two parts whose 
only difference is the material from which they are made. 

2 We would like to emphasize that in this example we 
model design objects that represent some physical parts; we 
do not model physical  parts. 
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define type Part: ( 
versions: {own ref PartVersion } inverseof generic; 
name: char[20]; 
description: char[]; 
handle: array[J of Handle; 
drawing: dependent ref Image; 
occurrences: { ref PartOceurrence } 

inverseof occurrenceOf mode (r); 
); end Part; 

define type PartOccurrence: ( 
occurrenceOf: proto ref Part local (nanae) inverseof occurrences; 
orientation: Orientation; 
partOf: ref PartVersion inverseof subparts mode (r); 
configurations: { ref Configuration } inverseof (pl, p2); 
connectedWith: replicates configurations 

(pl inverseof p2, p2 inverseof pl); 
); end PartOccurrence; 

define type.PartVersion: ( 
generic: proto ref Part local (drawing) inverseof versions; 
occurrences: { ref PartOccurrence } In verseof occurrenceOf; 
rid: int4; 
detaiIDmg, assemblyDrng, explodcdDrng: dependent reflmage; 
subparts: {own ref PartOccurrence} inverseof partOf; 

); end PartVersion; 

define relationship Configuration: ( 
p I: ref PartOccurrence inverseof configurations; 
p2: ref PartOccurrencc inverseof configurations; 
h 1, h2: int4; 
bolt: ref Bolt; 
nut: ref Nut; 
lkWasher, ref l.kWasher, 

); end Configuration; 

Figure 8. Type definitions of generic design parts (Part), their 
versions (PartVersion), and their component occurrences m more 
complex parts (PartOccurrence). The Configuration relationship 
indicates how two part occurrences are connected together in a 
higher level design. 

Figure 8 shows also the type definition of PartOccurrence 
as an extension of Part. Each component occurrence c shares the 
properties of the design referenced in c .occurrenceOf. The proto- 
type of c may be a generic object (an instance of Part), or a ver- 
sion object (an instance of PartVersion). A component 
occurrence c may set its own name, or otherwise the name of 
c .occurrenceOf will be used. Attribute c .partOf references the 
design version in which c is being used and c .orientation pro- 
vides the orientation of c relative to the complex object. 
c.configurations references all Configuration relationships (dis- 
cussed shortly) that describe how c is connected with other com- 
ponent occurrences, and c.connectedWith replicates from 
c .configurations these other component occurrences that c is con- 
nected with. Note that no operations defined for Part or PartVer- 
sion objects need to be redefined in this type. For example, a pro- 
gram that draws a Part or PartVersion object can be applied on c.  
The only difference is that the name of c will-appear-on the 
screen instead of the name of c .occurronceOf, and the design will 
appear the way specified in c .orientation. From the user point of 
view a component occurrence is seen as a copy of the component 
part. 

Instances of type Configuration are binary relationship 
objects between two part occurrences, p l  and p2, that are con- 
nected together in a higher level part. Each such relationship also 
describes which handles are being used for the connection (hi 
and h2 axe indices of the handle array of p l  and p2), and the kinds 
of bolts, nuts and lock washers. Figure 9 summarizes the rela- 
tionships defined in our schema. 

Part generic (1) 
versions "~ (m) 

occurrenceOf (1) ] occurrences -1 (m) 

I 
I  u "on I- io ou  oL Ve, 

• Figure 9. Relationships in which design objects participate. 

As an example, Figure 10 shows the subcomponents of 
object o l l  which is a version of o10; o l l  uses the object 03, a 
version of part ol ,  and it uses twice part 04 in a generic way, i.e., 
no decision has been made yet as to which versions of 04 will be 
finally used. Note that when design version o l l  is deleted from 
the database, so are the part occurrences 07, 08 and 09, of other 
parts used in this design (because o l  1.subparts is an own ref attri- 
bute). However, the actual parts of the just deleted part 
occurrences, i.e., 04 and 03, remain intact. 

o10 o4 oi 

- I  

o12 o l l  ~ 3 02 

rt 
ion 

legend: a ~  n ~ [] 
PanVersien PartOccurrence 
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Figure I0. A PartVersion instance o11 (a version of the generic 
object o10) and its components. 

Additional information associated with generic and version 
objects, such as derivation relationships, the status and creation 
date of a version, ownership and access control, etc., are dis- 
cussed in [Bili89b, Bili89c]. 

7. C o n c l u s i o n s  

In this paper we have presented a preliminary design of the 
PEGASUS data model. The target is to support the complex rela- 
tionships among design objects in a Computer Aided Design 
environment. After a brief review of the EXTRA data model that 
PEGASUS is based upon, we presented the two kinds of subtyping 
(refinement and extension) and we have shown that these 
mechanisms can co-exists in a database system. Then, we intro- 
duced relationship types as a modeling construct to capture the 
relationships of any degree among objects. Automatic enforce- 
ment of eross-referential integrity constraints among objects par- 
ticipating in a relationship, whenever applications specify to be 
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enforced, is very useful for such complex applications as CAD. 
Finally, we presented replication of attribute values between 
objects participating in a relationship, and we have shown that the 
expected performance penalty because of replication is minimal. 
In general, a key factor whether relationships or replication 
should be used is the importance of referential integrity (for rela- 
tionships) and the relative fTequency of retrievals over updates 
(for replication). 

We presented an example that shows how applications 
may use the modeling elements provided in PEGASUS to handle 
mechanical CAD objects. In our solution it is not required to have 
some kinds of built-in structures to represent generic and version 
design objects as well as their component occurrences in higher 
level designs. Instead, these kinds of objects are treated as any 
other object and as such the user has to define their types. The 
reader should be aware that the definitions of Figure 8 are not 
necessarily the most appropriate for all kinds of CAD systenas. 
This is exactly our point; it is impossible to define properties for 
genetic and version objects that are appropriate for all kinds of 
CAD applications. Thus, users working on different applications 
are allowed to express their own way of seeing their design 
objects. 
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