
Modeling Design Object Relationships in PEGASUS

Alexandros Biliris
Computer Science Depaxtmeaat

Boston University
Boston, MA 02215

Email: biliris@cs.bu.edu

Abstract
One of the most important problems of database management
systems for CAD applications is modeling design objects and the
complex relationships among them. Design objects have versions
and participate in the construction of other more complex- design --
objects. In this paper we describe the preliminary data model
design of a database system for CAD applications, named "
Pegasus. Our model is based on previously published work on
extensible and object-oriented database systerc~. Novel ideas of
our model that are presented in this paper, include relationship
objects as a modeling construct to represent relationships of any
degree, replication, and the reconciliation of two subtyping
mechanisms: the first, called refinement, is based on the usual
semantics of schema copying and the second, called extension, is
based on the inheritance semantics between prototypes and their
extensions. We use these modeling elements to show how parts
and assemblies (with their versions, components, etc.) can be
modeled in the world of mechanical assembly design.

1. Introduction
Extensible and object-oriented database systems are

emerging as a very promising solution to handle complex CAD
applications because they greatly surpass pure relational systems
in modeling power and performance. A comprehensive list of
why object-oriented systems can deliver the performance that
conventional systems do not is given in [Maie89], and a collec-
tion of papers on object-orientation can be found in a recently
published book, [Kim89].

A CAD product is an aggregation of design objects and
associated documents. A design object may have many represen-
tations each having many versions, [Katz87, Ditt88]. Each ver-
sion represents a particular description of the design object as it
has been defined by a user at some point in time. The object that
represents all versions of the (semantically) same object is called
generic; it keeps data about its versions, their relationships, and
their common properties. A version object is associated with
exactly one generic object. Versions of a single generic object x
form what is frequently called the version set of x. A design
object may reference (consist of) a number of other objects that in
turn may be the constituents of other objects. Such objects that
are composed of other objects are called complex [Lori83] or
composite [Bane87], the hierarchical composition of a complex
object is referred to as the configuration hierarchy, and the con-
stituent objects are called components. A component object (gen-
eric or version) is by itself another design object and as such it
may have its own components. A component occurrence
describes how the component object participates in a composite
object. (It is called component instance in [Bato85].) References
to generic objects are called generic references;, they provide the
means to an engineer to postpone specific decisions about non-
essential details for a later time. They also provide the means to
reference an object x that is itself under development, perhaps by
another group of engineers, without prematurely binding this
reference to a specific version of x that happens to be currently
available (if there is one available at all). This is important

because in large design projects different users edit different com-
ponents concurrently.

Specific approaches to support complex objects and/or ver-
sions have been proposed [Katz87, Kim87, Ditt87, Beec88,
Nara88, Ditt88; Wilk89]. In [Katz87] a version server is
described which explicitly supports configuration, version deriva-
tion, and equivalence relationships; it runs on top of a file system
in which design objects are stored. On the contrary, the schemes
for versioning described in [Kim87, Ditt87, Beec88, Nara88], and
for composite objects described in [Kim87, Dirt87, Wilk89] are
integrated into their data model. Considerable work in this area
has also been reported in [Zdon86, Kemp87, Hard88].

This paper presents our own research in this area, and it is
a summary of [Bili89a]. We present the basic elements of the
PEOASUS data model in Section 2. Subtyping is discussed in Sec-
tion 3. In Section 4 we discuss relationships and relationship
objects. Replication of attribute values of objects participating in
a relationship is introduced in Section 5. The modeling elements
introduced in the above sections are explained with the help of
examples that deal with employees and departments. Section 6
provides an example of modeling mechanical CAD objects.
Finally, Section 7 presents our conclusions.

2. Basics of the Data M o d e l

PEGASUS Stalls with the modeling elements provided in the
EXTRA data model, [Care88]. We will tat to keep the discussion
brief on modeling elements that are similar to EXTRA, and ela-
borate on those that present some difference.

The database is a collection of objects, each identified by a
system generated id, called oid. Every object is of a given type; it
is said to be an instance of that type. The type provides the attri-
bute spoeifications that are common to all of its potential
instances, the operations that can be performed on these
instances, and the constraints that attribute values of these
instances must satisfy. The attributes, operations and constraints
of an object are collectively called the properties of the object.
Instances of a given type are classified into user-maimained sets;
i.e., the definition of a type and the classification of the instances
of this type are separated from each other. For example, the
schema of Figure 1 defines the types Person, Employee and
Department mad creates two sets of Employee objects, Empsl and
Emps2, and two sets of Department objects, Deptsl and Depts2.

Attribute values and operations defined for an object are
accessed using the dot notation (regardless of the type of the
accessed attribute, see [Care88]). For example, the function
Employee.manager is implemented as 'this.worksFor.manager',
where this is a special variable implicitly bound to the object to
which the function is applied. Additional operations for types
that have already registered in the database can be defined as in
[Care88].

Each attribute specification defines the type of the attribute
value. Primitive types (integers, characters, etc.), user defined
abstract data types (such as Date in Person type), type construc-
tors (tuples, arrays, and sets) and the three kinds of attribute value

CH2840-7/0000/0228501.00 © 1990 IEEE 228

define type Person: (
ssn: int4;
name: (fname: char[20]; lname: char[20]);
dob: Date
address: char[30];

);
operations:

age returns int4;
end Person;

define type Employee refines Person: (
salary: int4;
worksFor: ref Department inverseof emps;

);
operations:

manager returns Employee;
end Employee;

define type Department: (
name: char[20];
manager: ref Employee;
emps: { ref Employee } inverseof worksFo~,

):
end Department;

create Empsl, Emps2: { own refEmployee};
create Deptsl, Depts2: { own ref Department};

A simple database schema. The character pairs () , { },
ote tuple-, set-, and array-objects, respectively.

semantics (own, ref, and own ref) were taken directly from
EXTRA, [Care88]. An own attribute, which is the default, is
simply a value; it lacks object identity [Khos86]. A ref attribute is
a reference to another object in the database; the value of the attri-
bute is either null or the oid of the referenced object. Finally, an
own ref attribute is a reference to an object with the semantics
that the referenced object is both: (1) dependent on the referene-
hag object, i.e., it is deleted when the referencing object is
deleted; (2) exclusively referenced by the referencing object, i.e.,
the referenced object can not be referenced through an own ref
attribute by more than one object.

We further refine own ref attributes into two kinds of
reference semantics, exclusive ref and dependent ref, each satis-
fying only one of the above constraints, own ref is treated here as
a synonym for exclusive dependent ref attribute. An
exclusive ref implies that the referenced object can not be refer-
enced by another object through an exclusive ref or
dependent ref attribute. However, the referenced object is not
deleted when the referencing object is deleted. For example, we
could extend our Department type with an additional field to keep
track of the cars given to each department by adding the attribute
'car: exclusive ref Vehicle'. This implies that two departments
may not reference the same car. However, when a department
object is deleted, the referenced car does not disappear automati-
cally from the database; it exists and it may later on be referenced
by another deparmaent. A dependent ref implies a shared owner-
ship of the referenced object, i.e., .the referenced object is deleted
when all objects that reference it through a dependent ref attri-
bute have been deleted. For example, we could extend our
Employee type with an additional field to keep track of
employee's kids by adding the attribute 'kids: {dependent ref
Person}'. This implies that one or more employees may reference
the same Person object through their kids attribute. When an
employee is deleted, his/her kids are deleted only if no other
employee references them.

Other modeling elements shown in the schema of Figure 1,
such as refines and inverseof are discussed in subsequent sec-
tions.

3 . I n h e r i t a n c e

Types in PEGASUS, as in all object-oriented systems that we
are aware of, are related with the supertype/subtype relationship
in a type hierarchy [Card85]. I fX is above Y in this hierarchy we
say that X is a supertype of Y, and Y a subtype of X. PEGASUS
provides two subtyping mechanisms, namely refinement and
extension. Before we explain the difference we first give the
interpretation of subtyping:

If Y is a subtype (refinement or extension) of X, it
implies that an instance of Y can be used every
where an instance of X is expected.

Thus, Y supports all properties defined in X and it may have
additional properties; operations defined in X may be re-
implemented in Y, and attributes may be redefined so that their
permitted values are more restricted. In the following we discuss
the two kinds of subtyping.

Refinement (Schema Inheri tance)

When a type Y refines a type X, an instance of Y main-
rains its own storage for the values of all attributes defined in Y
and X. In this kind of subtyping, a real-world object is mapped to
exactly one database object that is an instance of the object's
most refined type. This is shown in Figure 2(a). Instances of X
and Y are independent of each other, e.g., updating an instance of
X does not affect any instance of Y, and vice versa. An example
of refinement is shown in the schema of Figure 1 where the
Employee type is defined as a refinement of Person. Each
Employee object holds the values of the three attributes defined in
Person and the two attributes defined in Employee. Inheritance
through refinement is exactly the kind of inheritance provided in
some extensible and object-oriented systems such as Postgres
[Rowe87a], ORION [Bane87], GemStone [Maie86a], and
EXTRA [Care88].

refines

prototype

p

~----q,2lb21e21d21

(a)

extends

Co)

extension -NN

~ o (a) Refinement: instances of Y maintain their own
r the attributes defined in Y and X; instances of X and

Y are independent of each other. (b) Extension: all attribute
values of x are shared by y . (Undirected lines indicate the type of
an object.)

Extension (Value Inheri tance)

When a type Y extends X, the following is implied: for
every instance y of Y there exists an instance x of X (or any sub-
type of X) whose atm'bute values are inherited (shared) by y. The
object x whose values are inherited by y is called the prototype of
y, and y is called an extension of its prototype, see Figure 2(b).
The prototype of an object is referenced through a new kind of
ref attribute, called proto ref attribute 1. The above existential

1 In [Bili89c], it was called extends ref.

229

constraint implies that an object referenced by one or more
objects tl~ough pro to ref attributes can not be deleted, and the
value of a proto ref attribute of an extension object can not be
null. Otherwise, a pro to re f attribute is treated as any other ref
attribute; it 's value can be explicitly queried or updated by a user.
The latter implies that an extension object may have different pro-
totypes over time.

Value irtheritence works as follows. Assume P to be a
proto ref attribute of an object y of type Y. A request to access
(read or write) an attribute y.A that has not been defined in Y is
forwarded to y.P and recursively to yap 's prototype until we find
an object x for which A has been defined, and the access is per-
formed on x . Likewise, when an operation O is applied on y and
O has not been defined ha Y, the prototypes of y are recursively
visited until such operation is found, then that O is applied on y .
The terms prototype and extension appear ha object-oriented
languages presented ha [Lieb86, Unga87]. The process of for-
warding a message that an extension object can not respond to to
its prototype is called delegation. In these languages, however, no
types are associated with objects. Any object can serve as a proto-
type; an extension is created by defining a list of its prototypes as
well additional properties idiosyncratic to the object itself.

Figure 3 shows types Employee and Student defined as
extensions of type Person (Person is defined ha Figure 1). Each
Employee object e will store the values of the three attributes
defined in Employee only, and it will share the attribute values of
the object that is referenced in e .person. Similarly, a Student
object s will hold the values of person and gpa attributes, and it
will share the attribute values of s.person. For example, assume
that s.person references an instance of Person. A request to get
s .ssn is resolved by the system by retrieving e .persorhssn, s .dob
is resolved to s.person-dob, etc. Similarly, the 'age ' function,
defined for Person objects to return 'today - this.dob', can be
applied on s , i.e., s.age, and the system will return 'today -
this.person-deb'.

define type Employee: (
person: proto ref Person;
salary: int4;
worksFor: ref Depamnent

)
operations:

manager returns Employee;
end Employee;

define type Student: (
person: proto ref Person;
gpa: float4;

); end Student;

Figure 3. Employee and Student as extensions of Person.

In the above example, s .person may actually reference an
object of any type that is a subtype (refinement or extension) of
Person. In particular, s.person may reference an Employee
object. We may see how easy it is to model a student s who also
works for a particular department, without even introducing a
new type for these kinds of objects; s will inherit the attribute
values of s .person (an Employee object) and recursively the ones
of s .person-person (a Person object).

Selective At t r ibute Value Shar ing

Our interpretation of attribute value sharing lreats read and
write requests the same way. An attempt to update y.A of the
object y shown ha Figure 2(b) results on an update of yaU.A, i.e.,
x.A is updated. I f there are other extensions of x ha the database,
the new x.A value is automatically shared by them. In many
cases this situation is exactly what we want from the semantics of

attribute value sharing (as the name implies).

It is also possible, however, that we may want extensions
to have their own values for some of the attributes defined in a
prototype. Consider the schema of Figure 3. A Student may have
two addresses, one in which she regularly leaves, and another one
while she is ha College. Assume that when we do not know her
on campus address (e.g., during the summer) we want to use her
permanent address. One way to model such situations ha PEGASUS
is through the local (attribute-list) clause attached to a proto ref
attribute definition. It specifies two things: (a) updates on attri-
butes in attribute-list are performed locally on the extension, and
(b) when no value is set for one of these attributes ha the exten-
sions, the corresponding value of the prototype is taken as default.
Extension objects that localize some attributes of their prototypes
keep a flag, called local-flag, for each such attribute to indicate
whether the attribute value has been updated on the extension
object. The system defined operation 'default(attribute-list)' can
be applied on an extension object to unset the local-flag associ-.
ated with the attributes in attribute-list after an update on that
attribute has been performed. For the above example, the Student
type would have been defined as follows:

define type Student: (
person: proto ref Person local (address);
gpa: float4;

); end Student;

A Student s will now hold the values of attributes person, dob,
and address, and it will keep a local-flag for the address attribute.
The rules of accessing s .address are as follows.

Write: always performed locally on s.address (the prototype
s.person remains unaffected), and the local-flag of
s .address is set.

Read: I f the local-flag of s.address is set, the value of s .address
is returned; otherwise, the request is forwarded to
s .person.

Note the difference between the above approach with the one in
which "address' is defined in Student type as any other attribute.
In the second approach, s.address is independent from
s .person-address. Assume that when a student goes home during
the summer period we set the value of s .address to whatever is
the current value of s .person-address; this could not work if after
this update s .person-address is updated, i.e., the student moves to
another permanent address. Note also the implications of defining
a 'campus-address' attribute ha Student type of Figure 3. Now we
can no longer apply on s those operations of Person that access
the address value of an object, if the value that we want to be
accessed is s.campus-address. These operations have to be re-
implemented for Student objects and the benefits of inheritance
are partially lost.

Although, the above problems are perhaps minor when we
try to model students and their addresses, they are very important
ha CAD applications as we will see in the example ha the last sec-
tion.

Multiple Inher i tance

The type hierarchy is a DAG; it is possible for a type to
inherit properties from several supertypes (multiple inheritance).
The problem with multiple inheritance is the naming conflict aris-
hag when identically named properties have been defined ha the
supertypes. Such conflicts that may occur when a type T is
defined are resolved as follows. Let us call SR and SE the sets of
supertypes of which T is a refinement and an extension, respec-
tively. We first check for conflicts among types in SR only, with
the algorithm described ha [Care88]. If the conflicting names in
the supertypes originate (i.e., they have been inherited) from a

230

common ancestor in the type hierarchy the conflict is resolved
automatically. Otherwise, conflicting names should be renamed in
T by the user; i.e., no attempt is made by the system to resolve
them automatically. Then we check for conflicts among types in
SE only, exactly the same way. After this step is successfully
finished and there are conflicting names between types in SR and
SE we give priority to the names defined in SR over those
defined in SE. (Of course, the definer of T may alter this
behavior by renaming.)

Figure 4 shows a type W that refines X and Y, and it
extends Z through the proto ref attribute P . The net result of
this definition is that an instance w of W will hold the values of
attributes A ,B, C ,D (whose definition is inherited by X and Y),
the values of attributes F , G , P (defined in W), and it will share
the value of attribute E of the object referenced in w.P.

Z
x ,

• W ~w25lbS[c5ld5[fSlgS[I

~ Type W has been defined as: define type W refines (X,
; G: ...; P: proto ref Z;); end W;. That is, W refines X

and Y, and it extends Z.

4. Re la t ionsh ips
The object-oriented paradigm of modeling has been criti-

cized for lack of support for relationships and referential integrity
constraints [Rumb87]; we believe that these are very important
modeling elements that should be explicitly supported by an O-O
DBMS. In this section we propose mechanisms that would allow
the user to define binary relationships as well as relationships of
degree three or more.

Assume types X and Y (not necessarily distinct), and attri-
butes X.a and Y.b (not necessarily distinct). When X.a and Y.b
are defined to be references to instances of Y and X, respectively,
and inverse of each other, a binary relationship is established
between instances of these two types for which PEGASUS actively
enforces the following cross-referential integrity constraint:

for every X object x, the value of x.a is either null or a
reference to_an object y whose y.b value is x, and
for every Y object y, the value of y.b is either null or a
reference to an object x whose x.a value is y.

The attributes through which two objects participate in a relation-
ship are indicated in the type definition by matching inverseof
clauses. The mapping cardinality of a relationship, which
expresses how many instances of one type can be associated with
how many instances of another type, is simply determined by the
number of references that each inverseof attribute can accept as
values.

Here are some examples. The worksFor and emps attribute
definitions of Figure 1 establish a many-one relationship from
Employee to Department objects and the following constraint is

enforced: for every Employee e, Department d, the value of
e.worksFor is d, if and only if e is a member of d.emps.
PEGASUS el'lSttres that the emps attribute of a department is
updated properly whenever the worksFor attribute of an employee
is updated, or an employee is fired or hired. If employees were
working in many departments, worksFor would have to be
defined as 'worksFor: {ref Department} inverseof emps' which
establishes a many-many relationship between Employee and
Department objects. Similarly, a one-one relationship can be
established if both of the lnverseof attributes have been defined to
have single reference values. For instance, assume that at most
two employees may be assigned the same office. The attribute
definition 'officemate: ref Employee inverseof officemate' in
Employee type defines a one-one relationship between Employee
instances, and the following constraint is enforced: for every
Employee objects e 1 and e2, the value of e 1.officemate is e2 if
and only if the value of e 2.officemate is e 1.

Binary relationships can be defined for individual objects
only. Consider the schema of Figure 1. Suppose we want to
enforce cross-referential constraints for members of Emps2 and
Depts2 only, and not for any instance of Employee and Depart-
ment. Then, we should not had included the inverseof clauses
with the types. Instead, we can define this relationship for
members of the above sets only, as follows:

iavn-seof Emps2.worksFor, Depts2.emps

This means that for every e in Emps2, d in Depts2, the value of
e.worksFor is d if and only if e is in d.emps. An employee in
Emps2 can no longer work for a department in Deptsl, and a
department in Depts2 can no longer have employees that are in
Empsl.

Relationship Types

The relationships we discussed above do not introduce
new database objects and do not, in any way, change the structure
of the participating objects; they are binary relationships only and
have no attributes associated with the relationship itself. How-
ever, relationships of degree higher than two may have to be
defined. A ternary (or n-ary, in general) relationship can be bro-
ken down into three (or more, respectively) binary relationships.
It is well known, however, that in general the set of the resulting
binary relationships is not always equivalent to the original n-ary
relationship (see a database textbook, e.g., [Elma89], page 58.) In
addition, and regardless of the degree of the relationship, one may
want to associate some attributes with the relationship to describe
how two or more objects are related to each other. Such situations
can be modeled in PEGASUS through relationship types; instances
of relationship types are called relationship instances or relation-
ship objects.

A relationship type R of degree n, n>2, will have n
inverseof attributes, each defined as a single reference to an
instance of the participant types, and zero or more attributes that
provide additional information about R. Relationship objects
represent relationships among existing database objects; thus,
their inverseof attributes can not have null references.

As an example, assume that employees are assigned by
different departments to work on a number of different projects
and different departments may assign employees to work on the
same project. We are interested in knowing the number of hours
that each employee works on a given project and the department
that assigned this job. Figure 5a shows how this ternary relation-
ship can be established by the definition of the Assignment rela-
tionship type (the mode clause appearing in Employee is
explained shortly). Each 4-tuple Assignment object (e, d ,p , h)
implies that an employee e has been assigned by department d to
work on project p for h hours per week. The matching attribute

231

define relationship Assignment: (
employee: ref Employee inverseof worksOn;
department: ref Department inverseof assignments;
project: ref Project inverseof assignments;
hours: intl;

); end Assignment;

define type Employee: (
worksOn: {refAssignment} inverseof employee mode (r);
coordinates: { ref Project} inverseof leader,
ssn: int4; name: char[20]; salary: int4;

); end Employee;

define type Department: (
ass*gnments: { ref Assignment} inverseof department;
name: char[20]; manager: ref Employee;

); end Department;

define type Project: (
f l ame-"

leader:.
startDate:
assignments:

); end Project;

char[30];
ref Employee invecseof ooordinates;
Date;
{ ref Assignment} inverseof project mode (r);

(a)

Employee] worksOn (m) _ ~ assignments (m) employee'l V department'l I~P~mment I

assignments (m)]project - l

leader (1)
coordinates'* (m) I P'Jact I

(b)
~ (a) A database schema (b) Object-Relationship di-

the schema defined in (a); only inverse, of attributes are
shown. Rectangles represent ordinary types and diamonds
represent relationship types.

pairs (Employee.worksOn, Assignment.employee),
(Department.assignments, Assignment.deparnnent), and
(Project.assignments, Assignment.project) collectively specify the
following:

For every Employee e , Department d , Project p , Assignment a ,
a is a member of e.worksOn and d.assignments and
p .assignments if and only if the value of a .employee is e and the
value of a .deparlrnent is d and the value of a .project is p .

In addition, instances of types Employee and Project participate
in a binary relationship through their coordinates and leader attri-
butes, respectively. The diagram of Figure 5b, similar to Entity-
Relationship diagram, captures all the relationships between the
above objects. The numbers inside the parenthesis attached to
some attributes designate the mapping cardinalities of the rela-
tionships, hiverseof attributes of a relationship are always single
references and thus no number is attached to them.

The mode clause specifies whether application programs
are permitted to read, write or initialize an lnverseof attribute
value (this is identical to the allows clause of [Onto87]). If no

mode is specified all operations are permitted. The system can
always update an lnverseof a~ibute to compensate other actions
performed by users. The schema of Figure 5 specifies that no
user can update the worksFor attribute of an Employee object e,
and the assignments attributes of a Project object p . These attri-
butes will be updated by the system only when an assignment
object that relates e or p is deleted, created or modified.

Roles

Objects may participate in a relationship in different roles.
We illustrate roles with the help of an example that models the
mother-father-child relationship among persons, shown in Figure
6. The different roles that an object may play in a relationship are
indicated by the attribute names through which the object partici-
pates in the relationship. Attribute asParent of Person has been
defined as lnverseof (mother, father) whickis-intecpreted as-being
the inverse of mother or father. That is, for every Person object
p , MFC object r , r is in p .asParent if and only if the value of
r .mother is p or the value of r .father is p . Thus, a Person object
may participate in a MFC relationship either as a child or as a
parent, and furthermore a Person object that plays the role of a
parent may play the role either of a mother or a father. MFC is a
many-one relationship from (Person (as mother), Person (as
father)) to Person (as child).

deline type Person: (
asParent: {ref MFC} inverseof (mother, father);
asChild: ref MFC inverseof child;

); end Person;

deltne relationship MFC: (
mother: ref Person inverseof asParent;
father, ref Person inverseof asParent;
child: ref Person inverseof asChild;

); end MFC;

Person

asperent (m)
mother'*, father'*

asChild (I)
child -t

The ternary MFC (Mother-Father-Child) relationship
on objects.

The reader may wonder why we did not define in type Per-
son three attributes (asMother, asFather, and asChild) each indi-
caring the very distinct roles that a person may play in MFC rela-
tionship. Certainly, for this particular example, we could. We
have chosen the approach shown in Figure 6 just to show how
object relationships can be modeled when the roles that objects
may play in the relationship can not be distinguished in a mean-
ingful way. This is the case of all relationships that are sym-
metric. Consider the case of a relationship R (part1, part2) which
represents connections between two parts. If p l is connected to
p2, then p2 is connected to p l . What would be the meaning of
saying that p l plays the role of part1 and p2 plays the role of
part2 (or vice versa)? We are simply interested in whether p l and
p2 participate in the relationship; their role is unimportant. Thus,
a type definition for parts would include an attribute of type '{ref
R} lnverseof (pard, part2)' simply to indicate the participation of
a part in R and not its particular role.

232

Semantics of Update Operations
So far, we have assumed that lnverseof attributes are not

arrays. The reason is that arrays imply an ordering among its ele-
ments that only the application knows. For example, when a
reverse reference which happens to be the i-th element of an
array a has to be deleted, the system could not know whether to
set a[i] to null or shrink the array. Similarly, the system could
not know where in the array a reverse reference should be
inserted. For these reasons lnverseof a r ray attributes are permit-
ted only if the matching inverseof attribute is not an array and its
mode is read-only. In that case, the user manipulates the array
and the system updates the matching attribute.

Deleting (or creating) an object x will require a participant
object y to update the value of its attribute a through which it
supposed to reference x. The functions used by PEGASUS to anset
and set a reference ofy.a to x work as follows:

unsetReverseRef (y ,a ,x)
ff y.a is a set of references then delete x from this set, else
(i.e., y.a is defined as a single reference) set the value of y.a
to null.

setReverseRef (y , a ,x)
if y.a is a set of references then insert x into this set, else (i.e.,
y.a is defined to be a single reference) set the value ofy.a to
X

Below are the steps followed by PEGASUS when objects participat-
ing in relationships are delete from the database.

D1. Delete a relationship object r .
For each object p referenced by one of r ' s inverseof attri-
butes, unsetReverseRef (p, a, r) where a is the matching
inverseof attribute of p . Then, delete r itself from the
database.

D2. Delete a non-relationship object p .
For each object y referenced by an lnverseof attribute of
p , if y is a relationship object then delete y as in D1, else
unsetReverseRef (y, a ,p), where a is the matching inver-
seof attribute of y. Then, delete p itself from the database

As an example, consider the schema of Figure 5; when a a project
p is deleted, the following actions are taken by PEGASUS:

for each Assignment object a referenced i n p .assignments {
delete a from a .department.assignments
delete a from a .employee.worksOn
delete a itself from the database }

deletep f romp .leader.coordinates,
delete p itself from the database.

Symmetric actions are taken when objects participating in rela-
tionships are inserted in the database or they are being updated;
see [Bili89a].

Discussion

-Perhaps, an interesting question is whether the introduction
of relationship objects is necessary, e.g., can w e model the
Assignment relationship type shown in Figure 5 as any other (not
relationship) type that includes exactly the same inverseof
clauses? There are many reasons why we believe relationships
should be treated in a different way. Below we summarize the
differences between ordinary and relationship objects. First,
while the value of an inverseof attribute of an object might be
null, the value of an inverseof attribute of a relationship object
can not. Second, the inverseof attributes of a relationship type
should be defined as single references (not sets or arrays) to
objects of the participant types. Although, there is nothing funda-
mentally wrong in having set lnverseof attributes in a relationship
object, the strategies that should be employed to enforce cross-
referential constraints will be significantly more complex than

those we have described in previous sections. Third, and perhaps
most important, is the issue of update semantics. When a rela-
tionship object is deleted, the participant objects are updated (not
deleted). On the other hand, when a participant object is deleted
all the relationship objects in which it participates are deleted too.
This can not be modeled with some kind of exclusive rer or
dependent ref or both (i.e., own ref), each for obvious reasons.

Note that user defined constraints can not be used to
enforce eross-referential integrity constraints between participant
objects. Constraints defined by users are passively enforced by
the system, i.e., an operation that violates such a constraint is sim-
ply rejected. Cross-referential integrity constraints are actively
enforced by the system, i.e., when such a constraint is going to be
violated the system performs certain additional compensating
operations in order to satisfy the constraint. Other proposals to
handle cross-referential constraints include the use of rules in an
active database system [Daya88], and exceptions [Onto87].
Although, there is no question that these mechanisms are valuable
in a database system for advanced applications, the use of these
general (and complex) mechanisms to implement such fundamen-
tal and frequently used modeling construct/s questionable.

Finally, we note that relationship objects and ordinary
objects are distinguished only at the data definition level. The
language for queries and updates may treat both kinds of objects
exactly the same way.

5. Replication
The presence of relationship objects requires that access

from one participant object to another be done through the rela-
tionship object. This might be awkward in expressing queries and
it incurs performance penalties when the participant objects are
accessed frequently from each other. Let us take as an example
the schema of Figure 5. To lind the names of all employees to
whom a particular department d has assigned a job, we should
retrieve for each a in d.assignments, a.employee.name. This
might involve two disk accesses for each a in d .assignments; one
to retrieve a itself, and then one more to retrieve a .employee. If
the employees working for a department are accessed frequently,
this performance penalty may be unacceptable.

For the above reasons, PEGASUS provides a mechanism to
replicate attribute values of objects of one participant type and
place the replica with objects of another participant type. Attri-
butes holding replicated values can not be updated by the user,
i.e., they are read-only attributes. The following definition makes
each instance d of the Department type, shown in Figure 5, to
hold in d.emps the value of a.employee of each a in
d .assignments:

ddine type Deparlment: (
asslgran~ats: { ref Assignmem} in verseof departme~nt;
crops: replicates assignments (employee);

); end '~ar lment ;

The overhead associated with keeping consistent replicated
values in objects participating in a relationship is minimal. In the
above example, d.assignments is inverseof a .department; thus,
when a is updated we know precisely the object d (it is the value
of a .deparlment) whose emps attribute has to be updated. Simi-
larly, when a new Assignment object a is inserted in the data-
base, we simply insert a .employee in a .department.emps. When
a is deleted we simply remove a.employee from
a .department.emps.

The above example is a special ease of the replicates
clause. In general, an attribute may be defined to replicate the
values of more than one attribute of a participant object (provided
all attribute values are of the same type). In the following we

233

present the general form of a replicates elausse and subsequently
we provide an example.

Assume the following X and Y types:

typeX
has attributes A = (at, a ~ • • - , a t , at+x, • • • am), with
al, a2, " " , a k : r e f Y lnve r seo fb ;

type Y
b: {ref X } lnverseof (a 1, a2, "" ", a~);
c : replicates b A 1;
d: replicates b (A1 lnverseof I1, A2 lnverseof I2, ...);

Where A1, A2 are subsets of A, and I1, I2 are subsets of
(al, a2, " " ,ok). The attribute definitions Y.c and Y.d imply the
following, for every instance y of type Y:

Y.c : y.c replicates each x.A 1 value of every x in y .b .

Y.d: y .d replicates all x .A1 values if at least one of x .I1 values
is y , and all x .A2 values if at least one of x 222 values is y ,
and so on and so forth.

Or equivalently, for every instance x of X:

Y.c: each x.4 1 value is replicated in x.a x.c, and x.az .c , "" • ,
and x.at .c.

Y.d: each x.A 1 attribute value is replicated in x.a~ .d (for all at
in I1), and each x.A 2 attribute value is replicated in x .a j .d
(for all aj in I2), and so on and so forth.

As an example, we take the Person type that is shown in Figure 6,
and we redefine it so that it includes some replicated values from
MFC relationship. The new Person type is shown in Figure 7.

define type Person: (
asPareat: { ref MFC } inverseof (mother, father);
asChild: ref MFC Inverseof child;
kids: replicates asParent (child);
panmts: rep!!r~to~ asChild (mother, father);
hasKidsWith:

replicates asParent
(mother inverseof father, father inverseof mother);

); end Person;

~ Possible replication of attribute values of MFC objects
objects.

Assume a Person object p . p akids holds references to all children
of p ; p .parents replicates p .asChild.mother and p .asChild.father
Finally, p .hasKidsWith replicates from each MFC object m in
p .asParent, the m .mother value if re.father is p , and the m .father
value if m.mother is p . Note that if we had defined hasKidsWith
as ' repl icates asParent (mother, father)' we would have different
results because p would have been included in p ahasKidsWith.
In other words, when a MFC object m is inserted in the database
the following actions are taken:

1. insert m. child in m .mother.kids and ra .father.kids

2. insert re.mother and m .father in re.child.parents

3. insert m .mother in rn .father3aasKidsWith, and m .father in
m .mother.hasKidsWith.

Replication, as we described it this section, is performed through
attributes that define a direct relationship between two object, i.e.,
the objects are directly crossed-referenced through these attri-
butes. If this constraint is not satisfied we have no way of know-
ing the objects that have copies of an attribute value of another
object, unless reverse indices are maintained by the system.
[Maie86b] and very recently [Shek89] describe the design of such
reverse indices in the Gemstone and EXODUS system, respec-
tively.

6. M e c h a n i c a l C A D O b j e c t s , E x a m p l e _

In this section we present an outline of how generic
objects, version objects, and their component occurrences can be
represented in modeling mechanical design objects that represent
parts (hereafter referred to as designs, design parts or simply
parts) 7- . The following assumptions are made about the problem.
A part may be simple (non-composite) or it may have two or
more component parts which in turn may be simple or composite.
A design part may be a component in many higher level designs
(e.g., i t 's a library component). Each design has many versions
each being a version of a single design. Parts can be connected to
each other at some specific points that we call handles. We
assume that each handle is a hole and that to connect two parts we
usse a bolt to tighten them together, a nut, and a lock washer that
prevents nuts from becoming loose under vibration.

Generic and version objects are treated-as-any-other-ordi-
nary object and as such they are of a given type. The properties
of a generic object g represent the common characteristics of all
versions of g . They can be though of as forming the interface of
g ' s versions. Version properties represent deviations in the
defined characteristics of g . Although, determination of generic
and version properties is application specific we can say that, in
general, the latter are those properties that do not change the
form, fit, and function of the (generic) design object (i.e., all ver-
sions of a design are interchangeable within a higher level assem-
bly).

A component occurrence c of a (generic or version) design
object x indicates a particular usage of x in another more com-
plex object; it is distinct from other component occurrences of x,
and each shares the same x properties. For example, assume that
a designer of a bike makes use of two already designed wheels for
her design; each of the two wheels that are components of bike
corresponds to two different component occurrences of the same
wheel design. Each component occurrence describes how the
component object participates in the composite object; it may
have such attributes as a name (e.g., front wheel), and a transfor-
marion matrix that describes where the component is located rela-
tive to the composite object.

Figure 8 shows the type Part of generic part objects, and
the type PartVersion of their versions. We have chosen the attri-
butes of a generic part object g to be the name and a description
of g , an array of handles showing how g can be connected to
other parts, and a drawing that provides a sketchy picture of the
part and its handles. Attribute occurrences holds all occurrences
of g in other more complex parts that use g . Each Part object
also holds a set of references to its versions.

A PartVersion object v shares the attribute values of its
generic object referenced in v .generic, except for the occurrences
attribute which has been defined in PartVersion too. Thus, if v is
a version of g , v .occurrences will give us the composite parts that
explicitly use v , while the same operation applied on g will give
us those objects that use g in a generic way. A version v may
have its own sketchy drawing or it may share the one specified in
v .generic. In addition, each version v includes a version id, vari-
ous drawings and a set of references to the part occurrences of the
parts being used in v ; for a non composite part version the sub-
parts attribute value will be the empty set. Attributes of type
Image have been defined as dependent ref; this is because we
may want to permit two or more different parts to have the same
appearance for certain kinds of drawings, e.g, two parts whose
only difference is the material from which they are made.

2 We would like to emphasize that in this example we
model design objects that represent some physical parts; we
do not model physical parts.

234

define type Part: (
versions: {own ref PartVersion } inverseof generic;
name: char[20];
description: char[];
handle: array[J of Handle;
drawing: dependent ref Image;
occurrences: { ref PartOceurrence }

inverseof occurrenceOf mode (r);
); end Part;

define type PartOccurrence: (
occurrenceOf: proto ref Part local (nanae) inverseof occurrences;
orientation: Orientation;
partOf: ref PartVersion inverseof subparts mode (r);
configurations: { ref Configuration } inverseof (pl, p2);
connectedWith: replicates configurations

(pl inverseof p2, p2 inverseof pl);
); end PartOccurrence;

define type.PartVersion: (
generic: proto ref Part local (drawing) inverseof versions;
occurrences: { ref PartOccurrence } In verseof occurrenceOf;
rid: int4;
detaiIDmg, assemblyDrng, explodcdDrng: dependent reflmage;
subparts: {own ref PartOccurrence} inverseof partOf;

); end PartVersion;

define relationship Configuration: (
p I: ref PartOccurrence inverseof configurations;
p2: ref PartOccurrencc inverseof configurations;
h 1, h2: int4;
bolt: ref Bolt;
nut: ref Nut;
lkWasher, ref l.kWasher,

); end Configuration;

Figure 8. Type definitions of generic design parts (Part), their
versions (PartVersion), and their component occurrences m more
complex parts (PartOccurrence). The Configuration relationship
indicates how two part occurrences are connected together in a
higher level design.

Figure 8 shows also the type definition of PartOccurrence
as an extension of Part. Each component occurrence c shares the
properties of the design referenced in c .occurrenceOf. The proto-
type of c may be a generic object (an instance of Part), or a ver-
sion object (an instance of PartVersion). A component
occurrence c may set its own name, or otherwise the name of
c .occurrenceOf will be used. Attribute c .partOf references the
design version in which c is being used and c .orientation pro-
vides the orientation of c relative to the complex object.
c.configurations references all Configuration relationships (dis-
cussed shortly) that describe how c is connected with other com-
ponent occurrences, and c.connectedWith replicates from
c .configurations these other component occurrences that c is con-
nected with. Note that no operations defined for Part or PartVer-
sion objects need to be redefined in this type. For example, a pro-
gram that draws a Part or PartVersion object can be applied on c.
The only difference is that the name of c will-appear-on the
screen instead of the name of c .occurronceOf, and the design will
appear the way specified in c .orientation. From the user point of
view a component occurrence is seen as a copy of the component
part.

Instances of type Configuration are binary relationship
objects between two part occurrences, p l and p2, that are con-
nected together in a higher level part. Each such relationship also
describes which handles are being used for the connection (hi
and h2 axe indices of the handle array of p l and p2), and the kinds
of bolts, nuts and lock washers. Figure 9 summarizes the rela-
tionships defined in our schema.

Part generic (1)
versions "~ (m)

occurrenceOf (1)] occurrences -1 (m)

I
I u "on I- io ou oL Ve,

• Figure 9. Relationships in which design objects participate.

As an example, Figure 10 shows the subcomponents of
object o l l which is a version of o10; o l l uses the object 03, a
version of part ol , and it uses twice part 04 in a generic way, i.e.,
no decision has been made yet as to which versions of 04 will be
finally used. Note that when design version o l l is deleted from
the database, so are the part occurrences 07, 08 and 09, of other
parts used in this design (because o l 1.subparts is an own ref attri-
bute). However, the actual parts of the just deleted part
occurrences, i.e., 04 and 03, remain intact.

o10 o4 oi

- I

o12 o l l ~ 3 02

rt
ion

legend: a ~ n ~ []
PanVersien PartOccurrence

instance instance instance

Figure I0. A PartVersion instance o11 (a version of the generic
object o10) and its components.

Additional information associated with generic and version
objects, such as derivation relationships, the status and creation
date of a version, ownership and access control, etc., are dis-
cussed in [Bili89b, Bili89c].

7. C o n c l u s i o n s

In this paper we have presented a preliminary design of the
PEGASUS data model. The target is to support the complex rela-
tionships among design objects in a Computer Aided Design
environment. After a brief review of the EXTRA data model that
PEGASUS is based upon, we presented the two kinds of subtyping
(refinement and extension) and we have shown that these
mechanisms can co-exists in a database system. Then, we intro-
duced relationship types as a modeling construct to capture the
relationships of any degree among objects. Automatic enforce-
ment of eross-referential integrity constraints among objects par-
ticipating in a relationship, whenever applications specify to be

235

enforced, is very useful for such complex applications as CAD.
Finally, we presented replication of attribute values between
objects participating in a relationship, and we have shown that the
expected performance penalty because of replication is minimal.
In general, a key factor whether relationships or replication
should be used is the importance of referential integrity (for rela-
tionships) and the relative fTequency of retrievals over updates
(for replication).

We presented an example that shows how applications
may use the modeling elements provided in PEGASUS to handle
mechanical CAD objects. In our solution it is not required to have
some kinds of built-in structures to represent generic and version
design objects as well as their component occurrences in higher
level designs. Instead, these kinds of objects are treated as any
other object and as such the user has to define their types. The
reader should be aware that the definitions of Figure 8 are not
necessarily the most appropriate for all kinds of CAD systenas.
This is exactly our point; it is impossible to define properties for
genetic and version objects that are appropriate for all kinds of
CAD applications. Thus, users working on different applications
are allowed to express their own way of seeing their design
objects.

Acknowledgments. Thanks are due to the other members of the
PEGASUS project who contributed to ideas expressed in this paper:
S. Braoudakis, R. Definer, H. Sinha, and H. Zhao. I am also
grateful to Jack Orensrein who suggested many improvements to
earlier versions of this paper.

References

[Bane87] Banerjee, J., Cliou H., Garza J. F., Kim W., Woelk D.,
Ballou N., and Kim H., "Data Model Issues for Object-
Oriented Applications," ACM Trans. on Office Inf. Systems,
Vol. 5, No. 1, January 1987, pp. 3-26.

[Bato8S] Batory, D. S., and Kim, W., "Modeling Concepts for
VLSI CAD Objects," ACM Trans. on Database Systems, Vol.
10, No. 3, Sept. 1985, pp. 322-346.

[Beec88] Beech, D., and Mabbod B., "Generalized Version Con-
trol in an Object Oriented Database," Proc. IEEE Conf. on
Data Engineering, February 1988, pp. 14-22.

[Bili89a] Biliris, A., '~Management of Objects in Engineering
Design Applications, BU, Comp. Sc., TR 89-005, April 1989.

[Bili89b] Biliris, A., "Database Support for Evolving Design
Objects," ACM, IEEE 26th Design Automation Conference,
Las Vegas, Nevada, June 1989, pp. 258-263.

[Bili89c] Biliris, A., "A Data Model for Engineering Design
Objects," ACM, IEEE 2nd Int. Conf. on Data and Knoweledge
Systems for Manufacturing and Engineering, Gaithersburg,
Maryland, october 1989, pp. 49-58.

[Card85] Cardelli, A., and P. Wegner, "On Understanding
Types, Data Abstraction, and Polymorphism," ACM, Comput-
ing Surveys, Vol. 1, No. 4, Dec. 1985, pp. 471-522.

[Care88] Carey, M.J., DeWitt, D.J. and S.L. Vandenberg, "A
Data Model and Query Language for EXODUS," ACM SIG-
MOD Int. Conf. on Management of Data, Chicago, June 1988,
pp. 413-423.

[Daya88] Dayal' U., A. P. Buchmann, and D.R. McCarthy,
"Rules are Objects Too: A Knowledge Model for an Active,
Object-Oriented Database System," 2nd Int. Workshop on
Object-Oriented Database Systems, Springer-Verlag, LNCS
334, 1988, pp. 129-143.

[Ditt87] Dittrich, K., W. Gotthard, and P. C. Lockemann,
"DAMOCLES - the Database System for the UNIBASE
Software Engineering Environment," IEEE, Data Engineering,
Vol. 10, No 1, March 1987, pp. 37-47.

[l)ltt88] Dittrich, K. R., and Lode, R., "Version Support for
Engineering Database Systems," IEEE Trans. on Software
Engineering, Vol. 14, No. 4, April 1988, pp. 429-437.

[Elma89] Elmasri, R., and S.B. Navathe, Fundamentals of Data-
base Systems, The Benjamin/Cummings Publishing Company,
Inc., Redwood City, California, 1989.

[Hard88] Hardwick, M., and D.L. Spponer, "Rose: An Object-
Oriented Database System for Interactive Computer Graphics
Applications," 2nd Int. Workshop on Object-Oriented Data-
base Systems, Springer-Verlag, LNCS 334, 1988, pp. 340-345.

[Katz87] Katz, R. H., and Chang E., "Managing Changes in a
Computer-Aided Database," Proc. Int. Conf. on Very Large
Databases, Brighton, England, 1987, pp. 455-462.

[Khos86] Koshafian, S. N., and Copeland, G. P., "Object Iden-
tity," Proc. ACM, Object Oriented Programming Systems
Languages and Applications, September 1986, pp. 406-416.

[Kemp87] Kemper, A., P.C. Lockemann, and M. Wallrath, "An
Object-Oriented Database System for Engineering Applica-
tions," ACM SIGMOD, Int. Conf. on Management of Data,
San Francisco, May 1987, pp. 299-310.-

[Klm87] Kim, W., Banerjee J., Chou H., Garza J., and Woelk D.,
"Composite Object Support in an Object-Oriented Database
System," Proc. ACM, OOPSLA, October 1987, pp. 118-125.

[Kim89] Object-Oriented Concepts, Applications and Databases,
W. Kim and F. Lochovsky, Eds., Addison-Wesley, New York,
NY, 1989.

[Lleb86] Lieberman, H., "Using Prototypical Objects to Imple-
ment Shared Behavior in Object Oriented Systems," Proc.
ACM, OOPSLA, September 1986, pp. 214-223.

[Lori83] Lorie, R., and Plouffe, W., "Complex Objects and Their
Use in Design Transactions," IEEE, Database Week -
Engineering Design Applications, 1983, pp.l15-121.

[Male86a] Maier, D, Stein J., Otis A., and Purdy A., "Develop-
ment of an Object Oriented DBMS," ACM, Proc. OOPSLA,
September 1986, pp. 472-482.

[Male86b] Maler, D., and Stein J., "Indexing in Object-Oriented
DBMS," ACM, IEEE Proc. Int. Workshop on Object-Oriented
Database Systems, September 1986, pp 171-182.

[Male89] Maier, D., "Making Database Systems Fast Enough for
CAD Applications," in Object-Oriented Concepts, Applica-
tions and Databases, W. Kirn and F. Loehovsky, Eds.,
Addison-Wesley, New York, 1989. Also, oregon Graduate
Center, TR CS/E-87-016.

[Nara88] Narayanaswamy, K., and Rao, K. V., "An Incremental
Mechanism for Schema Evolution in Engineering Domains,"
Proc. IEEE 4th Data Engineering Conference, February 1988,
pp. 294-301.

[Onto87] Ontologic, Vbase, Integrated Object System, Technical
Notes, Billerica+ MA, 1987.

[Rowe87] Rowe, L, and Stonbraker M., "The POSTGRES Data
Model," Proc. Int. Conference on Very Large Data Bases,
England, 1987, pp. 83-96

[Rumb87] Rumbaugh, J., "Relations as Semantic Constructs in
an Object-Oriented Language," Proc. ACM, OOPSLA,
October 1987, pp. 466-481.

[Shei019] Shekita, E.J., and M.J. Carey, "Performance Enhance-
ment Through Replication in an Object-oriented DBMS,"
ACM SIGMOD, Int. Conf. on the Management of Data, Port-
land, Oregon, June 1989, pp. 325-336.

[Unga87] Ungar, D., and Smith B., "Self: The Power of Simpli-
city," Proc. ACM, OOPSLA, october 1987, pp. 227-242.

[Wllk89] Wilkes, W., P. Klahold, and O. Schlageter, "Complex
and Composite Objects in CAD/CAM Databases," Proc. IEEE,
Int. Conf. on Data Engineering, February 1989, pp. 443-450.

[Zdon86] Zdonik, S.B., "Version Management in an Object-
Oriented Database," Proc. IFIP, Int. Workshop On Adv. Progr.
Environments, 1986, pp. 397-416.

236

