
Object Evolution and Versioning in an Object-Centered Data Model

Huibin Zhao Alexandros Biliris�

Computer Science Dept., Boston University AT&T Bell Laboratories

Boston, MA 02215 Murray Hill, NJ 07974

zhaohb@cs.bu.edu biliris@research.att.com

1 Introduction

Entities in engineering design databases evolve in
both their structure and behavior due to the itera-
tive and exploratory nature of engineering design pro-
cess. Changes to design entities need to be versioned
to document their evolution process and to represent
di�erent design alternatives and revisions.

Existing object-oriented data models do succeed in
modeling the complex structures and complicated re-
lationships of design entities. However, they show
weakness in modeling the dynamic aspects of design
objects: instances that represent design entities are
permanently bound to their instantiating class, from
which they inherit structure and behavior de�nitions.
Consequently, all instances of a class must have a uni-
form structure and behavior that can not be changed
on an object-by-object basis.

Our research investigates an alternative model,
called object-centered, to support exible object evo-
lution and versioning. This paper discusses the object
evolution and object versioning schemes of the object-
centered model. We show that the novel classi�cation
mechanism of the model based on a loose and tem-
porary binding between objects and classes not only
enables objects to evolve dynamically in both struc-
ture and behavior but also provides the basis for a
generalized object versioning scheme that can capture
the complete evolution process of versioned entities.

2 The Object-Centered Data Model

Objects in the model are de�ned as structural en-
tities that exist independently of any class. An object

is a pair o = (id; A) where id is the object identi�er

and A = f< ai : vi >j 1 � i � ng is a set of at-

tributes. Here ai denotes an attribute name and vi
denotes its value. Attribute values may be either of

�This work was done while the author was with the Boston

University.

type integer, real, boolean, string, or object identi-
�ers which are used to reference to other objects. Ob-
jects carry their own structural de�nition and they can
add or drop attributes or change their attribute values
from time to time.

Classes are de�ned as structural constraints en-
forced for instanceship instead of as structural tem-
plate of their instances. A class is a triple c =
(cn;AS;MS) where cn is the class name, AS = f<
ai : ti >j 1 � i � mg is a set of attribute speci�cations

and MS = f(mni; ti1� : : :� til ! ti) j 1 � i � ng is a
set of method speci�cations. Here ai and mni denote
the attribute and method name respectively, and ti,
ti1, : : : and til denote either system-de�ned primitive
types or user-de�ned class types. A class has a set of
objects called its instances associated with it and they
inherit all the operations (methods) of this class. The
set of attribute speci�cations c:AS of a class c de�nes
the instanceship condition for an object o to become
an instance of c: for every < a : t >2 c:AS, there
exists a < a : v >2 o:A such that value v has type t.

As instances of a class are allowed to have additional
attributes than those required by the class, classes can
be used to classify objects of heterogeneous structures.
An object can also be assigned to multiple classes con-
currently when it satis�es the instanceship conditions
of these classes. Such a capacity can be used to sup-
port multiple views of an entity observed from di�erent
perspectives. Moreover, the association between an
object and a class can be changed dynamically. It is
possible for an object to be assigned to a class and then
de-assigned (removed) from it sometime later. This
capability allows objects to dynamically change their
behaviors in their lifetime.

In sum, the class extent is a heterogeneous collec-
tion of objects. The loose and temporary binding be-
tween objects and classes enables objects to evolve
dynamically in both structure and behavior. How-
ever, by enforcing all instances to have a mandatory
set of attributes, a class still provides a uniform and
strongly-typed interface for its instances.

3 Object Evolution

If not controlled properly, dynamic evolution of ob-
jects may result in unexpected invalidationof instance-
ships of objects to classes that they previously be-
long to. Unexpected instanceship invalidation creates
a substantial di�culty for static type checking of ob-
jects. For this reason, the following object evolution

rules are guarantee to prevent typing problems during
the object evolution process.

Class Assignment Rule: If an object o belongs to
more than one class, then for any two classes c and
c0 that o belongs to, if min type(o; a; c) 6= nil or
min type(o; a; c0) 6= nil, then min type(o; a; c)
= min type(o; a; c0) must hold.

Here function min type(o; a; c) denotes the minimum
(most general) type that the value of attribute a of ob-
ject o has to obtain in order to preserve its instanceship
to class c, formally de�ned as

min type(o; a; c) =

�
t if <a : t>2c.AS
nil otherwise

This rule says that for all classes that an object belongs
to and require an attribute a, they must require the
same type for a. This rule assures that objects can be
updated independently of the classes they belong to
without a�ecting their instanceships to other classes.

Class De-Assignment Rule: For an object o and a
class c to which o belongs, if o is currently being
referenced by some other objects as an instance
of class c, then o cannot be de-assigned from c.

This rule ensures that the removal of an object's in-
stanceship will not a�ect the instanceship of its refer-
encing objects.

Attribute Deletion Rule: For an object o and an
attribute a, if there exists a class c such that
min type(o; a; c) 6= nil, then a cannot be deleted
from o.

This rule says that if an attribute of an object is still
required by some class to which the object belongs,
then the attribute cannot be dropped from the object.

Attribute Update Rule: For any new value v to be
assigned to an attribute a of an object o, if there
exists a class c such that min type(o; a; c) 6= nil,
then v must have type min type(o; a; c).

This rule says that all attribute values assigned to an
object must fall into the minimum types required by
the classes the object belongs to.

4 Object Versioning

Current version models use generic objects as an
abstraction to represent the version set of versioned
entities. Generic objects also support dynamic ver-

sion references used to dynamically con�gure complex
designs. However, the typing rules for dynamic ref-
erences require that a generic object must be bound
to some type T and all versions of the generic object
must be of type T or a subtype of T . As a result, ver-
sions of the generic object can only model incremental
changes of the versioned entity.

To overcome these modeling limitations of generic
objects, our model removes the association of a generic
object with some (user-de�ned) class and versions of
a generic object are allowed to belong to di�erent
classes. As a result, all forms of changes on object ver-
sions are allowed and the complete evolution process
of versioned entities can be captured by their versions.

For a dynamic reference Ro to a generic object o, a
selection condition c, where c speci�es a class (type),
can be speci�ed to restrain the versions to be selected
by the reference. Unlike the ordinary dynamic refer-
ence Ro that can later be resolved into a static ref-
erence to any version of o, the conditioned dynamic
reference Ro(c) can be resolved into a static reference
to only some version of o which is also an instance of
class c.

Conditioned dynamic references bring two advan-
tages. First, they can be used to select only qual-
i�ed component design versions with desirable be-
havior in the con�guration de�nition of complex de-
signs. For instance, assume that the V 6Engine
component design object has many design ver-
sions of di�erent types, such as GasolineEngine

or DieselEngine or ElectricEngine types. Then
for a TurboLexus complex design that must use a
DieselEngine type of engine, a conditioned dynamic
reference RV 6Engine(DieselEngine) can be made to
select only those versions of V 6Engine that are of
DieselEngine type. Second, in contrast to the or-
dinary dynamic reference Ro that cannot be statically
type-checked because it can be mapped to any version
of o which may belong to any type, the conditioned
dynamic reference Ro(c) is strongly-typed with type
c as it can only be mapped to a version of o which
belongs to type c. Therefore, the selection condition
in conditioned dynamic references supplements generic
objects with the typing information required for static
type-checking of dynamic references.

