An Efficient Database Storage Structure for Large Dynamic Objects

Alexandros Bilirist

Computer Science Department, Boston University
Boston, MA 02215
Email: biliris@cs.bu.edu

ABSTRACT

This paper presents storage structures and algorithms for the
efficient manipulation of general-purpose large unstructured
objects in a database system. The large object is stored in a
sequence of variable-size segments, each of which consists of a
large number of physically contiguous disk blocks. A tree struc-
ture indexes byte positions within the object. Disk space manage-
ment is based on the binary buddy system. The scheme supports
operations that replace, insert, delete bytes at arbitrary positions
within the object, and append bytes at the end of the object.

1. INTRODUCTION

The manipulation of large objects is becoming an increas-
ingly important issue of many so called unconventional database
applications such as geographical, image anaysis, computer-
aided design (VLSI, mechanical, software engineering), office
automation for document processing and publishing, and mul-
timedia presentation. The latter are perhaps the most noticeable
applications that demand efficient storage and retrieval of large
objectsin that they require displaying images, showing movies, or
playing digital sound recordings in real time [ACM91]. How-
ever, efficient manipulation of large objects is important in any
object-oriented and extended relational database management sys-
tem in supporting general-purpose advanced data modeling con-
structs such aslong lists or *‘insertable’” arrays.

From the perspective of a database storage system that
stores objects on pages, an object is small if it can fit entirely in a
single page; otherwise, the object islarge. Idealy, objects of vir-
tually unlimited size (within the bounds of the physical storage
available) have to be supported and stored in a way that minim-
izes internal fragmentation, i.e., the storage utilization should be
closeto 100%. To reduce the cost of creating alarge object in the
database, the cost of allocating (and symmetrically, deallocating)
a large number of disk blocks must be minimal; ideally, 1 disk
access regardless of the space size.

Since an object may indeed be very large, the following
operations dealing with part of the object must be provided and
efficiently implemented: reading and replacing a byte range
within the object, inserting bytes into or deleting bytes from a
specified offset from the beginning of the object, and finally
appending bytes at the end of the object. The last three operations
may force the object to grow or to shrink.

There are two reasons why such piece-wise operations on
large objects are important. First, there may be physical con-
straints that would make it impractical or even impossible to
build, retrieve or update a large object in one chunk, such as when
the address space of the program is smaller than the object size.
For instance, it would be unlikely (if not impossible) to create a
very large objects in one big step; a more realistic scenario is that
smaller (but sizable) chunks of bytes will be successively

1. This research has been partialy supported by the NSF grant CDA-
8920936.

appended at the end of the object. Second, applications using
large objects may want to access only a portion of a large object
at atime. For instance, to retrieve an object, one would rather
sequentially scan through the object in smaller portions, rather
than access the whole chunk in one step — think of playing digital
sound recordings, frame-to-frame accessing of a movie, etc.
Similarly for the insert and delete operations, in manipulating a
long list stored as a large object, elements may be removed from
or new ones inserted at any place within the list; in multimedia
applications, pictures may be annotated and movie spots may be
edited to remove or add frames.

The above suggest that both random and sequential access
should achieve good performance. Good random access implies
that the cost of locating a given byte within the object is indepen-
dent of the object size. This requirement by itself rules out solu-
tions based on chaining the pages in which the large object is
stored in a linear linked list fashion. Good sequential access
means that the 1/0O rates in accessing a large object (or a large
chunk of it) must be close to transfer rates. For this to happen,
disk seek delays must be minimized which in turn requires that
disk space is alocated in large units of physically adjacent disk
blocks, rather than on a block-by-block basis. Physical contiguity
is also advantageous in computing environments where objects
are moved between client and server machines [Ozsu91]. There
is some experimental evidence that it is very important to be able
to transfer large chunks of data thereby reducing data movement
overhead [DeWi9Q]. Lastly, regarding updates, small changes
should have small impact; e.g., inserting few bytes in the middle
of the object should not cause the entire object to be re-organized.

In this paper we present the design of the large object
manager of EOS?. EOS is a storage system for experimental data-
base implementation; it has also been used in teaching students
implementation techniques for database systems components.
The principle objectives of the EOS large object manager are
summarized in the following:

1. Support for objects of unlimited size (within the bounds of the
physical storage available).

2. Support for piece-wise operations: append bytes at the end,
read and replace a byte range, insert or delete bytes at arbitrary
positions within the object.

3. The cost of the above piece-wise operations must depend on
the number of bytes involved in the operation, rather than the
size of the entire object. In particular, we want to minimize
disk head seeks so that 1/0 rates are close to transfer rates.

4. Allocation of large physically contiguous disk space should be
fast; ideally, 1 disk access regardless of the size of the
requested space or the database size.

5. Storage utilization must be very close to 100%.

6. The large object must be protected from transaction and system
failures.

2 Experimental Object Sore. Also, the goddess of dawn in Greek
mythology.

Proceedings, IIEEE Data Engineering Conference, Phoenix, Arizona, February 1992, pp. 301-308. 1

Our disk space alocation policy is based on the binary
buddy system [Knut73]. Strangely enough, although this scheme
has been around for along time and has been successfully used in
file systems such as the Dartmouth Time Sharing System
[Koch87], it has been largely ignored by most designers of data-
base storage systems (with Starburst [Lehm89] being an excep-
tion). The buddy system performs fast allocation and deallocation
of disk segments that differ in sizes by severa orders of magni-
tude with minimal 1/0 and CPU cost. Previous work on the per-
formance of the buddy system confirms the above, but it also sug-
gests that this allocation policy is prone to severe internal frag-
mentation [Selt91]. Our design does not suffer from this problem
because the unused portion of an allocated segment is always less
than a page.

When alarge object is created it is stored in a sequence of
large variable-size segments, each consisting of physically con-
tiguous disk pages. Subsequently, when byte range deletes and
inserts are performed on the large object, its segments may have
to be broken up into smaller ones. Thus, the segments that
comprise the large object may have sizes that vary drastically. A
B-tree-like structure is built to index byte positions within the
object. The data structure is identical to the one proposed in
Exodus [Care86]. However, because the leaf nodes of the tree are
variable-size segments, the EOS agorithms for insert, delete and
append are significantly different than the corresponding algo-
rithms of Exodus.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews proposed solutions and argues that each of them
satisfies a few but not all of the objectives stated above. The
buddy system of EOS is discussed in Section 3. Section 4
presents the design of the large object manager. Finaly, Section
5 concludes our work.

2. RELATED WORK

Work on large objects started in the context of relational
systems. System R supported long fields with lengths up to 32
Kilobytes [Astr76]. The long field was implemented as a linear
linked list of small segments, each 255 bytes in length, with the
long field descriptor pointing to the head of the list. Partial reads
or updates were not supported. An extension of the above solu-
tion appears in [Hask82] where long fields were stored as a
sequence of 4K-byte pages with support for partial reading and
updating. The long field descriptor is an array of entries each con-
taining the address and length of each page. The maximum long
field was about 2 Gigabytes.

The Wisconsin Storage System (WiSS) stores large objects
in data segments called slices, [Chou85]. A directory to these
dlices is stored as a regular (small) record, and it may grow
approximately to the size of a page. It contains the address and
size of each dlice. Each dlice can be at most one page in length.
Thus, with 4K-byte pages, the directory can accommodate
approximately 400 dices, which gives an upper limit of 1.6
Megabytes to the object size. WiSS has been used as the storage
engine of O,, acommercia database product [Deux90].

The problems with the above schemes is the lack of sup-
port for unlimited size objects and the loss of sequentiality at the
disk level. Blocksthat store consecutive byte ranges of the object
are scattered over a disk volume. As aresult, reads will be slow
because virtually every disk page fetch will most likely result in a
disk seek.

Two other database storage systems that greatly influenced
our design, are Starburst [Lehm89] and Exodus [Care86].

The Starburst long field manager uses extent based alloca-
tion with extents being organized into a binary buddy system.
When the eventual size of along field is not known in advance,

successive segments allocated for storage double in size until the
maximum segment size is reached; then, a sequence of maximum
size segments is used until the entire long field is stored. When
the size of along field is known in advance, maximum size seg-
ments are used to hold the field. In either case, the last segment is
trimmed, i.e., its unused blocks at the right end are freed. The
long field descriptor contains the size of the first and last segment
and an array of pointersto all segments allocated to the long field;
the size of intermediate segments are implicitly given by the size
of the first segment and the known pattern of growth. The max-
imum field size that can be supported by this scheme depends on
the possible segment sizes; the current implementation supports
objects up to 1.5 gigabytes long [Lohm91].

Starburst does not gracefully handle byte inserts and
deletes on large objects in that these operations require all seg-
ments to the right of and including the segment on which the
update is performed to be copied into new segments. The appli-
cations this long field manager was intended for were large
mostly read-only objects and not general-purpose objects that
would need such length-changing updates.

Exodus handles large objects of unlimited size by storing
them on data pages that are indexed by a B-tree-like structure,
where the key is the maximum byte position stored in a leaf data
page. Thisisadynamic structure in that it can gracefully support
byte inserts and deletes. To improve the performance of reading
large chunks of bytes, clients can set the size of data pages of al
large objects within afile to be some fixed number of disk blocks.
However, this mechanism does not help applications that want to
simultaneously optimize both search time and storage utilization
because the size of the leaf page has diametrically different
effects on them. Large pages waste too much space at the end of
partially full pages (but offer good search time), and small pages
offer good storage utilization (but require doing many 1/O’s for
reads).

3. BUDDY SYSTEM

This section provides a brief overview of the design of the
buddy system of EOS. The buddy system manages a number of
large fixed-size disk sections of physically adjacent pages, called
buddy segment spaces (buddy spaces, for short). Segments are
variable-size sequences of physically adjacent disk pages taken
from one of the buddy spaces. Internally, segments are managed
asif their sizesis some integral power of 2; a segment of size 2t
pagesis said to be of typet. Each buddy space includes a 1-page
directory that consists of a count array and a page allocation map
(amap), see Figure 1. The count array indicates the number of
free segments of each possible segment type. If the maximum
segment type is k, this array contains k+1 entries, from 0 up to
and including k and the value of count[t] is the number of free
segments of type t, i.e, of size 2t pages. The alocation map
indicates the status (free or allocated) and the type of each seg-
ment in the buddy space. No control information is stored in seg-
ments such as linking free segments of the same type. The entire
process of alocating and deallocating segments is performed on
the directory page only.

< directory =< buddy segments —————————=

count, amap ‘ ‘ . ‘

buddy segment space

Figure 1. Organization of abuddy segment space.

With an encoding scheme, discussed in 3.1, each byte in
the map represents the status and type of at least 4 pages in the
buddy space. Since the directory is aways 1 page, the maximum

Proceedings, IEEE Data Engineering Conference, Phoenix, Arizona, February 1992, pp. 301-308. 2

buddy space size, as well as the maximum segment size within
the buddy space, depend on the page size. For a given page size
PS the maximum segment size is 2PS pages. As an example,
with 4K-byte disk pages, the maximum segment size that can be
supported is 213 pages (32 megabytes), with segment types from 0
through log,(2x4096) = 13. Thus, assuming 2-byte count entries,
the alocation map can be at most 4096-2x14 = 4068 bytes long;
this alows the support of buddy spaces of a most
4068%x4 = 16,272 pages (approximately, 63.5 megabytes). The
above numbers show upper limits of our design in terms of max-
imum segment and buddy space sizes. To maximize perfor-
mance, the buddy space size must be carefully matched to the
physical properties of the disk storage such as the number of
blocks per track.

3.1. The Allocation Map

The alocation map is a byte string; each byte B encodes
the status and size of a segment that starts at one of the 4 pages
4B - - - 4B+3. If the left most bit of B is 1, Figure 2.a, a segment
of size greater than or equal to 4 starts at page 4B; the next bit
indicates the status of the segment (O for free, 1 for allocated), and
the remaining 6 bits express the type of the segment. The scheme
can support segment sizes of up to 253 pages, more than what is
really needed. If the left most bit of B is 0, Figure 2.b, the status
of pages 4B - -+ 4B+3 is indicated individually by the last four
bits, one for each page. Finally, to indicate that pages
4B - - - 4B+3 are part of a segment that does not start at one of
these pages, dl hits of B are set to zero. The segment that
includes those 4 pages is described in the first nonzero byte on the
left of B.

<—— type(log,(size))

@[]t [[[[[|

- =

4B 4B+1 4B+2 4B+3
(b) \ 0 \ d \ d \ d ‘f/a‘f/a‘f/a‘f/a‘

Figure 2. Allocation map encoding scheme.

As an example, Figure 3 shows the first few bytes of the
alocation map. Byte 0 indicates that there is an alocated seg-
ment of size 26= 64 that starts at page 0; i.e., pages 0 through 63
are part of this segment. Byte 16 encodes individually the status
of pages 64 through 67; pages 64 and 67 are free while pages 65
and 66 are not. Byte 17 indicates a free segment of size 22= 4
that starts at page 68. Finaly, byte 18 encodes a free segment of
size 23= 8 that starts at page 72.

allocation map
E allocation map byte number

0 1 15 16 17 18
11000110 \ oooooooo\ . \oooooooo 0ddd0110 | 10000010 10000011\ .
E)..S 4.7 60..63 64..67 68..71 72..75

corresponding page

Figure 3. An example of the allocation map.

Segments of a given size can start only at pages whose
page number is divisible by the size of the segment. For example,
a segment of size 64 can start only at pages 0, 64, 128, 192, - - -,
etc. Suppose that a free segment of size n= 2! exists in the
buddy space (this can be determined by examining the value of
count[t]). In searching for this free segment, the buddy system

always starts by checking the status of segment S= 0. If S is of
size m#n, searching continues recursively at segment
S= S+max(n, m) until the desired segment is located. For
example, referring to Figure 3, assume that we want to locate a
free segment of size 8. We start at segment S = 0. The alocation
map (byte 0) indicates that segment O has 64 pages, not 8. We
proceed to check segment S= S+max(8,64) = 64 (byte 16 of the
map). Segment 64 is a 1-page segment and thus, we proceed to
check segment S= S+max(8,1) = 72 (byte 18 of the map). This
is afree segment of size 8, and the searching stops here. Thus, in
order to locate a free segment of a given size, there is no need to
check every single byte of the allocation map.

3.2. Allocation/Deallocation of Segments

To allocate a segment of size 2¢, if the value of count[t] is
greater than zero, the alocation map is scanned, as described
above, and the segment is located. Otherwise, we find smallest
type j such that j >t and count[j]>0. Then the amap is scanned
to locate a free segment of size 2/, which then is recursively split
in half until a segment of the desired sizeisfinally made up.

Conversely, on deallocation of a segment of size 2¢, the
allocation map is updated to reflect the change. 1n addition, how-
ever, the buddy of the just deallocated segment must be checked
for possible coalescing; otherwise, most segments would quickly
end up being decomposed into segments of type 0.

The buddy of a segment can easily be found by simply tak-
ing the exclusive OR of the segment address with its size. For
example, the buddy of segment 6,0 = 0110, of size 20 = 0010,
is segment 0110,©0010, = 0100, = 449. Symmetricaly, just as
the buddy of segment 6 of size 2 is 4, the buddy of segment 4 of
size 2 is 0100,0010, = 0110, = 64o. If both of these 2-page
buddies are free, they are merged into the larger free segment 4 of
size4.

Whereas segments are internally managed as if their
sizes are some integral power of 2, a client may request the allo-
cation of a segment of any size, and the request can be fulfilled
down to the precision of one block. Also, a client may selectively
free any portion of a previously allocated segment, not necessarily
the whole segment. The following example illustrates this point.

Assume a client requests the alocation of a segment of
size 11. The binary representation of the requested size
11,0 = 1011, indicates that this segment consists of three con-
tiguous segments of size 23, 21, and 2°. The buddy system first
finds a free segment of size 24, see Figure 4.a. Then, pages O, 8,
and 10 of this 16-page segment are marked as the start of alo-
cated segments of of size 23, 21, and 20, respectively. Similarly,
the binary representation of the number of the remaining
16-11 = 5y = 101, free pages indicates, in reverse order, the
proper size of the free segments: 2° and 22. This situation is dep-
icted in Figure 4.b.

Figure 4.c shows the page allocation status after the client
frees 7 pages starting from page 3. Now, suppose the client frees
page 10; this example demonstrates the iterative coalescing of
pages from the situation depicted in Figure 4.c to the one in Fig-
ure 4.d. The buddy of the segment 10 of size 1 is
1010,®0001, = 1011, = 11,9 which is also free and of size 1.
Thus, segments 10 and 11 are coalesced into the single segment
10 of size 2. The buddy of segment 10 of size 2 is
1010,©0010, = 1000, = 855 which is also free and of size 2;
segments 10 and 8 are coalesced to segment 8 of size 4. Findly,
segment 8 and its buddy 1000,®©0100, = 1100, = 12, each
free and of size 4, are merged into the single segment 8 of size 8.
Segment 8 of size 8 and its buddy O can not be merged because
the latter is not a free segment of size 8.

Proceedings, IIEEE Data Engineering Conference, Phoenix, Arizona, February 1992, pp. 301-308. 3

012 3 45 6 7 8 9 101112 13 14 15 ~ page

@ [T T [T T ITT [T T T [1 ,

f16 ~ segment status/size
(b) [T T 1]

a8 a2 al f1 f4
(© [T T T T T E [T T 1]

a2 al f1 f4 f2 al f1 f4

[T T T T T T I T T T[]

a2 al f1 f4 f2 f2 f4

e [[[[T T [T [T [T]

a2 al f1 f4 4 7

=== [[[I [[T T T T T 1]
a2 alflf4 f8

Figure 4. Allocation/deallocation of segments of any size.
3.3. Performance

The entire activity of allocating and deallocating segments
is carried out by examining the directory page only which,
depending on the page size, may control thousands of pages.
Pages in the segment space need not be touched. Thus, for data-
bases that can fit entirely in asingle buddy space, at most one disk
access is needed to serve block alocation (and deallocation)
requests, regardless of the segment size.

However, larger databases will have many buddy spaces
and thus, on a space allocation request it is possible that the direc-
tory block of each buddy space may have to be visited to locate a
segment of the desired size. To avoid this, we make use of a
superdirectory that contains the size of the largest free segment in
each buddy space currently in the database. On a segment alloca-
tion request, the buddy system inspects the superdirectory to elim-
inate unnecessary access to an individual buddy space directory,
if the maximum segment size in that space is less than the one
requested.

The superdirectory is a main memory structure created at
start-up time and subsequently maintained by the buddy space
manager. Initially, it indicates that each buddy space available in
the system contains a free segment of the maximum size possible.
This information may be erroneous. However, as buddy spaces
are visited for alocation or deallocation, their corresponding
directory is examined and the correct values start being placed in
the superdirectory. In other words, the first wrong guess about
the maximum segment size available in a particular buddy space
will correct the superdirectory information regarding this buddy
space. Findly, it isworth mentioning that the superdirectory does
not have to be transaction protected (otherwise, it would quickly
become a hot spot). It is enough to hold a short duration lock
(also called latch [Moha90]) on the superdirectory during a read
or update and release it right after this operation completes; i.e.,
the lock does not have to be held until the end of the transaction.

4. LARGE OBJECT MANAGEMENT

Large objects are stored as uninterpreted byte strings in a
sequence of variable-size segments which are taken from the
buddy system using the scheme described in the previous section.
There are no holes in each segment in that all of its pages must
get filled up except the last one which may be partialy full.
These segments are then pointed to by a ‘‘positiona’’ tree,
[CareB86], which is a B-tree-like structure in which the keys are
the positions of the object’s bytes within the segments. No con-
trol information is stored in the data segments since all informa-

tion needed to access them is kept in their parent index pages.
Figure 5 shows a few possible cases of how the structure may
look like depending on how the object is created and the kinds of
subsequent updates performed on it. (In Figure 5, we have made
the unrealistic assumption that pages are of size 100 bytes, just to
make calculations in our examples easier to follow.)

Each node N of the tree contains a sequence of (c[i], p[i])
pairs, one for each child of N, where p[i] is the page number of
the i -th child of N. The number of bytes stored in the subtree
rooted at p[i] isc[i]-c[i—1]. (Ordering of pairs starts with 0 and
by convention c[-1] = 0.) Thus, if thei-th pair of N isthe right-
most pair, c[i] gives the total number of bytes stored below N,
and with N being the root, this value provides the total object
size.

Each internal node of the tree, except the root, is stored in
a single page. As in B-trees, internal nodes are required to be
from half full to completely full of pairs. The root has at least two
pairs and, in general, can accommodate fewer pairs than internal
nodes. Although, EOS manages the internals of the large object
root, the placement of the root on a database page is left to the
client; e.g., the client may choose to place the root on a page
along with roots of other large objects, or in a field of a small
object to implement long fields3. Lastly, it should be obvious
from the nature of the structure that there are no constraints on the
size of the large object.

@

100J/ SOOJ/ 700 ‘/ 1500‘ 1820‘

(b)

\ 280 M 710 \ 800

(©

. full page partialy
Legend: = (100 bytes) £ full page

Figure5. Examples of large objects.

As an example, the size of all three objects of Figure 5 is
1820 bytes because this is the count value of the rightmost pair of
their root. The root of the object of Figure 5.a has a single pair
pointing to a leaf segment consisting of [1820/100] = 19 pages.

3 When alarge object is opened for updates, clients may pass a parameter
to EOS restricting the maximum size of the root to some given number of
bytes.

Proceedings, IEEE Data Engineering Conference, Phoenix, Arizona, February 1992, pp. 301-308. 4

The root of the object of Figure 5.c has two children. The left
child indexes the first 1020 bytes and the right child the next
1820-1020 = 800 bytes. The right child points to three segments.
The first segment contains the first 280 bytes of these 800 bytes,
the second the next 710-280= 430, and the third the remaining
800-710= 90 bytes.

4.1. Append/Create

The append operation appends a number of bytes at the
end of a (possibly zero size) large object. Since appends may be
applied on the object one after the other, the final size of the
object may or may not be known in advance. If the sizeisknown
apriori, it is provided as a hint to the large object manager who
allocates a segment just large enough to hold the entire object.
Then, each chunk of bytes is appended at the end of the previous
one with no holes in between them. Thisis shown in Figure 5.a.
If the object is larger than the maximum segment size, a sequence
of maximum size segments are allocated to hold the object.
When the eventual size of the object is not known in advance, we
follow the growth scheme used in [Lehm89]; successive segments
allocated for storage double in size until the maximum segment
size is reached. Then, a sequence of maximum size segments is
used until the entire object is stored. For example, the object
shown in Figure 5.b could had been created by successively
appending byte chunks of size lessthan a page.

At the end of these multi-append operations the last allo-
cated segment is always trimmed, i.e., its unused pages (if any) at
the right end are given back to the free space. Trimming a seg-
ment is trivial because the buddy system of EOS deas with
allocation/deallocation of segments of any size with a precision of
1 page.

4.2. Search/Replace

The search operation reads N bytes starting from byte B of
alarge object (byte 0 is the first byte of the object). Only minor
modifications need to be made to the agorithm proposed in
Exodus so that variable size leaf segments can be supported. The
algorithmis asfollows:

(1) Read theroot page and call it S.

(2) Save the address of S on the stack and binary search S to find
the smallest c[i] such that c[i]>B. Set B = B—c[i-1], and
S=pl[i]. If Sisnot leaf, read S and repeat this step.

(3) S is now a leaf segment. Byte B within S is in page
P = S+|B/PY at byte P, = BmodPS within P. If N isless
than the number of bytesin S after Py, read, in one step, all
pages from P up to S+|(B+N)/PS; the search operation is
now complete. If N is greater than the number of bytesin S
after Py, read P and all pages of S on theright of P; use the
stack to obtain the rest of the bytes.

Suppose we want to read 320 bytes starting from byte 1470 of the
object shown in Figure 5.c. To locate byte B = 1470, we find that
c[1] = 1820 is the smallest count of the root that is greater than
1470. Now we have to locate byte B = 1470-1020= 450 in the
child node pointed by p[1]. We repeat the same process in the
child; i.e., we find that c[1] = 710 is the smallest count greater
than 450, and thus, we set S= p[1], and B = 450-c[0] = 170.
Byte 170 is in page S+[170/100) = S+1, at byte 70 within that
page. We read pages S+1 through S+4 to retrieve the first
(c[1]—c[0])—(100+70) = 260 of the desired bytes. Then, the (logi-
cally) next segment needs to be retrieved for the remaining 60
bytes.

The cost of the above example operation, including indices
except the root, is the cost of 3 disk seeks plus the cost to transfer
6 pages. If we had to perform this operation on the object of Fig-

ure 5.a, we would have to read 5 pages within a single segment
and the cost of the operation would be 1 disk seek plus 5 page
transfers.

The search algorithm can aso be used for the byte range
replace operation to locate and modify a given byte range within
the large object.

4.3. Basic Insert/Delete Algorithms

This section presents the basic agorithms for the insert and
delete operations. The next section addresses potential problems
of these algorithms and proposes solutions. For a segment S, the
following notation is used:

S The number of byteskeptin S.
Sn Thenumber of bytesin the last page of S.

4.3.1. Insert

Theinsert algorithm inserts I bytes, taken from a buffer I,
into a large object starting at byte B from the beginning of the
object. Referring to Figure 6, assume that the proper segment S
and the page P within S where insertion starts have been
identified. Let also P, be the byte position within P where the
first byte of | should be placed. Conceptually, the insertion of the
new bytes starting at P, will create three segments: the left seg-
ment L, the right segment R, and anew segment N. The left seg-
ment L includes all bytes of S that are on the left of Py; thus, its
address is the address of S, and the number of bytes in L is
L. = PxPS+P, The right segment R includes all bytes of S on
the right of page P; the address of R is S+P +1 and the number of
bytesin R is R. = S —(P+1)xPS or zero if P isthe last page in
S. The third segment N is a brand new segment that includes the
bytes of | followed by the last bytes of P on the right of Py,.

S ‘ Lc ‘\ Lc+Nc ‘\ Lc+Nc+Rc‘

2077 = |

N (new segment)

S R=S+P+1
Lc Re

buffer | (new bytes)

= lc —=

Figure 6. Inserting bytes from buffer | in segment S

The above process just computes the number of bytes of
the three segments. No leaf pages have yet been read from or
written to disk. Since, most probably, the last page of N will
have some unused bytes, before we actually write to disk the new
segment N, we check if the last P, bytes of L can be accommo-
dated in the pages of N without overflowing N. If thisisthe case,
then these bytes can be placed at the beginning of N thus elim-
inating the last page of L (and the waste of space in it). The situa-
tion shown in Figure 6 corresponds precisely to this case. If the
elimination of the last page of L is not possible, the alternative is
to try to balance the free spacein L and N by borrowing as many
bytes as necessary from the last page of L. Byte reshuffling can
also be performed from R to N but only if R has exactly one
page. Notice that during byte reshuffling we never overwrite
existing segments. The reason for this has to do with recovery
and the issue is discussed in section 4.5.

Proceedings, IIEEE Data Engineering Conference, Phoenix, Arizona, February 1992, pp. 301-308. 5

Given this background, we can now describe the insert
algorithm as follows:

(1) Traverse the tree as in the search agorithm until the node
pointing to segment S that contains the starting byte position
is reached. Save the path on the stack. Let B be the desired
bytewithin S.

(2) Preparation. Compute the page P within S that holds byte B:
P = [B/PS; the byte number P, within P that insertion
starts: P, = Bmod(PS); and the actua number of bytes P.
stored in P as follows: if P is not the last page in S then
P. = PS; otherwise, P. = Sy. SetL = Sand L = PxPS+Py.
Set R= S+P+1 and R, = S —(P+1)xPS or zero if P is the
last page in S. So far, the new segment N has
N¢ = lc+P: =Py bytes.

(3) Reshufflebytesof L, N, and R. If Ny, = PS skip this step. If
there is exactly one pagein R and the R; and N, bytes can fit
in a single page, the R: bytes become candidates to be placed
at the tail of N. If the number of bytes L, that are in the last
page of L and the Ny, bytes can fit in a single page, then the
Lmn bytes become candidates to be placed at the head of N. If
both groups of the L, and the R; bytes can be moved to N
without overflowing the last page of N then move both; other-
wise, take the group that isin the segment with the largest free
space. If after these operations there is free space at the last
page of L, take as many bytes as necessary from L so that the
last page of L and the last page of N will have similar amount
of free space. Properly update the values of L¢, N¢, and R;.

(4) Starting from page S+P, read one or two pages (read two
only if R bytes have to be moved to N). Allocate a segment
N of as many pages as necessary to hold the N¢ bytes. Fill up
N with bytes in proper order: first the part of P on the left of
Py, (if any), then the I bytes, then the part of P on the right of
and including Py, (if any), and finaly, in case bytes must be
taken from R, the first R bytes of S+P+1. Write the seg-
ment to the database.

(5) Fix parent so that it includes a pair for each of the segments
L, N, and R whose size is not zero. Split the parent if neces-
sary, and propagate the new counts and pointers up to the root
of the tree using the stack built in step 1.

With regard to the 1/O cost of the insert algorithm, one or two
(physically adjacent) pages from the original leaf segment have to
be read. Also, unless N. is larger than the maximum segment
size, the algorithm will add at most two new entries in the parent
of the leaf segment.

4.3.2. Delete

The delete operation deletes a number of bytes starting
from a specified byte position. This operation can result in either
deletion of entire subtrees or partial deletions of leaf segments.
Deletion of entire subtrees is performed first. They can be com-
pleted without touching a single leaf segment because the address
and size of each segment are stored in the corresponding parent
index nodes, and they can be given directly to the buddy system.
Then, the delete algorithm proceeds to the second phase to per-
form partial deletions. In the general case, when the leaf level is
reached, we will have a situation like the one pictured in Figure
7.a, where the first byte to be deleted is byte Py, in page P of seg-
ment S and the last is byte Q, in page Q of segment S”. Possible
segments that may have existed between S and S” have already
been deleted during the first phase of the operation. Notice that
the two segments of Figure 7.amay have different parents.

To delete all bytes of S on the right of P,, we simply
decrement the counts in the parent of S and free all pages of S on
theright of P. Thereis no need to actually access any page of S.

We then proceed by freeing all pages of S” on the left of Q.
Now, the bytes of Q on the right of Q, must be shifted to the
left. Since segments cannot have holes, page Q isisolated from
the part of segment S” that remains on the right of Q. A new 1-
page segment N is alocated to hold the bytes of Q. Asin the
insert algorithm, before writing N to disk we attempt to balance
the free spacein N and whatever remained in S and S”.

P /\/PD Q Qb
@ YV 1| e
S S
delete
b EBEB——=-] A 77
L=S N R=S'+Q+1

Figure 7. Byterange deletion.

Thus, in the general case, we end up with the following
three segments shown in Figure 7.b: the left segment L contain-
ing all bytes of S on the left of P as well as those remaining in P
itself after the deletion and byte reshuffling; the right segment R
containing all bytes of S” to the right of page Q; a new 1-page
segment N containing whatever bytes remained in Q and the ones
taken from P because of byte reshuffling. Notice that unlike the
B-tree algorithms as well as the ones used in Exodus, a partial
segment delete may create new entries that need to be added in
the parent.

The delete algorithm is as follows.

(1) Traverse the tree to locate segments S and S~ where deletion
starts and ends, respectively, and save each path to a stack.
For each node visited during the tree traversal, if possible,
perform deletions of entire subtrees.

(2) Compute the number of bytes P. and the byte P, of page P
within S where deletion starts. Similarly, compute Q. and Qp
of page Q within S” where deletion ends. Set L =S and
Lc = PxPS+P,. Set R=S +Q+1 and R; = St —(Q +1)xPS
or R. = 0if Q isthelast page of S”. The new segment N has
Ne = Q. —(Qp+1) bytes. If Nc = 0, goto step 5.

(3) Reshuffle bytesof L, N, and R asin step 3 of the insert algo-
rithm.

(4) Read page S” +Q and if bytes have to shuffled read aso the
pages of S and/or S° whose bytes must be moved to N. Allo-
cate a segment N to store the N; bytes. Fill up N with the
bytes from P on the left of Py, (if any), followed by those on
theright of Q,. WriteN to the database.

(5) Propagate the new counts and pointers up to the root of the
tree, using the stacks built in step 1. On each level do the fol-
lowing: if a new entry must be added, do so in the node with
fewer pairs; check if a node in one of the two stacks has now
less than the alowed number of pairs and if so, merge or
rotate with asibling.

(6) Fix Root. If the root has exactly one child, copy the pairs of
this child to the root and repeat this step.

With regard to the I/O cost, deletions where the last byte to be
deleted happens to be the last byte of a page in some segment of
the large object can be completed without accessing any segment.
Deletions of entire subtrees is a special case of the above.
Another important specia case of the above is object truncation
where all bytes from byte B up to and including the last byte of
the object are deleted; with B = 0 truncation becomes equivalent
to deleting the entire object and thus, this operation too does not
need to access any segment of the object. Otherwise and if bytes
are not shuffled, one leaf page needs to be accessed (the one that

Proceedings, IEEE Data Engineering Conference, Phoenix, Arizona, February 1992, pp. 301-308. 6

contains the last byte to be deleted) and a new segment needs to
be created. If bytes are shuffled, in addition to the above, one or
two pages will need to be accessed.

4.4. Preserving Clustering

A major problem with the above algorithms is that small
insertions and deletions break up the segments on which the
operations are performed into (in general, three) smaller seg-
ments. It is certain that a reasonable number of such operations
evenly distributed over the object will deteriorate the physical
continuity of all pagesin which the large object is stored, and leaf
segments will be just 1-page long. There are two major implica-
tions of having leaf segments most of which are of size 1. Firgt,
the cost of multi-page reads will substantially increase as a direct
consequence of the fact that each page touch will eventually result
inadisk seek. Second, more entries are now needed to index the
leaf pages. As a result, the tree level will eventually increase
which, in turn, will indirectly increase the cost of all operations.

We attempt to eliminate the aforementioned problems by
placing constraints on segment sizes of a large object. The seg-
ment size threshold T establishes the following constraint: it can
not be the case that a number of bytes are kept in two (logically)
adjacent segments, one of which has less than T pages, if they
can be stored in one. It should be clear that the threshold
mechanism does not specify fixed size leaf segments. Also, in the
general case, it does not specify a minimum number of pages per
segment. For example, with T = 8, a large object that is 1 page
and a half long is kept in two page, not in 8 pages. We say that a
segment S is unsafe if its size is greater than zero and lessthan T
pages. If during an update operation, a segment is unsafe, we
make it safe by taking entire pages from neighboring segments.
We call this process page reshuffling.

This requires changing the byte reshuffling step of the ori-
gina algorithm (step 3 of the insert operation) to include page
reshuffling. The input of the algorithm is three numbers L¢, Nc,
and R. corresponding to the number of bytesin segmentsL, N,
and R, respectively, and a segment size threshold T. It returns
the new number of bytes in these three segments after (page and
byte) reshuffling; it works as follows:

Reshuffle segmentsL, R, and N, with segment size threshold T.
(3.1) If any of thefollowingistrue
a. All three segments are safe, or
b. L and R are both empty (L. = R; = 0), or
c. L or R or both are unsafe, and the number of bytesin
the smallest unsafe segment and the N bytes cannot fit
in asegment of the maximum size,
then go to step 3.4 and do byte reshuffling.
(3.2) If L or R isunsafe, take the smaller of the two and merge it
with N, regardless of the N; value. Go to step 3.1.
(3.3) if N isstill unsafe, take as many pages as you can from the
smaller of L and R so that N becomes safe. Go to step 3.1.

(34) Reshufflebytesof L, R, and N. (This step is the same as
step 3 of the insert algorithm.)

With respect to the /O cost of update operations with page
reshuffling, the exact overhead will depend on the value of T.
For inserts, the overhead is the cost of transferring some addi-
tional pages from within the segment in which insertion occurs
(no additional disk seeks). For deletes, in addition to the above, a
second page reshuffle invocation may be necessary which results
in two disk seeks. In summary, alarger T does increase the 1/0
cost of the given update operation that performs page reshuffling.

Regarding storage utilization, larger T leads to better utili-
zation for the following reasons. First, the utilization per leaf seg-
ment is improved: for segments of size T, the utilization per seg-
ment will be on the average 1-1/2T. For T = 4, 16 and 64, this
evaluates to utilization of 87%, 97%, and 99%, respectively.
(Recall, that only the last page in a segment may have some free
space.) Second, for a given object, higher T values mean fewer
segments, which leads to an improved utilization of the index
pages. Therefore, it must be emphasized that the discussion of
the previous paragraph does not reveal the entire picture in the
sense that fewer leaf pages for indexing leads to a better tree (with
fewer internal pages and shorter) that indiscriminately improves
the performance of all operations (including updates).

Threshold values can be specified as a hint to the storage
manager on a per-object or per-file (for al objects in the file)
basis. The tradeoffsin selecting the T value are smple: larger T
values improve the storage utilization and the performance of
append, (sequential and random) read, and replace operations; the
only aspect that might be affected negatively by larger segments
is the costs of inserts and deletes. For often-updated objects, the
T value should be somewhat larger than the size of the search
operations expected to be applied on the object so that the amount
of 1/0 performed by both updates and reads is minimized. Again,
for more static objects where the cost of updates is of little or no
concern, the larger the segment size the better the overall perfor-
mance.

The threshold value does not have to be constant during
the lifetime of alarge object. Applications that could not possibly
determine access patterns at creation time are allowed to change
the T value every time the object is opened for updates. They
may also choose to let EOS automatically adjust the value of T
for them. In [Bili91a] we show a simple way to do this based on
the fan-out ratio of the parent index node of the leaf being
updated. The ideais that the closer we are to splitting an index,
the higher the value of T should become. When the parent node
is indeed going to be split if the child segment is split, the entire
node is scanned and and for any two or more logically adjacent
segments that have less than T pages, a single larger segment is
allocated to accommodate this group of unsafe adjacent segments.
Detailsare givenin [Bili91a].

4.5. Concurrency Control and Recovery

Concurrency can be handled either by locking the root of
the large object or, for finer granularity, the byte range affected by
each operation [Care86]. In addition to locking the large object
per se, there is the concurrency control problem associated with
freeing a segment in that an update on the alocation status of a
segment may propagate to its buddies. A comprehensive solution
to this problem is provided in [Lehm89]. When a segment is
freed, a (release) lock is placed on the segment and an intention
(release) lock is placed on all of the segment’s ancestors. Asin
hierarchical locking, segments that are descendants of a locked
segment are also locked, and thus they remain unallocated until
the holding transaction releases the locks.

For recovery, one or a combination of logging or shadow-
ing may be used [Gray79]. With logging, updates are performed
in place after the old and new values of the updated item have
been recorded to the log. With shadowing, a page is never
overwritten; instead, a write is performed by allocating and writ-
ing a new page and leaving the old one intact until it is no longer
needed for recovery. The important issue here is that applying
shadowing to a modified page of a segment will destroy the phy-
sical continuity of the pages of the segment and therefore the seg-
ment itself. To keep together the pages of a segment, the granu-
larity of shadowing must be the whole segment. Thus, if seg-
ments are large and updates are small shadowing will be slower

Proceedings, IIEEE Data Engineering Conference, Phoenix, Arizona, February 1992, pp. 301-308. 7

than logging.

In designing our insert and delete agorithms, we were
careful not to overwrite pages of leaf segments so to avoid the
cost of shadowing entire segments. Indeed, an examination of the
four update operations presented in this paper — replace, insert,
delete, and append - reveals the following. The first modifies the
leaf pages without affecting the internal nodes of the tree; writes
of this operation are logged. On the other hand, the last three
kinds of updates do just the opposite; they modify only the inter-
nal nodes of the large object tree without overwriting existing |eaf
pages. Thus, during an insert, delete, or append, only the
modified index pages need to be shadowed. Finaly, it is worth
mentioning that since no control information is kept on leaf seg-
ments, the log record of all updates must contain the operation
that caused the update as well as its parameters, and the log
sequence number of the update must be placed in the root page of
the object to ensure that the update can be undone or redone
idempotently [Gray79].

5. CONCLUSIONS

We presented a database storage structure for large objects
and algorithms to search for and modify a byte range, insert and
delete a sequence of bytes at any place within the object, and
append bytes at the end of the object. The solution proposed in
this paper satisfies all six principle objectives set in the introduc-
tory section. The key characteristic of our solution that made the
above possible is the use of variable-size segments as opposed to
fixed-size segments used in [Care86] or segments of fixed pattern
of growth used in [Lehm89].

Prototype implementations of the large object manager and
the buddy system presented in this paper have been completed.
We have used the prototype to perform simulation studies to ver-
ify our intuition of the effect of the segment size threshold on the
performance as discussed in section 4.4, as well as to compare the
performance of our algorithms with the ones given in [Care86]
and [Lehm89]; the results of this analysis are presented in
[Bili9lb]. Currently, EOS and the application run on a single
process, with no support for transactions (concurrency and
recovery). The prototype is written in C, and has been run on the
SunOS operating system on SparcStations.

ACKNOWLEDGMENTS

| am grateful to Alex Buchmann of T.H.Darmstadt, and
Toby Lehman of IBM Almaden Research Center for providing
many important suggestions regarding the content and the presen-
tation of an earlier version of the paper. Thanks are due to Bob
Carter and Joe Wells for proofreading this paper.

References

[ACM91] Communications of the ACM, Specia Issue on Digi-

tal Multimedia Systems, Vol. 34, No. 4, April 1991.

Astrahan M.M., et al, ‘“System R: Relational
Approach to Database Management'’, ACM Transac-
tions on Database Systems, Val. 1, No. 2, June 1976,
pp. 97-137.

Biliris, A., ‘' The EOS Large Object Manager,”’ Bos-

ton University, Computer Science TR 91-004, April
1991.

Biliris, A., ‘‘The Performance of Three Database
Storage Structures for Managing Large Objects,”
Boston University, Computer Science TR 91-011.
Submitted for publication.

Carey, M. J.,, DeWitt, D. J.,, Richardson, J. E., Shek-
itay, E. J, ‘““Object and File Management in the

[Astr76]

[Biliold]

[Bilio1b]

[Caresé]

[Chou85]

[Deux90]

[DeWi90]

[Gray79]

[Hask82]

[Knut73]

[Kotc87]

[Lehms9]

[Lohm91]

[Mohag0]

[Ozsu91]

[Selto1]

EXODUS Extensible Database System,”’ Proc. of the
12th International Conference on Very Large Data
Bases, Kyoto, Japan, August 1986, pp. 91-100.

Chou, H-T., D.J DeWitt, R.H. Katz, and A.C. Klug,
““Design and Implementation of the Wisconsin
Storage Systems,”’ Software Practice and Experi-
ence, John Wiley & Sons, Vol. 15(10), October 1985,
pp. 943-962.

Deux, O., et al, ** The Story of OZ,” |EEE, Trans. on
Knowledge and Data Engineering, Specia Issue on
Database Prototype Systems, Vol. 2(1), March 1990,
pp. 91-108.

DeWitt, D.J., D. Maier, P. Futtersack, and F. Velez,
““A Study of Three Alternative Workstation-Server
Architectures for Object-Oriented Database Sys-
tems,’’ Proc. 16th Int. Conference on Very Large
Data Bases, Brishane, Australia, August 1990, pp.
107-121.

Gray J,, ‘‘Notes on Database Operating Systems'”’, in
Operating Systems: An Advaced Course, R. Bayer, R.
M. Graham, and G. Seegmuller, Eds. Spring-Verlag,
New York, 1979, pp. 393-481.

Haskin, R. L., and Lorie, R. A., *‘On Extending the
Relational Database System,”” Proc. ACM-S GMOD
Int. Conf. on Management of Data, 1982, pp.207-
212.

Knuth D. E., The Art of Computer Programming,
Addisson-Wesley, 1973.

Kotch, P.D., ‘‘Disk File Allocation Based on The
Buddy System,”” ACM Trans. on Computer Systems,
Vol. 5, No 4, November 1987.

Lehman, T.J, and B.G. Lindsay, ‘‘The Starburst
Long Field Manager,”” Proc. 15-th Int. Conference
on Very Large Data Bases, Amsterdam, The Nether-
lands, August 1989, pp. 375-383.

Lohman, G.M, B. Lindsay, H. Pirahesh, and K.B.
Schiefer, **Extensions to Starburst: Objects, Types,
Functions, and Rules,”” CACM, Val. 34 (10), October
1991, pp. 94-109.

Mohan, C., ““Commit_LSN: A Novel and Simple
Method for Reducing Locking and Latching in Tran-
saction Processing Systems,”’ Proc. 16th Int. Confer-
ence on Very Large Data Bases, Brisbane, Australia,
August 1990, pp. 406-418.

Ozsu, T., and P. Vaduriez, ‘‘Distributed Database
Systems: Where are we?’ |EEE Computer, Vol. 24,
No. 8, August 1991, pp. 68-78.

Seltzer, M., and M. Stonebraker, ‘‘Read Optimized
File Sytem Designs. A Performance Evauation,”
Proc. 7th |EEE Int. Conference on Data Engineering,
Kobe, Japan, April 1991, pp. 602-611.

Proceedings, IEEE Data Engineering Conference, Phoenix, Arizona, February 1992, pp. 301-308. 8

