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ABSTRACT

This study analyzes the performance of the storage structures ond
algorithms employed in three experimental database storage sys-

tems - EXODUS, Starburst, and EOS - for managing large
unstructured general-purpose objects. All three mechanisms are
segment-based in that the krrge object is stored in a sequence of
segments, each consisting of physically contiguous disk blocks.
To analyze the algorithms we measured object creation time,
sequential scan time, storage utilization in the pre.renee of
updates, and the 110 cost of random reads, inserts, and deletes.

1. INTRODUCTION

Efficient manipulation of large objects is an important
issue in many so called tmeonventional database applications such
as geographical, computer-aided desig~ document pmeessing and
publishing, and multimedia presentation. Pictures, books, digi-
tized video and sound recordings are a few examples of large
objects that need to be stored in the database. Efficient manipula-

tion of large objects is also important in any object-oriented and
extended relational database management system, regardless of

the application in which they are b&mg used, in supporting
general-purpose advsneed data modeling constructs such se long
lists or “insertable” arrays. For example, 02- a commercial

object-oriented database system [Dsux90] - uses the large object

manager of the Wisconsin Storage System [Chou85] to store large
lists of any type of elements.

The management of huge objects imposes several require-

ments on the database storage system. Ideally, the storage

manager must have been designed in a way that can support
objects of virtually unlimited size (within the bounds of the physi-

cal storage available). It must support operations that deal with a

specific number of bytes withii the objec~ read or replace a ran-
dom byte range within the object, insert or delete bytes at srbi-
trary positions witim the objeet, and append bytes at the end of

the object, These piece-wise operations are important for the fol-

lowing reasons. First, there may be physical constraints that
would make it impractical or even impossible to build, retrieve or

update a large object in one chunk, such es when the address
space of the program is smaller than the objeet size. For instance,
it would be unlikely (if not impossible) to create a very large
objects in one big step; rather, smaller (but sizable) chunks of
bytes will be successively appended at the end of the objeet.
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Second, applications may want to awess only a portion of a large

object at a time. For instance, to retrieve an objee~ one would

rather sequentially scan through the object in smaller portions,
rather than access the whole chunk in one step - think of playing

digital sound rewrdings, fhrrte-to-hrne awsesing of a movi%
etc. Similarly for the insert and delete operations, in manipulating

along list stored as a huge objecg elements maybe removed from
or new ones inserted at any place within the list. Lastly, since the
large object is stored in the database it must be protected from
transaction and system failures.

Given thk background it appears that the performance
requirements on large objects storage techniques are the follow-

ing:

Object creation (and deletwn). To reduce the wst of creating
a large object in the database, the wst of allocating (and sym-
metrically, deallocating) a large number of d~k blocks must
be minimal. The performance of successive appends at the

end of the object is of particular importance since this the
expected way of creating large objects.

Byte range operatwns. To perform a byte range operation we
must first seek to a specific byte in the large object, and then
read, replam, irtser~ delete, or append a specific number of
bytes. Thus, we require good random access performance

meaning that the cost of locating any given byte within the
object is independent of the object size. We also require good

sequential access performance meaning that I/O rates in
reading/writing a large chunk of bytes must be close to

transfer rates. For this to happq d~k seek delays must be

minimiied which in turn requires that disk space is ttlloettted
in large units of physically adjacent dmk blocks, rather than on
a block-by-block basis.

Storage utilization. We require the large object to be stored in
a way that minimizes internal fragmentation. Ideally, storage
utilization must be very close to 100%

The solutions that have been proposed to manage large objects are

either block-based or segment-based. Algorithms of the first kind
store the large object in a number of single blocks [Aetr76,

Hssk82, Chou85]. In these schemes, blocks that store wnsecutive
byte ranges of the object me scattered over a disk volume. As a
resuk sequential reads will be slow because virtually every disk
page fetch will most likely result in a disk seek. Segment-based
rdgoriduns store the object on physically adjacent blocks [Ctue86,

Lehm89, Bili92]. From the latter three, the fmt [Csre86] uses
fixed-size segments, the second [Lehm89] segments of fixed pat-
tern of growti and the third [Bili92] uses variable-size segments.

Our study analyzes, by means of simulation, the perfor-
mance tradeoffs of the segment-based algorithms with respeet to

the operations mentioned above. The work closer to ours is the
one reported in [Cwe86]. Our work differs from this effort in

several ways. First, we employ a much more detailed model of
readhtg and writing large data segments, the importenw of which
will be clem from our results. Sewn~ we present results for

object creation end sequential read time. Third the work in
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[Care86] analyzes the design decisions and tradeoffs of their own
algorithm only while our study compares the design of three such

algorithms. We know of no other work on the evaluation of huge

object management techniques and the relative performance of
these algorithms is an open question.

The remainder of this paper proceeds as follows. Section 2
provides a review of the algorithms simulated in this study. Sec-

tion 3 presents our srchitectttral assumptions. Section 4 presents
experiments and results, and Section 5 concludes our work, In

this paper the terms record, tuple, and object will be synonymous

as are the terms field and attribute.

2. SEGMENT-BASED LARGE OBJECT MANAGEMENT
TECHNIQUES

From the perspective of a database storage system that
stores objects on pages, an object is small if it can fit entirely in a

single pag~ otherwise, the object is large, and it is stored in as
many pages as necessary to hold the entire object. A kind of
directory is created, called large object descriptor, thatcontains

addressing information required to access the pages holding the
large object. Frequently, we also talk about long fields witim
small objects. The small object holds all short fields along with

long jield descriptors each of which describes one of the object’s
long field the long field itself is stored separately from the object.

For example, a per eon objwt with attributes name,

picture, and voice, can be represented as a large database
object but it can ak be mapped to a small database object that

contains the short field name and two long field descriptors
corresponding to long fields picture and voice, respec-

tively. Some applications may prefer the second view of objects
because it is easier to treat the long fields within the same object
in dfiferent ways; e.g., they may apply a compression technique
that is appropriate for pictures in storing the picture attribute,

and a different one that is appropriate for audio in storing the
voice attribute [Ston9 1]. Nevertheless, “large objects” versus
“long fields” is an issue that must be considered by the clients of
the storage manager. The algorithms that have been presented in
the literature crm be used for both. We review these algorithms in

the following sections.

2.1. EXODUS Storage Manager (ESM)

EXODUS is an extensible database system that supports

large objects of tmlitnhed size on which all byte operations can be
applied [Care86, Care89]. ESM stores large objects on data seg-

ments. The size of the data segments of all large objects within a

file can be fixed by the clients to an integral number of disk
blocks. The idea is that for often-updated objects, data segtnen~
will probably be one dkk block in length so as to minimize the

amount of I/O performed by updates; for more static objects,
larger data segments will be selected to lower the I/O cost of scsn-
ning a large sequence of bytes.

The data segments are indexed by a B-tree-like structure, a
generalization of the concept of “portals” proposed in [Ston84]
to handle arrays of tttples in a relational system. Flgttre 1 shows

an example of the ESM structure, where the leaves of the tree are
4-page segments. (We have made the unrealistic assumption that
pages are of size 100 bytes, just to make calculations in our exatn-

ples easier to follow.) Each node N of the tree contains a

sequence of (c [i ], p [i ]) pairs, where p [i ] is the page number of
the i -th child of N. The number of bytes stored in the subtree
rooted at p [i ] is c [i ]-c [i-l]. (Ordering of pairs starts with O and

by convention c [-1] = O.) Tints, if the i-$ pair of N is the right-

most pair, c [i ] gives the total number of bytes stored below N,
and with N being the roo~ this value provides the total object
size. As in B-trees, internal nodes as well as leaf segments are

required to be at least half full.

As an example, the size of the object shown in Figure 1 is

1830 bytes. The left child of the mot indexes the fit 900 bytes

and the right child the next 1830-900 = 930 bytes. The right
child points to three segments. The first segment contains dte fist
400 bytes of these 930 bytes, the second the next 650-400= 250,

and the thiid the remaining 930-650= 280 bytes.

9001, 1830

Figure 1. The ESM large object storage stntchtre.

2.2. Starburat

The Starburst long field manager, presented in [Lehsn89],

uses extent based allocation with extents being organized into a
bmttry buddy system [Knut73, Koch87]. What the eventual size

of a long field is not known in advance, successive segments tdlo-
cated for storage double in size until the maximum segment size is
reached, then, a sequence of maximum size segments is used until
the entire long field is stored. When the size of a long field is
known in advance, msximtttn size segments are used to hold the
field. In either case, the last segment is tritntn~ i.e., its unused
blocks at the right end are tked. The long field &scriptor con-
tains the size of the first and last segment and an array of pointers
to all segments allocated to the long field the size of itttermdlate

segments are implicitly given by the sire of the first segment and

the known pattern of growth. Figure 2 shows an example of a

Starburst long field of size 1830 bytes. It consists of 5 segments

of size 100, 200,400, 800, and 330 bytes. The ctttmnt itnplemen-

tation handles objects up to 1.5 gigabytes long [Mun91].

segments first last

~

Figure 2. The Starbttrst long field storage structure.

Titk scheme can efficiently support (sequential and rsn-
dom) reads, appends, and byte range replace, but it cannot grace-

fully handle insertion (deletion) of bytes in (from) the middle of
the object. The latter operations necessarily change the size of the

long field, and because of the particular structure of the long field
descriptor, the entire long field (or large portions of it) must be
copied to new segments. The applications this long field manager
was intended for were large mostly read-only objects – such as

video and audio – and not general-purpose objects that would
need such length-changing updates.
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2.3. EOS

EOS is a storage system for experimental database imple-
mentation. The EOS large object mechanism, presented in

mili92], bridges the two ideas proposed in ESM and Starburst. It
can be seen as a generalization of the above structures without the

constraint that the size of the segments on which the large object
is stored must either be fixed as in ESM, or follow some predeter-
mined patterm as in Starburst.

Large objects are stored in a sequence of variable-size seg-

ments each of which consists of physically continuous disk pages;
segments are allocated using the buddy system. There are no
holes in each segment in that all of its pages must get filled up
except the last one which may be partially full. These segments
are then pointed to by a “positional” tree structure, whose inter-
nal nodes are identical to the ones proposed in [Care86]. How-

ever, because the leaf nodes of the tree are variable-size segments,

the EOS algorithms for irtser~ delete and append are significantly
different than the corresponding algorithms of ESM.

When byte range deletes and inserts are performed on the
large objec~ its segments may have to be broken up into smaller
ones and thus, the segments that comprise the large object may

have sizes that vary drastically. Figure 3 shows how the structure
may look like after some byte inserts or deletes have been per-

formed. The size of the object is 1830 bytes. The root has a left
and a right chdd indexing the first 1230 and the remaining
1830-1230 = 600 bytes of the objec~ respectively. The right
child points to two segments. The first segment consists of

[470/1001 = 5 pages holding the first 470 bytes of these 600
bytes. The second segment contains the remaining
600-470 = 130 bytes.

L 1230 i . 18301
1 \ I

Figure 3. The EOS large object storage structure.

After repetitive inserts or deletes we may end up with a
tree whose leaves are single-page segments. To eliminate this
problem, EOS allows the client to speci~ a segment size thres-

hold T establishing the following cmstrain~ it can not be the case

that a number of bytes are kept in two (logicrdly) adjacent seg-
ments, one of which has less than T pages, if they can be stored in

one. Note that the threshold mcxhanism does not specify fixed
size leaf segments neither a mtilmum number of pages per seg-
ment. For example, with T = 8, a large object that is 1 page and a
half long is kept in two pages, not in 8 pages. If during an update
operation, the parts of a split segment violate the above constraint,
pages in neighboring segments have to be shuffled.

3. PROTOTYPING THE LARGE OBJECT MANAGERS

We used the two low-end components of the EOS storage
system for the prototyping of the ESM and Starburst large object
managers. The first component is responsible for managing disk
space and the second provides buffered I/O to the higher level

compxwrtts. It is importan~ therefore, to analyze the effects of
these two components of EOS on the simulation results; we do so
in Sections 3.1 and 3.2, respectively. Next, in Section 3.3, we dis-

cuss the effect of recovery policy on the performance of the three

algorithms, as well as our cost model of performing reads and
writes on multi-block segments. Lastly, Sections 3.4 and 3.5 pro-
vide some clarifications on the implementation of the ESM and

Starburst large object mechanisms, respectively.

All three mechanisms were written in C. The simulation
runs on the SunOS operating system on SparcStations.

3.1. Disk Spats Allocation Policy

To simplify matters, the disk manager was implemented on

top of the UNIX file system. Each database area is assigned to a
UNIX file, and its space is managed by the binary buddy system.
A database area consists of a number of buddy spaces. Each
buddy space is a fixed-length sequence of physically adjacent
blocks and a 1-block duectory that provides allocation informa-

tion for all blocks in that space. A segrrt.ml is a sequence of disk

pages taken from one of the buddy spaces. Whereas segments are
internally managed as if their sizes are some integral power of 2, a
client may request the allocation of a segment of any size, and the

request can be fulfilled down to the precision of one block. Alao,
a client may selectively free any portion of a previously allocated
segment, not necessarily the whole segment. The maximum seg-

ment size that can be supported depends on the block size; with
4K-byte dkk blocks, EOS supports at most 32M-byte segments in
buddy spaces of at most 63.5 Mbytes [Bili92].

The entire process of allocating and deallocating segments

is performed by examining the directory block only. For data-

bases that can fit entirely in a single buddy space, at most one disk
access is needed to perform segment allocation and deallocation.

However, larger databases will have many buddy spaces and thus,

it is possible that the directory block of each buddy space may
have to be visited to locate a free segment of the desired size. To
avoid this, we make use of a superdirectory that contains the size

of the largest free segment in each buddy space currently in the
database. On a segment allocation request, the buddy system

inspects the superdirectoty to eliminate unnecessary access to an

individual buddy space directory, if the maximum segment size in
that space is less than the one requested.

The superdirectory is a main memory structure maintained
by the buddy space manager. Initially, it indicates that each

buddy space contains a free segment of the maximum size possi-

ble. This information may be erroneous. However, as buddy
spaces are visited for allocation or deallocation, their correspond-

ing directory is examined and the correct values start being placed
in the superdirectory. In other words, the tirst wrong guess about
the maximum segment size available in a particular buddy space
will correct the superdirectory information regarding this buddy

space.

To summarize, on a steady state, the cost of allocating and
deallocating a segment from a buddy space is going to be at most

1 disk access, regardless of the database size.

3.2. Buffering for Large Objects

For segment-based storage systems, there is the problem of
how multi-block worth of data can or should be buffered. Read-
ing a multi-block segment into a block-based buffer a block at a
time defeats the purpose of introducing segments in the tirst place.

One approach is to read and buffer the requested pages of a

segment in the pool. This scheme may perform sufficiently good
for small byte ranges. However, for large byte ranges (hundreds
of kilobytes, or even a few megabytes) it would be either imprac-

tical (most pages in the pool will be invalidated or forced out to
disk) or impossible (because of the limited space of the pool).

The extreme alternative is to do no buffering on huge
objects; to fetch, simply copy the object from disk directly to the
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user space and vice versa to write. We can think of many applica-
tions where buffering does no good at all such as those that scan
the object and never go back to previously visited byte ranges.

(Again, think of multimedia applications; listening to digital
sound recoflmgs, frame-to-frame accessing of a movie, etc.) Of

course, this approach has just the opposite problem; it will cause

repetitive disk accesses when smtdl amounts of bytes that belong
to the same or neighboring blocks are successively requested -
think of scanning a long list, element by element. Moreover,

copying parts of segments from disk “directly” to the application
buffers is not as ‘ ‘duect” as it sounds if the requested range does
not match block boundaries. Figure 4 illustrates this point. A

client wants to read into its buffer B a byte range that happens to
be located within a single segment S of N blocks. If the first

(last) byte to be read is located somewhere in the middle of page
L (R, respectively), the segment cannot be read directly into B, in
one step, without overwriting the client’s space just before the

begirmiig and/or after the end of B. There are two rather obvious
ways to handle this problem. The first is to read tbe segment into
a N-block space in virtual memory and then copy the desired part

of the segment into the application buffer. The second approach

avoids in-memory copying of potentially large data segments. It
breaks tlds single Ml request into a 3-step I/O that first reads L

and copies its right part at the beginning of B, then reads the N–2
blocks following L directly into B, and then reads the block R.

byte range to be read

~ ... -

block L block R
< N blocks ~

Figure 4. A byte range that does not match block Lntntiles.

The buffering scheme we used for the simulation is a
hybrid approach that works as follows. When the large object

manager needs to read a N -block segtnen~ it makes this request to
the buffer manager. If the N blocks can be accommodated into the
buffer pool, according to some criteria dkcussed shortly, space in

the pool is freed (we start first by freeing the least recently used

clean pages followed by dirty pages that, of course, have to be
written back to disk), and the segment is read in a single step into

the buffer pool. Otherwise, the N-block segment is not buffered,
and the large object manager reads the segment from disk into the
application space. If there is a boundary mismatch, we follow the
3-step I/O approach dwcussed above, with the first and last block

of the segment Mmg placed in the pool and copied from there into

the application buffers.

The buffer manager facilitates a very simple criterion

based on buffer availability at run time [Effe84], and a lhnit on

the maximum number of physically adjacent disk blocks that can
be read with one I/O call into contiguous buffer blocks in the

pool. As it will be d~cussed shortly, the simulation was per-
formed with a 12-page buffer pool where the aforementioned limit
is set to 4 pages. Our goal was to provide a buffering scheme that

handles smrdl multi-block segments in a reasonable way. Larger
segments are not buffered.

In addhion to the above, the buffer manager provides the
usual call for clients to fix a page. The call returns a pointer to the
control block of the frame holding the desired page. The client
must inform the buffer manager that a fixed page is dirt~ this can
be done when the pointer to the control block is acquired, when it
is released, or any time in between.

3.3. Reads and Writes on Mttiti-Biock Segments

Regarding reads on multi-block segments, the smallest unit

of I/O request is still a single disk page. Thus, when few bytes
need to be read born a segmert~ only those pages that contain the

desired bytes are read, not the entire segment.

Regarding updates, all three algorithms examined in this

study assume some kmd of shadowing for recovery [Oray79].
Shadowing is a recovery tecludque in which a page is never
overwritten instead, a write is performed by allocating and writ-

ing anew page and leaving the old one intact until it is no longer
needed for recovery. Thus, applying shadowing on a modified
block of a multi-block segment will destroy the physical con-

tinuity of the blocks of the segment and therefore the segment
itself. To keep together the pages of a segrnertL the granularity of
shadowing must be the whole segment. Although our study does
not involve transactions, we have decided to include the shadow-

ing cost so we can correctly analyze the effect of the segment size
in the simulated algorithms. For example, with no shadowing, the
cost of updating a page that belongs to a 2-block segment would

be the same with the cost of updating again a single page but
which is part of a 64-block segment. with shadowing, the two

updates will have substantially different costs (with the second

update being approximately 6 to 7 times more costly than the
first).

To be precise, all updates on index pages, except the roo~
are shadowed and the new copy that contains the update is flushed

out to disk at the end of the operation that caused the update.
Updates on leaf segments are performed as follows. If the update
overwrites useful bytes of the leafl, the above procedure is usd

i.e., copy, update, flush. If the update just appends bytes in the

leaf, the segment is not shadowd, instead, the update is per-
formed in place, and the dirty pages of the segment are simply

flushed to disk at the end of the operation.

3.4. ESM

The difference between the ESM algorithms and the ones
used in EOS is in the way inserts, deletes, and appends are per-
formed in the leaf nodes. Thus, the code that manipulates the tree

nodes, other than the leaves, is shared betsveen the two implemen-

tations. For example, routines that splitimerge/rotate index pages,
add/delete pairs in them, etc, are the same.

For byte range inserts, there are two algorithm that appear

in [Care86], tenned basic and improved. In the basic algorithm,
when an overflow occurs during an insertion in a leaf block L, the
bytes of L and the new bytes being inserted in L are evenly d~tri-

buted in new leaves. The improved algorithm attempts to redis&i-

bute the new bytes, the bytes of L and the bytes of one of L‘s
neighbor, if in doing so the creation of a new leaf block is
avoided. As it is shown in [Care86], the improved algorithm

leads to significant gains in storage utilization with minimal addi-
tional insert cost. The results reported in this paper are taken with

the improved insert algorithm.

ESM uses fixed-size leaves of some given number of

blocks and thus, an update on a leaf that overwrites useful bytes
will force the allocation of a new leaf of the same size on which
the actual update is performed. When writing a multi-block leaf to

disk, only the blocks that are actually dirty are written (seqtten-
tially) to disk, not the entire leaf. For example, if after the alloca-
tion (and subsequent update) of a 16-page leaf only the first 10

pages contain useful data, only these first 10 pages will be written
to disk. In contrast, the preliminary results reported in [Care86]

1. Tbe number of ““useful” bytes in a leaf ia @vm in the comaponding

(eowr\ pointer) pair of tie parent node that indexes this leaf.
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for the ESM prototype assumed leaf segments rather than single
pages to be the unit of both read and write operations.

3.5. Starburst

The implementation of the Starburat search and append

algorithms are straightforward. To implement insertion (simi-
larly, deletion) of bytes in (from) the middle of the objec~ the seg-
ments on the right of (and including) the segment in which the
start byte of the operation belongs to are read. The original bytes
together with the new ones (or except the ones being deleted) are

placed into a new set of segmen~. We have also included in this

copying the segment in which the start byte belongs because of
shadowing as discussed above. We assumed the availabfity of a

dynamically allocated 512K-byte virtual memory space through
which copying of segments from one disk place to another is per-
formed. The cost associated with such allocation (and possible

swapping) is not considered in our simulation.

4. PERFORMANCE EVALUATION

This section presents the performance evahtation results.
First, in section 4.1, we present the vahtes of the system and simul-
ation parameters we have assumed throughout the experiments.
In order to make direct comparison with the results reported in
[Care86], we have chosen these parameters to be the same with
the ones used in [Crtre86]. Nex& in sections 4.2 and 4.3, we

present the cost results of creating a large object and then per-

forming a sequential scan on the entire objec~ respectively. Fol-
lowing thm in section 4.4, we present the ~ cost results of per-

forming reads, inserts and deletes at random portions of the
object, and the effect of these updates on the storage utilization.
Section 4.5 compares our results with the ones reported in
[Care86], and finally section 4.6 summarizes the results of the
experiments.

4.1. Measurement Approach

The ex@rnents are performed on 4K-byte disk pages.
For I/O cosg we separate disk seek time (including rotation time)

and data transfer time so we can model sequential disk accesses.
We assume disk seek time of 33 milliseconds and a transfer rate
of lK-byte per millisecond. We count a d~k seek every time the

disk is accessed to fetch or write a segment on disk. For example,
the w cost of readhtg a 3-block (12K-byte) segment is

33+4x3 =45 milliseconds; the cost of reading the same number of
blocks with 3 I/O calls is (33+4)x3= 111 milliseconds. The size
of the buffer pool was set to 12 pages and the largest segment that
can be read into the pool, in one step, was set to 4 pages. Table 1

summarizes the values of these parameters that were fixed

throughout the simulation.

Parameter Value

Page (block) size I 4K-byte I
I Brrffer peel size I 12 mwes I

I Largest seament in DOO1 I 4 Dazes I

I/O seek cost 33 milliseconds
I/O transfer rate lK-byte/millisecond

Table 1: Fixed system parameters.

The simulations run on a 10M-byte object. We have also

experimented with larger objects and we simply discuss the effect
of the object size without presenting graphs. The root of the
object is placed in a page with no other objects in it. Pointer and
count values of an index page require 4 bytes each. Whh 4K-byte
pages we may store up to 507 pairs in the root and 511 pairs in

internal index pages. For EOS, we used threshold sizes of 1, 4,

16, and 64 pages. Similarly, for ESM, leaf segment sizes of 1,4,
16, and 64 pages were used. Notice that since the buffer manager

can handle segments of up to 4 pages, ftdl buffering is performed
when the ESM leaf block size is set to 1 or 4 pages.

The database was set up in two database areas both

managed by the buddy system, one for the leaf segments holding
the bytes of large objects and the second for everything else. The
use of two database areas is due purely to our desire to experiment

with very large objects on the limited disk space available in our
computing installations. It allowed us to use the d~k space for all
database blocks except the leaf blocks (i.e., the actual large

object) that were not actually read from or written to disk. We

simply kept @ack of the number of disk I/O calls (to count d~k

seeks) and the number of pages involved in each access (to count
the cost of transferring the segment).

4.2. Object Build Time

This section presents the time needed to built a 10M-byte
object by successively appending fixed-size chunks of bytes. We
sttwt with 3K-byte and go up to 512K-byte chunks.

In ESM, with 1-page leaves, a 10M-byte object turns out to
be of level 2 – the root, one level of 9 internal nodes, and then

2560 leaves. With 4-page leaves, the object is again of level 2 –

the roo~ 2 internal nodes and 640 leaves. For leaf blocks of 16
and 64 pages, the tree is of level 1. (The level of a 100M-byte

object is 2 for 1, 4, and 16-page leaf blocks and 1 for 64-page

leaves.) For Starburst and EOS the tree level is always 1. Since
the growth of the object in both Starburst and E(M has the same

pattern, we treat these algorithms together in this particular exper-
iment. Figure 5 shows the time required to build a 10M-byte
object in the three algorithrns2.

The most startling result is the effect on the ESM object
creation time of changing the append size by a few kilobytes.

Observe that the object build cost for l-page leaves and for 3K-
byte appends is approximately 575 secondv it drops to 170
seconds for 4K-byte appends and rises up again to 380 seconds

for 5K-byte appends. In ESM, this is due to the mismatch of the

block boundaries and append size dwcussed in the previous sec-
tion, and mainly to the way appends are performed. When an

overflow occurs on the rightmost leaf because of an _ the

new bytes being appended, the bytea of the rightmost leaf, and the
bytes of its left neighbor (if it has free space) are redistributed in

such a way that all but the two rightmost leaves are full. The

remaining bytes are evenly d~tribute in the last two leaves, leav-
ing each of them at least 1/2 full. In general, when the apprtd

size is not precisely a multiple of the leaf block size, reshuffling as
described above is performed which increases the cost of appends.

The block Lmundary mismatch problem affects also the
Starburst and EOS algorithms but to a lesser degree. In these two

mechanisms, bytes are simply appended at the end of the right-
most page with no reshuffling. Thus, the cost of an append opera-
tion is the one of reading the rightmost page (if it is not full) and
flushing to disk the pages containing the new bytes. Also, there
are no index pages to write; the tree level is always of level 1. (In
EOS, to come up with a tree of level greater than 1, the size of the
object behg created must be larger than 16 Gigabyte,)

Artother interesting result related to ESM is that we can
not, independent of the append size, isolate a particular leaf block

size as the winner. Referring to Figure 5, for appends of 4K, 16K,
64K, and 256K bytes, the best performance is achieved when the

2. The exact append sizes in the horizontal ask of the graph m the following

(ii kilobyrm): 3,4,5,6,7,8, 10,12,14,16,20,24, 2S, 32,50,64,100, 12S,

200,2.56, and 512.
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Figure 5. 10M-byte object creation time,

leaf block size is 1,4, 16, and 64 pages respectively; i.e., precisely
when there is exact match between append and leaf block size.

For appends larger than 256K bytes, larger blocks have better per-
formance.

Finally, in all mechanisms, the cost of creating an object
grows linearly with the object size. For instance, to obtain the
time required to build a 100M-byte objec~ just multiply the
numbers in Figure 5 by 10.

To summarize thii experimen~ the general trend in both
curves is the larger the append size the better the response time.

However, small differences in the append size, especially for

small appends, may result in very blg differences in the total
object creation time. In comparing Starburst/EOS and ESM, for

the same append size the fit algorithms perform the same as or

better than the best case of ESM.

4.3. sequential Soan

This section shows the time required to sequentially
retrieve the entire large object from the database. After the 10M-

byte object was built in the previous experiment, it was scanned
horn the beginning to the end in fixed-size chunks of bytes. The
n-byte scan was performed on the object created by n-byte

appends3. With a transfer rate of lK-byte/millisecond, the best
performance that can be achieved is approximately 10 seconds.

As shown in Figure 6, for scans shorter than the page size
all three techniques produce the same results; the page being
scanned is buffered and all its bytes are read. The differences

appear for scans larger than the page size. In ESM, the cost for
the l-page segments case is the worst and is independent of the
scan sizq all leaf pages of the object are read one by one. Larger
segments produce much better results and their performance reach
a plateau when the scan size exceeds the segment size. The per-

3. This is slightly impmtent in Starbun+t/EOS becauw. the growth ef the seg-

mems (and therefore. the resulting mum) depmds on the size ef the tirsl

a-d. Fer EW ~ IC$UMJ SWCmXe is indqend.%t of the append size.

o~z
Scansize (hiIObyies)

Figure 6. 10-Mbyte sequential scan time.

formsnce of Starburst/EOS follows the expected pattern, larger

scans produce better response time.

In comparing the three algorithms, the same conclusion can

be made as for object creation tirn~ i.e., for the same scan size
Starburst and EOS perform the same as or better than the best

case of ESM.

4.4. Random Reads and Updates

In this section we snalyze the effect of updating a 10M-

byte object on the storage utilization, and we measure the perfor-
mance of random reads and updates (inserts and deletes). We

assume a mix of 4(Mo reads, 30% inserts, and 30% deletes4. The
mean operation size is 100, 10K, and 100K bytes, where the

actual operation size was varied i50Y0 about the mean. The opera-

tions were randomly run with the above probability and uniformly
d~tributed over the entire byte range of the object. To ensure that

the object size remained stable, the size of a delete operation was

set to the size chosen for the immediate previous insert.

4.4.1. Storage Utilization

Storage utilization compares the object size with the actual

apace required to store the object including posgible index pages.
Since after each update Starburst completely reorganizes the
affected segments, only the last page of the large object may have

some free space. Therefore, we do not further discuss Starburst in
this section because it achieves, unconditionally, the best possible
storage utilization.

Figures 7 and 8 show how utilizatio~ which is initially

near 100’%o,in ESM and EOS, respectively, is affected as random
insertions and deletions break up the full leaf nodes. Each mark
in the graphs represents the utilization after the wrresponding

number of operations have been performed. We first discuss the

4. his is a smalt pe.memage fer reads. However, the ICSelts de net depmd

cm the mix rather co tie operation size A largex seamh pcm?QItage wiU sim-

ply mquim mom runs te stabtie the pcrfermamm curwo.
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ESM storage utilization. EOS storage utilization.

effect of the operation size on each algorithm and then we com-
pare the two algorithms.

Figure 7a, referring to small updates in ESM, shows that
utilization does not depend on the leaf block sizq it stabilizes at
pretty much the same level, at the low 80%. As lager updates are
performed on the object, Figure 7.b, the 1-page leaf case with

85% utilization starts distinguishing itself from the rest of the

casesthat are irt the range of 80%. For 100K-byte updates, Figure
7.c, there is a clear dwtinction. The larger the leaf, the worse the
utiliiatiom with substantial dtierence between the best and the
worst (from qproximately 9690 with 1-page leaves, down to on
the average 75% with 64-page leaves).

For EOS, the trends are clear regardless of the size of the

tqxlates. The larger the segment size threshold, the better the utili-

zation is. This is due to the fact that only the last page in a seg-
ment may have unused space. Thus larger segments achieve a

better utilization on a per segment basis and thus, for the entire

object. We can also obsetve that a segment size threshold of 16
pages achieves a utilization higher than 98~o; with the 64-page

case this number becomes almost 100%.

Comparing ESM and EOS, we can see that their perfor-

mance is approximately the same for the case of 1-page leavea
and 1-page segment size threshol~ respectively. For larger leaf
size settings, the utilization in each algorithm goes the oppxite

dwection. In general, it definitely improves in EOS, while it

becomes worse (or in the best case, it remains within the same
range) in ESM.

4.4.2. Read Cost

We first present, in Table 2, the average In cost results for

reads in Stwbttrst. As we have explained before, the Starburst

structure is reorganized after evexy update; therefore, the read cost
does not depend on the updates performed before tids read.

Figures 9 and 10 show the I/O cost for reads in ESM and
EOS, respectively, as random insertions and deletions degrade the
large object structure. Each mark in the graph represents the aver-

age cost of the read operations performed since the previous mark.

For example, the mark at the 10,000 operations indicates the aver-
age cost of the reads performed within the last 2,000 operations.

First, a general comment regarding the results for EOS in

Figure 10. When the first updates are applied to the object, the I/O
cost for reads is independent of the segment size threshold. Thii

is because when the object is initially created, the count tree is just

a one-level directory and the leaf segments are large at this point.
However, as more and more updates are performed these seg-

ments gradually degrade to about N -page leaves, where N is the

segment size threshold.

In Figures 9.a and 10.a, l-page leaves have a tiny disa-
dvantage over the other cases whose cost is practically the same.
Although 100-byte reads can almost always be satisfied by access-
ing a single page, the difference is due to the fact that larger
leaves reduce the number of pairs that need to be kept in in&x
pages which in turn minimizes the number of index pages. As we

have mentioned in section 4.2, the ESM tree with l-page leaves

has 9 internal nodes, while with 4-page leaves it has 2 nodes.

Thus in the latter case, the likehood of an index page missing in
the buffer pool is reduced.

Turning to Figure 9.b which shows the cost of 10K-byte
reads in ESM, the cost difference between 1-page and 4-page
leaves becomes substantial (approximately, it doubles). This is
because roughly 3 pages need to be accessed to read 10K bytes,
and the cost of thk multi-page read is higher in the first case.

Comparing Figures 9.b and 10.b and for l-page leaves, the
performance of EOS is better than the one of ESM (about 15%).
This can be explained by the fact that EOS’S leaf nodes are
variable-length. The new bytes are inserted into a 3-page (12K)

leaf segmen~ whereas ESM would insert them into 3 separate leaf
pages. For larger leaves, the two algorithms have practically the
same performance.

In Figures 9.c and 10.c which show the cost of 100K-byte
reads, the differences between the two algorithms for the same
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Figure 9. Figure 10.
ESM read I/O cost. EOS read I/O cost.

Mean Operation size (bytes) II 100 10K 100K

Read I/O Cost (milliseconds) II 37 54 201

Table 2 Starburst read I/O cost.

leaf size setting becomes large. Again, the reason is that EOS
inserts the new 100K-byte data into a 2S-page leaf even when the

segment size threshold is set to artythhg less than 25 pages.

To summarize the results of this experitnen~ the general

trend is that in both algorithms and for all operation sizes larger
segments offer better read performance. Comparing ESM and

EOS, for the same read size EOS performs better or the same as
ESM. Comparing EOS and Starburs~ we can see from the graphs
of Figure 10 that a segment threshold size of 16 is adequate for

EOS to reach the performance of Starburst.

4.4.3. Update Coet

Table 3 shows the I@ cost results for inserts and deletes in
Stsrburst, The cost turns out to be the same in both types of
updates and it does not depend on the operation size. The dom-

inant factor here is the cost of copying the object segments horn
one place in d~k to snother. With 1K-byte/millisecond transfer
rate, the miniium cost to copy a 10M-byte object is approxi-

mately 20 seconds. However, for all practical purposes, the large
object can not be copied in two steps. Thus, the higher valuea
shown in Table 3 are due to the cost of copying the object in
smaller chunks (as we mentioned in section 3.3, we used 512K-
byte buffers).

Turning our attention to the other two techniques, Figures

11 and 12 present the insert I/O cost results in ESM and EOS,
respectively.

For ESM and for 100K-byte inserts, Figure 1l.c. the 16-
page leaf has a definhe advantage over 4-page leaves which in

turn perform better than the 64-leaves. The 1-page leaves per-
forms porly compared to the other ca.w. The reason for the 16-
page leaf beiig the best is that its size is the closest to the insert
size; we get maximum sequential I/O for the inserted bytes with

fewer bytes being reshutlle among neighboring leaves. The rea-
son for the bad performance of 1-page leaves is that the new 25
pages are written to disk in a random way. Simiiarly, for 10K

inserts (2.5 pages), Figure 11 .b, the best results are shown with
leaves whose size are closer to the insert si=, i.e., 4-page leaves.
For 100-byte inserts, Figure 11.% the performance of the 4-page

and 1-page cases converge, with the 16-page case being slightly
more costly. The 64-page case in both Figure 11 .a and Figure

1l.b is the most expensive choice as in order to insert 1 to 3 pages

worth of datq large portions of the segment must be written to

disk. Thus, the decrease in the amount of random IK) can not
offset the increase in sequential writing.

Turning our attention to the graphs of Figure 12, the results
show that with a value of segment size threshold of 1 to 4, the
insert cost remains the same. Again, thk is because EOS inserts
the new bytes in as many pages as necessary, if the number of

these pages is greater than the segment size threshold. As this
vahre increases above 4, the insert cost increases too because of

increased page reshuffling.

Comparing the corresponding graphs of Figures 11 and 12
and for leaf size (segment size threshold, respectively) less than

16, the performance of EOS is better than the corresponding per-
formance of ESM, for the reason explained in the previous para-
graph. However, for values greater or equal than 16, the com-

parison yields to mixed results, with ESM beiig better for small
inserts, and EOS being better for larger ones. We have also

examined the 1/0 cost for deletes, Because of space constraints we
do not present graphs but we briefly mention that the trends men-
tioned for inserts are also valid for the delete operations (readers

interested in the graphs may refer to the technical report).

To summarize these results, Starburst performs badly when

it comes to inserts and deletes. The update c;sts in both ESM and
EOS are well below the corresponding costs in Starburst. Notice
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Figure 11. Figure 12.
ESM insert I/O COSt. EOS insert I/O cost.

Mean Operation size (bytes) 100 10K lOOK

Insert, Delete I/O Cost (seconds) 22.3 22.3 22.3

Table 3: Starburst insert and delete 1/0 cost.

also that the update cost in Mb ESM and EOS is independent of
the object size, while in Stmburst this cost depends dwectly on the
object size. For 100M-byte object the difference between

ESIWEOS and Starburst becomes dramati~ the cost remains at
the same levels in both ESM and EOS, and it rises to approxi-

mately 2.5 minutes in Starburst.

4.5. Comparison with Results in [Care66]

The only previous work similar to ours is the study of
[Care86] where they present some experimental evidence of the

sort of perfortmmx that can be expected using the ESM large

object manager. They report results on storage utilization, and the

I/O costs of reads, inserts, and deletes using 100-byte and 10K-
byte operation sizes, and leaf sizes of 1 and 4 pagea. Thus, the
comparison can be made only for the above cases.

Regarding the storage utilization, our results for the 100

and 10K-byte operations match the ones in [Care86]. Their con-
clusion, however, that increasing the operation size further will

dtinish the difference in utilization between the case of l-page

leaves and larger leaves, conflicts with our conclusions as is evi-
dent from the graphs of Figure 7.

We attempt to explain this point by comparing the l-page

leaf case with any other case of P-page leaves, where P >1.
When a P-page leaf is split because of an N -byte insertion, the

result is two or more new P-page leaves. The total number of
unused bytes in these leaves is less than the number of bytes that
can fit in P pages. When a l-page leaf is split because of the
same size insertion, the result is two or more 1-page leaves, and
the total free space of these leaves can not be more than a page.

So, in general, the new leaves will be better off with respect to
utilization with l-page leaves than with P-page leaves. Now, the
effect of the utilization of this particular region of the object on

the total storage utilization depends on the size of thk region com-

pared to the object siz~ i.e., it depends on the insert size. Thus,
for the same object size, the difference on total object utilization

between the l-page and P-page leaves will increase as the insert

size increases.

Regarding the read I/O cost for multi-page leaves, the per-

formance of ESM in our experiments is better than the ones
reported in [Ctue86]. Thii is because our unit of I/O is a d~k

page, regardless of the leaf block size. Thus, we were able to see
in the graphs of Figure 9 the clear advantage of using larger
leaves. In their simulation entire leaf blocks are read even when

only few pages withii the leaf need to be read which increased the

I/O costof reads for multi-block leaves.

Regarding the ESM I/O cost for inserts and deletes, our

results differ slightly with the ones reported in [Care86] in a non
significant way. It seems that the cost of shadowing somehow

offsets the benefits of partial reads and writes.

4.6. Summary of Results

In thk section, we summarize the results of our experi-

ments for each of the three tectilques we have examined and we

compare their relative performance.

Fnst, we discuss Starburst because the evahtation of its

performance is relatively easy. The Starbttrst mechanism achieves

excellent performance in all aspects we have examined in this

study except for the operations that insert (delete) bytes at (from)

arbitrary positions within the object. For these operations, Star-
burst performs poorly (the larger the object the worse the perfor-

mance). Agai~ the applications this long field manager was
intended for were large mostly read-only objects where such

length-changing updates are applied infrequently.
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ESM introduced a very flexible data structure that can
gracefully handle all the desired operations on large objects

including any kind of updates, and it can do this independently of

the object size. The exact performance of ESM will depend on the
leaf block size which is given by the applications as a hint so cer-

tain operations are optimized. Our study, however, suggests that

it is hard to choose a right value for the leaf block size for the fol-
lowing reasons. The leaf size has diametrically different effects
on storage utilization and on the performance of sequential and

random reads. Large leaves waste too much space at the end of
partially full leavea but offer good search time, and small leaves
offer good storage utilization but require doing many I/O’s for

reads. Thus, in general, storage utilization and read time can not

be optimized at the same time. We have also seen a case where a

single operation can not be optimized without knowing the opera-
tion size (object creation, Figure 5).

The performance of EOS depends on the segment size
threshold T. The tradeoffs that need to be examined in order to
set this value are the following. Larger segments lead to better
storage utilizatio~ lower (sequential and random) read costs and
higher update cost. Thus, in contrast to ESM, the tradeoff is sim-
ple: the only aspect of the performance that might be affected
negatively by larger segments is the costs of inserts and deletes.

The selection process for the optimum vahte of the seg-

ment size threshold in EOS is rdso simple and specific. First, seg-
ments less than 4 blocks must be avoided. This is because for

smaller segments and regardless of the operation size, (a) storage

utilization drops substantially, Figure 8, (b) the cost of reads
increases, Figure 10, and (c) the cost of maintaining 4-block seg-
ments is approximately the same with the cost of maintaining

smaller segments, Figure 12. In other words, with 4-block seg-
ments, better storage utilization and read performance comes for
free. Second, for often-updated objects, the T value should be

somewhat Isrger than the size of the search operations expected to
be applied on the object so that the amount of I/O performed by
both updates and reads is minimized. Again, for more static

objects where the cost of uplates is of little or no concern, the
larger the segment size threshold the better the overall perfor-

mance.

When no length-changing updates are applied on the large

object, Stsrburst and EOS perform exactly the same. If such

updates are applied, EOS can achieve the same performance as
Starburst with a cost for updates that is well below the

corresponding cost in Stsrburst. For the quite large range of

operation sizes we have examined in our study (100 bytes to lOOK
bytes), it is easy to select a segment size threshold that will justify

the above statemen~ e.g., with a threshold value of 64 blocks,
EOS provides the same read and utilization performance as Star-
burst except that the update cost in EOS is approximately 30 times
lower.

5. CONCLUSIONS

In this paper we have examined and analyzed the perfor-

mance of the three large object management techniques proposed

in EXODUS [Care86], Starburst [Lehrn89], and EOS lllili92]. To

analyze the algorithms we measured object creation time, sequen-

tial scan time, storage utilization in the presence of updates, and
the I/O cost of random reads, inserts, and deletes.

Our main conclusions are the following. We found that
Starburst provides excellent performance, in many cases the kest
possible, on all aspects we have examined except for length-
changing updates where it performs badly (the larger the object
the worse the performance). EXODUS can gracefully handle all

operations on large objects including any kmd of updates, and it
can do so independently of the object size. However, in order for

EXODUS to perform well on reads. the segment size must be

increased. Our study suggest that this can not be done for free in
that huge fixed-size segments provide poor storage utilintion.

Finally, our results suggest that the algorithms of EOS can per-

form exactly the same as in Starburst except for length-changing

updates where the update costs in EOS are well below the
corresponding cost in Starburst.
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