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ABSTRACT: Entities in engineering design databases need to
evolve in both structure and behavior. Such a need is not well
addressed by object-oriented data models based on the class con-
cept. On the contrary, models that are based on the prototype con-
cept allow dynamic object evolution but they do not have the abili-
ties for object classification and strong typing supported by models
that have classes. In this paper we formally define an object-
oriented model which properly consolidates those two modeling
approaches and can provide dynamic object evolution, flexible
object classification, and strong typing.

1. INTRODUCTION

In the past few years, the advancement of database technolo-
gies has led the research and development of database systems to
more advanced engineering design applications encompassing
computer-aided design (CAD), computer-aided manufacturing
(CAM), computer-aided engineering (CAE). and computer-aided
software engineering (CASE). Unlike entities in traditional busi-
ness applications, design entities usually are complex-structured
and related by complicated relationships. Moreover, design enti-
ties reveal an evolutionary characteristic; from time to time, they
may need to change their structure and behavior due to the itera-
tive and exploratory nature of the engineering design process.

With the rapid development and acceptance of the object-
oriented methodology in different fields of computer science, there
is an ever-growing consensus in the database community that the
object-oriented methodology provides a suitable paradigm for the
design of advanced engineering design database systems.1) A
major reason for this is that object-oriented data models provide
suitable modeling constructs for direct representation and efficient
manipulation of design entities. Despite their large number and
variety, existing object-oriented data models can be classified into
two broad categories: class-based and prototype-based.

Class-based models focus heavily on classes.2, 6) Classes that
represent the structure and behavior of entity sets in the real world
are defined first; instances that represent individual entities are
instantiated from classes. Instances are permanently bound to
their instantiating class from which they inherit both structure
(attribute) and behavior (method) definitions. Consequently, all
instances of a class must have a uniform structure and behavior
that cannot be changed independently of the class. Although this
property allows efficient representation and access of instances of
a class, it inhibits instances from changing their structure or
behavior on individual basis.7, 8)

Prototype-based models focus on objects instead.5, 9) In
prototype-based models, classes do not exist at all; each object

exists by itself and defines its own structure and behavior. An
object can also have some other objects as its prototypes from
which it inherits either definitions or states. Clearly, all forms of
structural and behavioral evolution of objects can be achieved in
this approach. However, by totally discarding classes, this
approach loses both the object classification and strong typing
capabilities supported by the class concept.

In this paper we present a new object-oriented data model,
called object-centered, that consolidates the above two conven-
tional approaches. As in prototype-based models, objects in our
model exist by themselves and carry their own structural
definitions. However, our model introduces a novel object
classification mechanism which defines classes as structural con-
straints enforced for class membership, instead of as structural
template of their instances as in class-based models. Objects can
be dynamically associated with classes to inherit their behavioral
definitions. Such a loose and non-permanent binding between
objects and classes allows objects to change their structure and
behavior dynamically in their lifetime. Still, by enforcing all its
instances to have a mandatory set of attributes, a class provides a
uniform and strongly-typed view of its instances in spite of the dis-
similarities in their structures and behaviors. As a result, our
model achieves dynamic object evolutions, flexible object
classification, and strong typing, of all the benefits in either the
class-based or the prototype-based modeling approach.

The rest of the paper is organized as follows. Section 2
defines the basic notions of the model, such as objects, classes,
schema and database. Section 3 discusses the typing behavior of
the model, in particular, the class instanceship condition and the
typing semantics of classes. Section 4 discusses the object evolu-
tion mechanism of the model in details. In Section 5, we briefly
describe the object versioning constructs of the model. Section 6
reviews other related work. Finally, Section 7 concludes the
paper.

2. BASICS OF THE OBJECT-CENTERED DATA MODEL

2.1. Objects: Independent Entities

This subsection defines the notation of objects. All definitions
are based on the existence of the following disjoint sets:

g A finite set of basic domains D 1, . . . , Dn for n ≥1. For
instance, the set of integers, the set of reals, and the set of
strings.

g A finite set of basic types T 1, . . . , Tn , one for each basic
domain, i.e., the domain of Ti is Di for 1≤i ≤n .



g A countable infinite set A of symbols called attribute names .

g A countable infinite set ID of symbols called
object identif iers .

g A finite set CN of symbols called class names

g A finite set MN of symbols called method names

Definition Values: There are four types of values:

1. Every d ∈
i =1
∪

n
Di is a basic value.

2. Every id ∈ ID is an object reference value.

3. If v 1, . . . , vn are values, then {v 1, . . . , vn } is a set value.

4. If a 1, . . . , an are attribute names in A and v 1, . . . , vn are
values, then [a 1: v 1, . . . , an : vn ] is a tuple value.

The symbol V denotes the set of all values. `

An object in the object-centered model represents an entity in
the real world. An object has a unique and immutable identifier
and a collection of attributes.

Definition Objects: An object is a triple o = (id , pro , A ) where

g id ∈ ID is the identifier of o .

g pro ∈ ID is the identifier of the prototype object of o .

g A = {<ai : vi > | 1≤i ≤n } is the set of (locally defined) attri-
butes of o , each being a pair <ai : vi > where ai ∈ A is its name
and vi ∈ V is its value.

We use o.id , o.pro , and o.A to denote the identifier, the prototype,
and the set of attributes of object o . Also, we use symbol O to
denote the set of all objects. `

As in prototype-based models, objects exist independently of
any class and carry their own structural definitions and attribute
values. In addition to changing their attribute values, objects can
add or drop attributes from time to time.

An object may also have some other object as its prototype,1

and itself is called an extension of its prototype. The association
between a prototype and an extension defines an inheritance rela-
tionship as stated by the following delegation axiom:

Axiom of Delegation: For every o ∈ O, a ∈ A and v ∈ V,
<a : v > is defined on o iff:

1. <a : v > ∈ o.A ; or

2. Case 1 fails and <a : v > is defined on o.pro .iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
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Namely, all attributes of a prototype will be inherited by its exten-
sions unless they have been redefined in the extensions. The
above delegation mechanism can be realized by forwarding all
messages that access inherited attributes of an extension to its pro-
totype. We use o.EA to denote the set of all attributes defined on
object o , either locally defined or inherited.

We now give some examples of objects. For clarity, all enti-
ties will be denoted directly using their identifiers or names in all
examples of the paper.
hhhhhhhhhhhhhhhhhhhhh

1 For simplicity of discussion, only single inheritance will be considered
in this paper.

V6Engine = ( V6Engine,
nil,
{ num_cylinders: 4,

compression_ratio: 7.6,
min_octane_num: 89 } )

ToyotaStdTrans = ( ToyotaStdTrans,
nil,
{ num_gears: 5,

final_gear_ratio: 4.2 } )
Camry = ( Camry,

nil,
{ engine: V6Engine,

transmission: ToyotaStdTrans,
chief_designer: [last: "Major", first: "John"]} )

WhiteCamry = ( WhiteCamry,
Camry,
{ chief_designer: [last: "Smith", first: "Mark"],

color: "White" } )

In object Camry, the values of attributes engine and transmission
are object references to object V6Engine and ToyotaStdTrans
respectively. The value of chief_designer is a tuple attribute con-
sisting of two sub-attributes last and first. Object WhiteCamry
inherits engine and transmission attributes from its prototype
Camry , redefines the chief _designer attribute, and adds a new
color attribute.

2.2. Classes: Classification by Constraints

In this subsection, we define the notion of classes.

Definition Types: A type can be one of the following:

1. A basic type Ti .

2. A class name cn ∈ CN called a class type.

3. If t is a type, then {t } is a type called a set type.

4. If a 1, . . . , an are attribute names in A, and t 1, . . . , tn are
types, then [a 1: t 1, . . . , an : tn ] is a type called a tuple type.

We denote by T the set of all types. `

Definition Method Specifications: A method specification, or sim-
ply a method, is a pair m = (mn , s ) where

g mn ∈ MN is the name of m .

g s = t 1 × t 2 × . . . × tn → t , where t 1, t 2, . . . , tn and t are
types in T, is the signature of m .

M is used to denote the set of all methods. `

Classes model the roles that entities play in the real world. A
class definition consists of a set of attribute specifications and a set
of method specifications.

Definition Classes: A class is a tuple c = (cn , sup, AS , MS )
where

g cn ∈ CN is the name of the class.

g sup ∈ CN is the name of its (immediate) superclass.

g AS = {<ai : ti > | 1≤i ≤n } is the set of (locally specified) attri-
bute specifications of c , each being a pair <ai : ti > where ai ∈
A is its name and ti ∈ T is its type.



g MS = {mi | 1≤i ≤k } is the set of (locally specified) method
specifications of c .

We use C to denote the set of all classes. `

A class also has a set of member objects called its instances
associated with it. All instances of a class inherit the behavior
specifications − but not the structure specifications − of the class.
Classes can be related by the specialization or subclassing rela-
tionship, denoted as IS -A (c , c′ ). This IS-A relationship between a
subclass c and its superclass c′ is also an inheritance relationship,
as stated by the following inheritance axiom:

Axiom of Inheritance: For every c ∈ C, a ∈ A, t ∈ T and m
∈ M, <a : t > (or m ) is specified on c iff:

1. <a : t > ∈ c.AS (or m ∈ c.MS ); or

2. Case 1 fails and <a : t > (or m ) is specified on c. sup.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cc
c
c
c
c
c
Namely, all attribute and method specifications of a superclass will
be inherited by its subclasses, unless they have been re-specified in
the subclasses. In the later case, the re-specified attributes or
methods in a subclass must be a refinement of their corresponding
ones in the superclass. Similar to the delegation mechanism, the
inheritance mechanism can be realized by dynamically forwarding
messages that cannot be responded locally by a subclass to its
superclass. Alternatively, it can be realized by copying all inher-
ited attribute and method specifications to the subclass to speed up
schema access. Likewise, we use c.EAS and c.EMS to denote the
set of all attribute specifications and the set of all method
specifications of class c , either locally specified or inherited.

Following are some examples of classes:

VehicleEngine = ( VehicleEngine,
Class,
{ num_cylinders: int,

compression_ratio: real }
{ horse_power: VehicleEngine → int } )

GasolineEngine = ( GasolineEngine,
VehicleEngine,
{ min_octane_num: int }
{ . . . } )

VehicleTransmission = ( VehicleTransmission,
Class,
{ num_gears: int },
{ . . . } )

Vehicle = ( Vehicle,
Class,
{ engine: VehicleEngine,

transmission: VehicleTransmission }
{ . . .

max_speed: Vehicle → real } )

The engine attribute specification in the Vehicle class specifies
that all instances of Vehicle must have an engine attribute with its
value being a reference to some instance of the VehicleEngine
class; similarly for its transmission attribute specification. The
GasolineEngine class is defined as a subclass of VehicleEngine ,
from which it inherits num_cylinders and compression_ratio attri-
butes and horse_power method specifications. Other three classes
are defined as subclasses of the system-defined root class Class.

2.3. Schema and Database

A database in our model can be considered as consisting of
two layers: an object layer and a classification layer, see Figure 1.
The object layer maintains the set of objects in the database and
controls their creation and manipulation. The classification layer
maintains the set of classes in the database that are used to classify
objects in the object layer. The classification layer provides a uni-
form and strongly-typed view of objects in the database.

Classification
Layer

Object Layer

IS-A
prototype

object

classlegend: is-a

Figure 1. Two-layered database structure

Classes in the classification layer and their specialization rela-
tionships form a hierarchical structure called class hierarchy. The
class hierarchy defines the schema of the database:

Definition Schema: A schema is a set of classes C satisfying the
following constraints:

1. For all c , c′ ∈ C , c.cn ≠ c′.cn . (No two classes in the schema
have the same name.)

2. For every c ∈ C , ref (c ) ⊆ C where ref (c ) denotes the set of
classes referenced by class c in its definition. (All classes
referenced by c are also defined in the schema.)

3. For all c ∈ C other than Class , c. sup ≠ nil. (Every class
other than Class has a superclass.) `

Thus a class hierarchy must be a connected tree with the system-
defined class Class as the root.

Definition Database: A database is a pair DB = (C , O ) where C
is a schema and O is a set of objects satisfying the following con-
straints:

1. For all o , o′ ∈ O , o.id ≠ o′.id .

2. For every o ∈ O , ref (o ) ⊆ O .

Objects in O may be assigned to none, one or many classes in C
at any moment. `

An imaginary vehicle design database can be defined as

VehicleDB = ( O = { V6Engine, ToyotaStdTrans, Camry, WhiteCamry },
C = { VehicleEngine, GasolineEngine,

VehicleTransmission, Vehicle } )

where the objects and classes of VehicleDB were defined in the
previous subsections.



3. CLASS INSTANCESHIPS AND TYPING RULES

This section discusses the typing behavior of our model. We
first present the type inference rules of the model. Then we for-
mally define the condition for an object to become an instance of a
class. We also show that classes provide a uniform and strongly-
typed view of their instances.

In our model, a type represents a set of values. The semantic
assertion "value v having a type t ", denoted as v :t , is then inter-
preted as v being a member of the set defined by t , and assertion
"t 1 being a subtype of t 2", denoted as t 1 ≤ t 2, corresponds to the
mathematical set inclusion condition t 1 ⊆ t 2.

In the following, the type inference rules of the model are

presented. Those rules are in the form of Y
Xhhhh where the horizon-

tal line denotes a logical implication, i.e., if we can infer X , then
we can infer Y . In those rules, a denotes an attribute name vari-
able, v a value variable, t a type variable, o an object variable,
and c a class variable. The following five rules are used to deduce
the subtyping relationships among types:

(Basic) Ti ≤ Tj

Di ⊆ Djhhhhhhhhhh

This rule states that the subtyping relationships on basic types are
determined by the set inclusion relationships on their correspond-
ing domains.

(Set) {t 1} ≤ {t 2}
t 1 ≤ t 2hhhhhhhhhhhh

This rule says that the subtyping relationships on set types are
determined by the subtyping relationships on their element types.

(Tuple) [a 1:t 1, . . . , an :tn , an +1:tn +1,...,an +k :tn +k ] ≤ [a 1:t′ 1,...,an :t′n ]
t 1 ≤ t′ 1, ..., tn ≤ t′nhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This rule states that a tuple type is a subtype of another only when
it has at least those attributes of the supertype and with more res-
trictive domains.

(Class) c 1.cn ≤ c 2.cn
IS -A (c 1, c 2)hhhhhhhhhhhhh

This rule states that a subclass is also a subtype of its superclass.

(Transition) t 1 ≤ t 3

t 1 ≤ t 2, t 2 ≤ t 3hhhhhhhhhhhhhh

This rule says that the subtyping relationship is transitive.

The next five rules are used to deduce the type(s) that a value
has:

(Basic) v :Ti

v ∈Dihhhhhhhh

This rule states that all values in the domain of a basic type have
this basic type.

(Set) {v 1, ...,vn }:{t }
v 1:t , ..., vn :thhhhhhhhhhhhhhh

This rule states that a set value has a set type {t } if all its elements
have type t .

(Tuple) [a 1:v 1, ..., an :vn ]:[a 1:t 1, ..., an :tn ]
v 1:t 1, ..., vn :tnhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This rule states that a value of a tuple type must have at least of
those attributes in the tuple type with values of corresponding
types.

(Object) o.id :c.cn
is -a (o , c )hhhhhhhhhhhh

Here is -a (o , c ) denotes that object o is an instance of class c .
This rules states that all instances of a class have this class type.

(Subtype) v : t 2

v : t 1, t 1 ≤ t 2hhhhhhhhhhhhh

This rule says that all values of a subtype is also values of its
supertypes.

In our model, classification of objects is achieved by associat-
ing objects with certain classes. A class assignment operation is
provided for assigning an object o to a class c . The operation will
check o to see whether it satisfies the instanceship condition of c
according to the following axiom:

Axiom of is-a: An instance o = (id , pro , A ) of a class c =
(cn , sup, AS , MS ) must satisfy the instanceship condition of
c , formally defined as:

For every <a : t > ∈ c.EAS , there exists a <a : v > ∈ o.EA
such that v :t .iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
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c
c

Namely, for o to become an instance of c , it must have at least of
those attributes specified in c with values of required types. Oth-
erwise, the assignment is rejected. In VehicleDB , objects
V 6Engine and ToyotaStdTrans can be assigned to classes Gaso-
lineEngine and VehicleTransmission respectively. Afterwards,
objects Camry and WhiteCamry can be assigned to class Vehicle .

As we can see, instances are allowed to have more attributes
than those required by their class. For instance, object Camry has
an additional chief _designer attribute than those required by its
Vehicle class. Therefore, the attribute specifications of a class
actually define the minimum structural requirements or constraints
that instances of the class must satisfy, in contrast to serving as the
structural template of its instances in class-based models. Classes
thus can be used to classify objects of heterogeneous structures.
Such a classification mechanism also has two other benefits.

m 3m 2m 1 m 4 m 5 m 6

c 1 c 2

a d b ed fec

o

fedcba

Figure 2. Multiple views of object



One benefit is that an object can be assigned to multiple
classes concurrently when it satisfies instanceship conditions of all
those classes. This essentially gives the capability to support mul-
tiple views of the same entity observed from different perspec-
tives, as shown in Figure 2. In the figure, object o is assigned to
both class c 1 and c 2, each defining a different view of the object:
in the view defined by c 1, attributes a , c , d and e of o are visible
and methods m 1, m 2 and m 3 are applicable; in the other view
defined by c 2, attributes b , d , e and f of o are visible and other
three different methods m 4, m 5 and m 6 are applicable instead. As
in the relational system, such a view mechanism can be used to
support multiple levels of abstraction, authorization, and interoper-
ability in heterogeneous environment.

Another benefit is that the association between an object and a
class can be changed dynamically. A class de-assignment opera-
tion is provided for removing an object from a class. Thus it is
possible for an object to be assigned to a class at time t 1, then
removed from the class at t 2, and finally assigned to a different
class at t 3. The dynamic nature of the is-a relationship allows an
object to play a different role at different time or play multiple
roles at the same time. As a result, objects can also change their
behavior dynamically.

Besides for classification of objects, classes are also used for
typing of objects. According to the object typing rule, a class c is
a type with its domain being the set of all its instances. The
significance of a class type is that, as speculated by the next two
typing rules, it provides a uniform view of its instances which may
actually have different structures and behaviors:

(Attr. Sele.) o.a : t
is -a (o , c ), <a : t >∈c.EAShhhhhhhhhhhhhhhhhhhhhhhhhh

This rule states that for an instance o of a class c , if c has an attri-
bute specification named as a and typed as t , then the value of
attribute a of object o must be of type t .

(Meth. Appl.)

mn (o , v 2, ..., vn ): t
is -a (o ,c ), v 2:t 2,...,vn :tn , (mn , c ×t 2× . . . ×tn →t )∈c.EMShhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This rule states that for an instance o of a class c , if c has a
method specification with its name being mn and the types of
arguments being t 2, . . . , tn and the result type being t , then an
invocation of method mn on object o with arguments of required
types must return a result of type t . The above two rules provide
the basis for strong typing of objects as in class-based models.

4. OBJECT EVOLUTION

4.1. Object Evolution Invariants

As mentioned in previous sections, the object-centered model
allows object to evolve in both their structure and behavior. In
addition to changing their attribute values, objects can also add or
drop attributes from time to time, or change their classes to obtain
different behavior. However, if not controlled properly, such
dynamic evolution of objects may result in unexpected invalida-
tion of their instanceships. For example, for the ToyotaStdTrans

object in the VehicleDB database, if it drops its num_gears attri-
bute, then its previous instanceship to the VehicleTransmission
class will be invalidated as a result of the update because Vehi-
cleTransmission requires all its instances to have a num_gears
attribute. More seriously, an update to an object not only may
invalidate instanceships of this updated object itself, but it may
further trigger the invalidation of the instanceships of its referenc-
ing objects. Continuing the above example, for the Camry com-
plex object in VehicleDB which refers to the ToyotaStdTrans
object, once the instanceship of ToyotaStdTrans to class Vehi-
cleTransmission is invalidated after the update, the previous
instanceship of Camry to the Vehicle class will also be invalidated
consequently because the Vehicle class requires all its instances to
have a transmission attribute of VehicleTransmission type.

The above unexpected invalidation of objects’ instanceships
caused by dynamic object evolution is problematic for the follow-
ing two reasons. First, to maintain the type consistency of class
types according to the Axiom of is-a, all objects whose instance-
ships have been invalidated must be promptly removed from
corresponding classes. However, determining those invalidated
objects may require substantial amount of execution time due to
the cascading effect of instanceship invalidation. Second, cascad-
ing invalidation of instanceships creates a severe difficulty for
static type checking of objects, because it makes practically
impossible to determine the types of objects at compile time.
Those reasons suggest that appropriate control should be applied
to dynamic evolution of objects so that unexpected instanceship
invalidation can be totally prevented.

Below we identify two object evolution invariants that define
the necessary and sufficient condition for preventing any unex-
pected instanceship invalidation. The invariants are presented in
the form of " K P N uo K Q N " which states that if a precondition P
holds before an update operation u is applied to an object o then a
postcondition Q must become true after the update:

is-a Object Evolution Invariant:
For any object o , any class c , and any object update operation
u other than the class de-assignment operation:

K is -a (o , c ) N uo K is -a (o , c ) N

This invariant says that all object update operations except the
class de-assignment must not invalidate any instanceship of the
object they update.

as-a Object Evolution Invariant:
For any object o , any class c , and any object update operation
u :

K as -a (o , c ) N uo K as -a (o , c ) N

This invariant says that all object update operations, including the
class de-assignment operation, must not invalidate any as -a rela-
tionship of the object they update. Here relation as -a (o , c )
denotes that object o is referenced by some other object(s) as an
instance of class c , formally defined as (see Figure 3): there exist
at least a complex object ox and a complex class cx such that: (1)
cx has an attribute specification, say <a : c > ∈ cx .EAS , whose
type is a reference to class c ; and (2) ox has a same named attri-



bute <a : o > ∈ ox .EA whose value is a reference to object o ; and
(3) ox is an instance of class cx (this implies that o must be an
instance of c ).

o

a : o

cx

ox

c

a : c

referencelegend:

Figure 3. as -a (o , c ) relation

The is -a invariant assures that, from the time when an object
o is explicitly assigned to a class c and until it has been explicitly
de-assigned from c with a class de-assignment operation, all
object update operations applied to o during this period will not
affect the instanceship of o to c . Furthermore, the as -a invariant
assures that, from the time when the first reference to object o as
an instance of c is made and until all such references have been
removed, object o cannot be de-assigned from class c . Conse-
quently, the instanceships of objects that refer to o will also be
unaffected at any time by updates to o . Together the above two
invariants guarantee that under no circumstance will the instance-
ships of objects be affected by object evolution operations.

4.2. Object Evolution Rules

In the previous subsection, we identified two invariants that
must be preserved by object evolution operations in order to avoid
unexpected instanceship invalidation. In this subsection, we
present a set of object evolution rules that represent the strategies
adopted by the model in maintaining those object evolution invari-
ants.

Class Assignment Rule:
If an object o belongs to more than one class, then for any two
classes c and c′ that o belongs to, i.e., is -a (o , c ) and is -
a (o , c′ ), if min_type (o , a , c ) ≠ nil and min_type (o , a , c′ ) ≠
nil then min_type (o , a , c ) = min_type (o , a , c′ ) must hold.

Here function min_type (o , a , c ) denotes the minimum type that
the value of attribute a of object o has to obtain in order to
preserve its instanceship to class c , formally defined as:

min_type (o , a , c ) =
I
K
L nil

t
otherwise
if is -a (o , c ) and <a : t >∈c.EAS

This rule says that for all classes which an object belongs to and
require an attribute a , they must require the same type for a . This
rule ensures that objects can be updated independently by each of
those classes that they belong to without affecting their instance-
ships to other classes.

Class De-Assignment Rule:
For an object o and a class c to which o belongs, if as -
a (o , c ), then o cannot be de-assigned from c .

This rule ensures that the removal of an object’s instanceship will
not affect the instanceships of its referencing objects.

Attribute Deletion Rule:
For an object o and an attribute a , if there exists a class c
such that min_type (o , a , c ) ≠ nil, then a cannot be deleted
from o .

This rule says that if an attribute of an object is still required by
some class to which the object belongs, then the attribute cannot
be dropped from the object.

Attribute Update Rule:
For any new value v to be assigned to an attribute a of an
object o , if there exists a class c such that min_type (o , a , c )
≠ nil, then v : min_type (o , a , c) must hold.

This rule says that all attribute values assigned to an object must
fall into the minimum types required by those classes that the
object belongs to.

It is not hard to see intuitively that above object evolution
rules maintain the two object evolution invariants of the last sub-
section. By enforcing those rules, the model allows objects to
evolve without sacrificing its strong-typing capability.

5. OBJECT VERSIONING

In design systems, changes to design entities usually need to
be versioned for various purposes such as documenting their evo-
lution process or representing different design alternatives and
revisions. Current object-oriented version models use generic
objects as an abstraction to represent the version sets of versioned
entities. Generic objects also support dynamic references used to
dynamically configure complex designs. However, the typing
rules for dynamic references require that a generic object must be
bound to some type t all the time. As a result, in current version
models versions of a generic object can only model incremental
changes on a versioned entity.4, 10)

In this section, we describe a generalized object versioning
scheme that is fully integrated with the object-centered data
model. We show that our versioning scheme can capture a
broader spectrum of the evolution process of versioned entities
than existing version models.

5.1. Generic Objects

A version of a design entity is a semantically meaningful
snapshot of the entity at a point of time. For each versioned entity,
a generic object is defined, which represents all versions − each
being an object by itself − of this versioned entity. A derivation
relationship, derived-from, is also defined among the set of ver-
sions of a generic object to capture the evolution history of the
versioned entity. A generic object does not have any user-defined
attribute and is not assigned to any user-defined class (though they
can be assigned to some system-defined class such as Generic to
inherit version-related operations defined on the class).

Definition Object Versions: An object version is a tuple ov = (id ,
pro , A , gen ) where id , pro , and A are the identifier, prototype
identifier, and attributes of ov , and gen ∈ ID is the identifier of the
generic object to which ov belongs. `



Definition Generic Objects: A generic object is a triple og = (id ,
VS , VG ) where

g id ∈ ID is the identifier of the generic object.

g VS ∈ 2O is a set of object versions called the version set of the
generic object. For every ov ∈ VS , (ov ).gen = id .

g VG = (VS , E ) is a DAG (Directed Acyclic Graph) called ver-
sion graph of the generic object, in which nodes represent ver-
sions in VS and edges represent the derived-from derivation
relationships among those versions. `

From now on, the set of all objects O will be partitioned into three
subsets, O = O u ∪ O v ∪ O g , where O u denotes the set of all
unversioned objects, O v the set of all object versions, and O g the
set of all generic objects.

A new object version can be created from scratch or derived
from some existing one. In the later case, a new copy of the
predecessor object version is made as the initial state of the newly
derived successor version and a derived-from relationship is esta-
blished between the two versions. After the creation of an object
version, its structure and behavior as well as its attribute values
can still be changed. These general forms of changes, though not
allowed in current version models, are possible in our model for
two reasons. First, they are allowed by the host object-centered
data model, as we have described in the previous sections.
Second, they are also allowed by the object versioning mechanism,
because generic objects are not associated to any class type and
thus do not enforce any typing constraint on their versions. There-
fore, different versions of a generic object may belong to different
classes and have different structures and behaviors. As a result,
versions of a generic object in our model are able to capture the
complete evolution process of a versioned entity.

For example, assume that the VehicleDB database has evolved
substantially since its creation, see Figure 4. In particular, addi-
tional subclasses have been added under VehicleEngine, and more
versions of V 6Engineg have been derived.2 Those versions of
V 6Engineg belong to different classes (except V 6Enginev

2 which
does not belong to any class) and have different structures and
behaviors.

5.2. Version References

Versions of a generic object can be referenced either statically
or dynamically:

Definition Static vs. Dynamic References: A static reference is an
object reference value v = ov .id where ov ∈ O v , and a dynamic
reference is an object reference value v = og .id where og ∈ O g .
`

Both static and dynamic version references can be used to
configure complex objects, as shown in the following example:

hhhhhhhhhhhhhhhhhhhhh
2 Here V 6Engineg is used to denote the generic object for V 6Engine

designs and V 6Enginev
i is used to denote its i th version.

Lexus = ( Lexus ,
nil,
{ engine: V 6Engineg ,

transmission: ToyotaStdTransv
k } )

Here the value of the engine attribute of complex object Lexus is
a dynamic reference to generic object V 6Engineg , and the value of
its transmission attribute is a static reference to object version
ToyotaStdTransv

k.

Dynamic references to generic objects are resolved into static
ones at run time by context functions. A context function takes a
generic object as the argument and returns a version of the generic
object as the result. Accordingly, all dynamic references to the
argument generic object are mapped into static references to the
result object version. In this way, up-to-date versions of com-
ponent designs can be dynamically incorporated to configure com-
plex designs using different context functions.

An unconventional feature of dynamic references in our model
is that they can also have a selection condition associated with
them. The selection condition restricts the versions that can be
mapped to by the dynamic references.

Definition Conditioned Dynamic References: A conditioned
dynamic reference is a dynamic reference argumented by a class
parameter: og .id (c.cn ) where og ∈ O g and c.cn ∈ CN, which
enforces the following constraint on any context function π:

π(og .id (c.cn )) ∈ { ov
i .id | ov

i ∈ og .VS and is -a (ov
i , c )}

The class argument c.cn is called the selection condition of the
conditioned dynamic reference. `

Namely, unlike a normal dynamic reference which can select any
version of the referenced generic object to map to, a conditioned
dynamic reference will select only among those versions that
belong to the class specified by its selection condition for subse-
quent mapping.

Conditioned dynamic references allow complex designs to
dynamically select qualified component design versions according
to their configuration requirements. For instance, assume that the
previous Lexus complex object must use a GasolineEngine type
of engine in its design as determined by certain design rules. Then
a selection condition can be added to its dynamic reference to the
V 6Engineg generic object, as shown below, so that it will select
only those versions of V 6Engineg that are of GasolineEngine
type:

Lexus = ( Lexus ,
nil,
{ engine: V 6Engineg (GasolineEngine ),

transmission: ToyotaStdTransv
k } )

Thus only version V 6Enginev
1 or V 6Enginev

5 of VehicleEngineg

can be selected in a configuration of Lexus (see Figure 4).

Conditioned dynamic references are also beneficial for typing
of dynamic references. In contrast to an ordinary dynamic refer-
ence og .id that cannot be statically type-checked because it can be
mapped to any version of og which belong may belong to any
type, a conditioned dynamic reference og .id (c.cn ) is strongly
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Figure 4. Versions of V 6Engineg

typed with type c as it can only be mapped to a version of og

which belongs to type c . Therefore, the selection condition in
conditioned dynamic references supplements generic objects with
the typing information required for static type-checking of
dynamic references.

6. Related Work

The object-centered model is not the first attempt on consoli-
dating both the class-based and the prototype-based modeling
approaches. There exist also other models that combine features
of both types of models.

One such a model is Pegasus, an extension of the EXTRA
class-based model.3) In addition to the specialization inheritance
relationship among types, a new kind of inheritance relationship,
called extension, is added which specifies that an instance of an
extension subtype must have a prototype in its extension super-
type. Such an extension relationship improves the inheritance
flexibility of class-based model by supporting a limited form of
object-level inheritance among certain types of objects. Still, no
improvement for object evolution has been achieved since all
instances of a type have a uniform structure as in class-based
models.

In another model Vision,8) a real-world entity is modeled as an
object hierarchy wherein objects represent different roles of the
entity and are related by the prototyping inheritance relationships.
In addition, template hierarchies can be defined as prototype
hierarchies used for cloning instances. Although template hierar-
chies provide an elegant way of ensuring uniformity of newly
cloned objects, their use is purely advisory and one may arbitrarily
change the structure and behavior of an object after its has been
cloned from a template no matter whether it is sill being refer-
enced or not. The model, however, is not strongly-typed due to its
heavy basis on the prototype-based approach.

By contrast, our model provides a more balanced combination
of the two modeling approaches. Following the prototype-based
approach, our model defines objects as independent structural enti-
ties that can share among them both definitions and states through
the prototyping relationship. Following the class-based approach,
our model uses classes to classify objects and to ensure uniformity
on their instances. But by substituting the intimate and permanent
binding between objects and classes with a loose and non-
permanent one, our model overcomes the limitation of class-based
models in allowing objects to evolve in their structure and
behavior. Furthermore, by enforcing a small number of object
evolution rules, our model still preserves the strong typing capabil-
ity that can not be achieved in prototype-based models.

7. Conclusions

In this paper we have presented a new object-oriented data
model that consolidates features of both class-based and
prototype-based models. The model extends the prototype-based
modeling approach with a novel classification mechanism which
enables objects to be loosely and temporally associated to classes
to inherit their behavioral definitions. We showed that the model
not only allows object to evolve in both structure and behavior, but
also supports flexible object classification and strong typing as
required by advanced engineering design databases. We also
showed that the model provides the basis for a generalized object
versioning scheme that can capture the complete evolution process
of versioned entities.
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