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Abstract

Multimedia applications are becoming part of our
daily interaction with computing systems. These ap-
plications need storage system support for both contin-
uous media and conventional data, requiring advances
in many areas, including scheduling, resource man-
agement, admission control, hierarchical storage, and
the application/server interface. The Calico contin-
uous media storage system, which is currently being
implemented in ATET Bell Labs, is a testbed to ez-
amine these issues. This paper provides an overview
of a hierarchical resource model for the Calico server
to manage resources and schedule disk and network
requests to the operating system. Qur goal 1s to sup-
port efficient, high quality continuous media service in
distributed and somewhat unpredictable environments
such as networked conventional UNIX workstations

and PCs.

1 Introduction

Great demand has arisen for continuous media ser-
vice on networks of conventional workstations and per-
sonal computers running common operating systems
like UNIX. But the usual mechanisms in this environ-
ment provide fair resource allocation with no notion of
time-sensitive behavior. Consequently, as the system
load increases, a smooth playout of continuous media
streams cannot be maintained because of loss of CPU
cycles and network and disk bandwidth, leading to
delayed transfers. The solution is improved resource
management and scheduling.

This paper presents the efforts of the Calico project
to support continuous media for conventional net-
worked workstations and PCs. We describe user-level
mechanisms and policies designed to give good, effi-
cient multimedia service under the mild assumption
that the operating system provides a preemptive real-
time scheduling class that can be used to give CPU
cycles to the multimedia processes in preference to
other processes that are not time sensitive. Sun’s So-
laris and some versions of Hewlett-Packard’s HP-UX

provide this, as does Microsoft’s Windows NT. We do
not assume isochronous networks or operating system
kernel modifications, and do not assume that applica-
tions can provide detailed descriptions of the resources
they will consume in the server; it suffices for an ap-
plication to state that it wants to play a particular
stream of a type known to the server (e.g. a file con-
taining MPEG-1 video 320x240 pixels, 8-bit color, 30
frames per second), or for the application to specify a
frame rate and an index describing the offset of each
frame in a file.

To give good continuous media service, resources
need to be managed to avoid shortages that would
cause interruptions. Three broad choices in the liter-
ature are

1. Hard real-time scheduling. This approach requires
an environment where every latency and resource
requirement is known [NRS*93, SZ92]. Hard
real-time scheduling is expensive, and is impos-
sible in general timesharing environments charac-
terized by unpredictable resources and delays.

2. Conservative resource usage estimates. Admis-
sion control limits the service load to that known
to be safe in the worst case, or known to be safe
with high probability [JSZC92, AOG92, And93].
However, conservative estimates lead to low uti-
lization in a general operating system setting.

3. Resource modeling and reservation. Admission
control and resource scheduling is performed by
a model of the resources available and the re-
source consumption demanded by a new request
[LS93, WHN92, VR92]. One problem here is that
a resource model of the system cannot be both
highly accurate and inexpensively computed, par-
ticularly for general timesharing environments.
Another problem is that the precise resource con-
sumption implied by a new request for service is
generally unknown.

The above approaches generally share the admus-
ston control assumption, namely that a request for ser-
vice should either be refused immediately, or should



be guaranteed good service. (We do not discuss “best
effort” systems that make no guarantees whatsoever.)
To support the admission control assumption, the sys-
tems must place fairly strong requirements on the de-
terminism and predictability of the system and work-
load.

Our algorithms schedule the issuing of /O requests
to the operating system on the server so as to manage
the bandwidth of the disks, disk controllers, memory
subsystem, and network to get the needed multimedia
frames to the clients in the right timeframes. If the
network supports bandwidth reservation, the network
portion of the scheduling reduces to simple admission
and monitoring. The techniques for resource manage-
ment in the client/server environment are also appli-
cable to systems playing continuous media from local
disks. The network scheduling is applicable to (local
area) network environments where the server send and
client receive operations are closely coupled. A differ-
ent and important area of research involving store and
forward wide area networking has been studied else-
where (e.g., in [HD92]).

The goals during the first phase of our work are the
following:

1. A weaker form of the admission control assump-
tion that is suitable for a general application envi-
ronment such as UNIX workstations and PCs on
networks that may not support bandwidth reser-
vation.

2. A hierarchical resource scheduling algorithm that,
based on simple conservative resource availability
and consumption functions, identifies the initial
set of transfers to be issued to the operating sys-
tem at the beginning of each schedule cycle.

3. An algorithm for dynamic slack determination
and filling that observes actual resource consump-
tion during a cycle and dynamically initiates ad-
ditional transfers to improve utilization.

In an environment where the available resources
cannot be characterized precisely, and the resource de-
mands implied by client requests for continuous media
service are not accurately known, our algorithms give
good service to the most important! continuous me-
dia jobs, focusing resource insufficiency on the least
important jobs. This is the best that can be done
without stronger assumptions on the predictability of
the system and workload. To our knowledge none of
the existing approaches do this.

IMost important is determined by an arbitrary prioritization
policy that places a rank ordering on the jobs.

Currently, the focus of our work is on playback of
continuous media (e.g. audio and video). The record-
ing of continuous media is not a time sensitive activ-
ity: a server having sufficient bandwidth to accommo-
date the stream can use buffering and delayed writes
to handle recording of continuous media at its conve-
nience.

The environment of interest is quite different
from that of specialized multimedia systems, such
as video on demand, which are generally character-
ized by isochronous or reservation networks connect-
ing special-purpose servers with specialized client sys-
tems. In that environment, the workload characteriza-
tion and system performance controls are sufficiently
tight that deterministic scheduling can give high qual-
ity with high system utilization.

2 Overview of the Idea

When a new job arrives and requests service, a sim-
ple admission triage generates one of three responses

e Trivial admit. The system is very underloaded
and can provide the requested service.

e Trivial reject. The system is very overloaded so
service is refused.

e Conditional admit. Service will be attempted.

The guarantee given by admission is not uncondi-
tional good service. It is that the service to an ad-
mitted stream will not be degraded until all “less im-
portant” streams have first had their service cut off,
where “less important” is defined by some importance
ranking policy. Overload handling and service degra-
dation is discussed further in section 2.1.

The server issues batches of disk and network trans-
fer requests to the operating system to gain the ben-
efits of disk scheduling and overlaps. But this means
the requests will complete in unpredictable orders.
Cyclic (periodic) scheduling is used to establish time
frames that can be monitored to detect tardiness be-
fore jobs actually miss their deadlines.

For each cycle the server performs relatively simple
conservative resource modeling to grant bulk admis-
sion to this cycle for the most important jobs that
can safely be predicted to complete on time. Dur-
ing the cycle the server does online tracking of actual
resource consumption, and dynamically admits addi-
tional transfers to this cycle when possible. The idea is
to only pay the cheap cost of simple modeling, but to
achieve a good utilization by dynamically filling slack



regained from conservative estimates by the early com-
pletion of transfers.

The server does not actively manage CPU cycles.
We assume it runs in a real time process class so the
continuous media service can prevent other jobs (that
are not as time-sensitive) from starving the continuous
media streams for CPU cycles. Given this, we assume
that the system bottleneck is somewhere in the disk,
network, or memory subsystems.

The scheme does not depend on a balanced archi-
tecture: the resource scheduling dynamically adjusts
to the bottleneck resource, whether that be a disk,
disk controller, network interface, or the memory sub-
system. Consider, for instance, fast workstation with
Ethernet vs. fast workstation with gigabit ATM net-
working.

The network is not required to support bandwidth
reservations, but if they are available then the system
efficiency should increase because more streams will
be granted bulk admission to a cycle, and fewer will
be served by absorbing slack dynamically freed dur-
ing the schedule. In addition, clients obtain better
assurance of high service quality because the hazard
of network bandwidth shortages has been eliminated.
Of course for non-reservation networks like Ethernet
the clients will experience degradation if the network
bandwidth goes away. Several schemes are described
in the literature for obtaining good service in practice
by buffering ahead and coping with temporary band-
width reduction by techniques such as frame dropping

or audio dilation [JSTS92, AH91, LK92, KR94].

2.1 Overload Handling and Quality of
Service Degradation

If the system is not totally isochronous so i1t can
be perfectly scheduled, or if scheduling is not maxi-
mally conservative, then there will be overloads. Con-
sider for example variable bit rate compressed video,
or scripted presentations that have peaky bandwidth
demands: given that the user interface provides VCR
functions including pause, fast forward, and rewind,
then an adversary can cause the peaks to coincide in
the worst possible way.

So the question is how to handle overloads. Nu-
merous techniques have been proposed for load shed-
ding. Some systems such as [HZ94, And93] serve
three classes of clients: continuous media, interactive
response, and background; the latter two can have
their service rate reduced to save resources for con-
tinuous media. Vin et al. [VGGG94] suppose that
some streams are pre-identified as degradable, i.e. able
to cope with reduction of bandwidth, and their sys-

tem degrades these streams first, based on measures
of how loss tolerant each client is, spreading the degra-
dation proportional to loss tolerance. Other proposals
for load shedding include the use of scalable digital
coding and service degradation by reducing resolution
[CZ94], the deferral of processing for requests that
the application has indicated that are less important
[WHN92, CT94], and the reduction of bandwidth by
reducing resolution or frame rate [CT92]. The Pega-
sus operating system forcibly revokes resource reser-
vations to reduce the bandwidth provided to the client
[LMMO93]; the client is presumed able to deal with this.

Our position is that these are policies, so the server
has no business selecting which of these techniques
to apply. We assert that if a stream is missing its
deadlines because of system overload, an application-
selected policy should be applied to that stream. The
server just provides the mechanisms.

A strategy of degrading service to cope with over-
load will be perceptually significant, because slight
degradation of the streams won’t yield significant re-
source savings. For instance, if the server disk sub-
system is the bottleneck, killing 10% of the streams
will shed 10% of the load, but dropping 10% of the
frames in all streams sheds much less than 10% of
the load because disk seek overhead becomes relatively
higher. Omitting a few frames from the middle of a
whole track read may result in no mitigation of over-
load whatsoever [VGGG94].

The conventional admission control assumption
leads to policies that accept new clients for service,
even if this means degrading the quality of service pro-
vided to existing clients, up to some threshold beyond
which new clients are refused. By contrast, our ad-
mission control does not need to predict the degrada-
tion that would result from admitting the next client,
because clients are admitted subject to the condi-
tion that any degradation required to handle a result-
ing overload will be focused on the least important
streams. In particular, our scheduling algorithms pro-
vide a mechanism to protect a subset of the streams,
and use a prioritization policy that explicitly chooses
which streams to protect and which others to degrade.
We can use any policy that gives a rank ordering over
all the streams. A simple policy that appears useful
for the server is to protect the oldest streams, degrad-
ing the newest.? Thus streams that have been running

2Jones and Hopper [JH93] give good arguments that on the
client side, when overloaded, a desirable prioritization policy is
to degrade old streams in favor of the newest one. (Scenario:
accept a video call, let it degrade the movie playing in the back-
ground; the movie will again receive good service when the video
call is over.)



for a long time will tend to be protected from degrada-
tion, while streams that recently started may be inter-
rupted if it turns out that there really isn’t sufficient
capacity to serve them. A new client who requests
service can quickly see whether the quality of service
is satisfactory and decide whether to continue or quit.
Thus resource insufficiency is focused on unsupport-
able newly added load, stimulating client-driven load
shedding. Furthermore, a client can state how 1t would
like be degraded (e.g. lower frame rate or resolution)
if it would otherwise be suspended because of resource
insufficiency. Note that this has been a discussion of
load shedding policy (who to hurt during overload),
not how conservative to make admission control (to
set the tradeoff between system utilization and prob-
ability of degradation).

2.2 Composite Streams

Consider composite streams such as video with au-
dio, or scripted presentations consisting of a time-
related collection of continuous media streams and
discrete data objects such as images that will be syn-
chronized at the client for joint presentation. From
a human factors standpoint, loss of audio is a much
greater failure than loss of video. Therefore, schedul-
ing should consider more than a frame’s intended pre-
sentation time: in systems that can’t provide hard
real-time guarantees, it is wise to send small valuable
frames well ahead of time, and buffer them on the
client side. This can be hidden in the client-side li-
braries that handle composite audio-video streams by
prefetching audio data to the client buffer far in ad-
vance. Transfer scheduling to the client is distinct
from presentation scheduling at the client.

The server of Long et al. [LOC93] sends data at a
slightly faster frame rate than specified by the client.
This builds up the amount of data buffered at the
client until buffer space limitations apply backpres-
sure, establishing a cushion to protect against jitter
and modest stream stalls. Other systems such as
[KR94] use dynamic feedback control of the transfer
rate to maintain a satisfactory client buffer size.

Our server supports applications that wish to trade
more aggressive degradation of some streams in ex-
change for better protection of others. Applications
can specify tradeoffs in the prioritization policies of the
component streams of a composite or scripted job. A
newly arriving job can boost the priority of some com-
ponents while antiboosting the priority of others, pro-
vided (a) that the bandwidth-weighted average prior-
ity does not increase (the job must give up more than
it gets), and (b) it doesn’t injure established streams

unless these streams have antiboosted priority (the job
only hurts those who gave permission to be hurt in ex-
change for their own boosts). In other words, a stream
is only permitted to boost if it (a) does not cause an
overload, or (b) causes an overload that only degrades
antiboosted streams.

It may be necessary to prevent an application from
boosting the priority of a scripted component now in
exchange for hurting another component in the future,
otherwise it could cheat by appending dummy com-
ponents to the end of a script, boosting to get good
service now in exchange for degradation of the dummy
portion that won’t really be used anyway. Two ways
to handle this are (1) an economic solution: charge for
the entire composite, including dummy portions, or
(2) pre-verification or policing of the entire schedule:
during no cycle does the bandwidth-weighted boost
exceed the antiboost. Similarly, an application should
not be able to pad composite streams with dummy
streams that exist only to be degraded. Two ways
to handle this are (1) economic: charge for the entire
composite including dummy portions, or (2) discrim-
inate against higher bandwidth jobs so that adding a
dummy stream and degrading it maximally, boosts the
remaining streams only to the priority they would have
obtained had the dummy stream not been a member
of the composite in the first place.

Similarly, the overall approach of favoring older
streams encourages a client to improve its priority by
opening a stream hours ahead of time, but (pause)
not starting the actual data transfer until much later,
at which point it could have amassed sufficient prior-
ity to displace clients that had been running smoothly
for the past tens of minutes. This may be ok if a
client is charged from the time the stream is opened:
a client can buy better service by holding open an idle
line, and the server has been charging a client that has
been generating no server load.

3 Alternative Techniques

In this section we compare various approaches de-
scribed in the literature with the Calico efforts.

3.1 Admission Control

Many systems incorporate the idea of job admis-
sion control as the mechanism to obtain a good qual-
ity of service. The idea is to protect the existing
jobs by refusing new jobs that could result in sys-
tem overload. If the admission control is too con-
servative, the result is system underutilization. Too



liberal admission leads to overloads and consequent
degradation of the existing jobs. This sort of admis-
sion control doesn’t guarantee quality of service, and
it requires considerable knowledge about the capac-
ity of the system and resource consumption of the
clients. Specific systems include the following. Vin
et al. [VGGGY4] perform admission control based on
current measured load and the resource requirements
of the new stream. [JSZC92] also perform admission
control of a new client based on the current traffic
measurements. The GRAMS system [HZ94] classifies
requests into three categories, one for continuous me-
dia, a second for demand-driven retrieval by interac-
tive clients, and a third for retrievals that are not time
sensitive. During overload conditions, service to the
latter two classes is reduced or suspended. Overload is
determined by a starvation counter technique based on
buffer underflow. [SW93] gives a systematic overview
of issues in constrained latency retrieval. Systems are
classified by size and predictability of requests, and
the authors present a table indicating that quality of
service guarantees are generally unobtainable.

Our approach refuses admission only when the sys-
tem is clearly in overload: admission control can ef-
fectively limit the server load, but generally cannot
guarantee quality of service. Quality of service can’t
be guaranteed unless the system and applications are
sufficiently predictable that hard real-time scheduling
techniques apply. In systems that are nearly that pre-
dictable, statistical guarantees can be obtained. For
the less predictable environment of networked work-
stations and PCs, a weaker criterion is needed. Our
approach is to provide good quality of service for
jobs that fall within the capacity of the system by
a scheduling and resource monitoring approach that
focuses the resources on the most important jobs. Im-
portant streams are protected by focusing degradation
on the minimal number of least important streams.
Our scheduling is robust because of the dynamic slack
monitoring, whether overloads are the result of too
many jobs admitted, overcommitted schedules, or ex-
ternal resource loss. This approach can detect and
proactively handle impending cycle faults, with the
potential to recover before any degradation of impor-
tant streams occurs.

3.2 System Bottleneck

Many proposals are targeted at systems with the
bottleneck in a specific subsystem, most often the
disk subsystem, assuming fast networks such as ATM.
Among these are the following. NTT’s VTSS tech-
nique [FTKS94] uses rate based fetching, and rear-

ranges client requests to improve startup response
time. Any slack is used to fill the buffers with the
least remaining playout time, so that the schedul-
ing cycle period can be lengthened to drive up the
system efficiency. The MOD server of [KCS94] fea-
tures whole track transfers, no constraints on data
placement placement, and sufficiently long disk queues
that the SCAN disk scheduling algorithm makes the
seek times negligible. The server of [DSK94] sched-
ules batches of 8 concurrent requests to each disk con-
troller; the controllers perform their own internal fetch
scheduling. Each 64 KB disk block contains a pointer
to the next, to avoid directory query operations. Disk
striping is used. Admission control only considers disk
utilization, and unfortunately, appears to be linear in
the length of the movie requested. [Dai94] gives a for-
mal analysis of disk scheduling for continuous media.
They break huge disk transfers into track sized ones
to make the disk more preemptable, which increases
the effectiveness of the real-time scheduling algorithm
they apply. They coalesce all periodic tasks into a su-
perperiod and schedule this with a fixed period but
different buffer sizes depending on the bandwidth of
each stream.

Our system is not designed with one particular re-
source assumed to be the bottleneck. The hierarchical
resource scheduling technique dynamically determines
the bottleneck subsystem, and schedules and slack-fills
to highly utilize that resource.

3.3 Hardware Organization

Some systems use outboard subsystems to han-
dle continuous media separately from the computer
processor and memory. This prevents interference
between the multimedia and computing, but sup-
ports presentation rather than application processing
of multimedia streams. Other systems use architec-
tures that decouple the workstation subsystems into
semi-independent components on a desk area network.
Among these are Pandora [JH93] and the system of
[BCC193] that use attached network hardware to han-
dle the routing of multimedia outside the worksta-
tion’s memory bus. [LMM93] use the desk area net-
work approach in Pegasus for the same reason.

Our system handles continuous media as first-
class data on conventional workstations and PCs,
transferred and processed with the same operat-
ing system mechanisms and privileges as any other
application data. There is considerable sentiment
that the interesting new algorithms want to manip-

ulate the continuous media bits, not just issue VCR
commands.[BCCt94]



3.4 Service Degradation During Overload

Many systems implement specific policies for degra-
dation of continuous media streams during system
overload, including those discussed with respect to ad-
mission control in section 3.1 above and in the discus-
sion of load shedding in section 2.1.

Our system provides a collection of mechanisms,
and lets applications specify the disposition policies
to be applied to their own streams if they cannot be
served on time.

3.5 Scheduling Approach

Many systems use scheduling algorithms from the
real-time scheduling theory, including least laxity first,
earliest deadline first, and rate-monotonic scheduling,
but in general, these systems have insufficient infor-
mation to guarantee deadlines.

Since we know we can’t provide real-time guaran-
tees, our system performs scheduling by an efficient
greedy bin packing technique, and manages resource
consumption dynamically, based on observation of the
system performance actually achieved.

3.6 Client/Server Interface

Many systems state a specific API that defines the
interworking between client and server. For instance,
[Bul92] describes a support request from application
to the Amsterdam Multimedia Framework based on
a multimedia document specification that describes
the document component’s synchronization needs, re-
source needs, and priority. The system responds with
trivial accept, trivial reject, or negotiated accept that
starts a process of negotiation for service with fewer
resources.

We just state a few requirements on the interwork-
ing, because our techniques are broadly applicable and
largely independent of any particular API.

4 Concluding Remarks

We have provided an overview of our efforts in
the Calico project for handling continuous media effi-
ciently and with good service quality on conventional
computers and operating systems, given a real-time
scheduling priority such as in Sun’s Solaris or Mi-
crosoft’s Windows NT. The key ideas are (1) to per-
form hierarchical resource scheduling based on conser-
vative estimates of resource consumption, and based

on dynamic monitoring of actual resource consump-
tion, improve utilization by slack filling, (2) protect
the quality of service for the maximal number of im-
portant streams by focusing degradation during peri-
ods of resource insufficiency on the streams deemed
least important according to some prioritization pol-
icy, and (3) use application-specified policies to de-
grade streams, rather than a common server-specified
policy.

10 Mb Ethernet is common, but also is a severe bot-
tleneck by comparison with typical disk subsystems.
Both slow ISDN and fast ATM networking may play a
role in our future systems, so it is important to have an
architecture that can handle gross imbalances between
available disk and net bandwidth. Calico’s approach
dynamically determines the bottleneck resource and
schedules it for high utilization.

With respect to general storage servers, we see three
useful classes of data service: continuous media, trans-
actional storage (including persistent objects), and file
service. It may be useful to have an integrated server
that can handle all three classes, which is a possible
future direction of Calico.
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