Object Storage Management Architectures

Alexandros Biliris' and Jack Orenstein?

1 AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.
Email: biliris@research.att.con

2 Object Design Inc., One New England Executive Park, Burlington, MA 01803, USA.
Email: jack@odi.com

Abstract. This paper examines the architectural issues in building storage
systems for object-oriented database management systems (OO DBMSs) and
persistent languages. We survey techniques for placing small and large objects
on disk and disk space management, and we present client-server architectures
for OO DBMSs. We describe alternatives in making a programming language
persistent and in particular, we discuss pointers and three pointer dereference
mechanisms: import /export, software dereference, and hardware dereference.

1 Introduction

Relational database systems cannot meet the requirements of advanced database
applications such as electronic CAD, mechanical CAD, geographic information
systems and computer-aided publishing [28]. These applications are character-
ized by extremely complex data structures, and complex patterns of computa-
tion and navigation. They are implemented in 3GLs such as FORTRAN, C, and
C++, and because these applications are both computationally intensive and
interactive, the performance demands are severe. The requirements of these ap-
plications are quite different from “traditional” ones, in which high throughput
for simple manipulations of simple data models is the goal.

The data management requirements are similar to those of more traditional
applications in that both persistence and transaction management are essential.
Associative queries and related features such as views are useful but not essential.
It is often the case that large volumes of existing code, (typically in FORTRAN
and C) need to be supported, and of course there are no queries in this code.
There is, of course, associative access, but it 1s coded in very low-level terms,
e.g. a binary search subroutine. The acceptance of query processing, provided in
the database language or in some sort of collection libraries, is a slow process by
the developer’s of these non-traditional applications.

Relational databases are not a good fit for the needs of these non-traditional
applications. The modeling and performance requirements differ, as noted above.
The separation of logical and physical schemas, supported by relational databases,
is not so important for CAD applications - performance requirements are so strin-
gent that concerns about representation are part of the application developers



2 Alexandros Biliris and Jack Orenstein

conceptual view. There is also a “cultural barrier”. Developers of non-traditional
applications either have no experience with database systems, or have been dis-
appointed by the performance and modeling problems of relational database
systems, (i.e. problems in applying these systems to their applications). Because
of these problems, many developers have relied on “home-grown” data man-
agement systems. Many of these developers are now using or investigating OO
DBMSs because they solve the same problems but have advantages in ease of
use, performance, safety, or cost.

Like any relational DBMS, an OO DBMS offers persistence, transaction man-
agement, and associative queries. An OO DBMS also has the benefits of a pro-
gramming language, namely generality (as opposed to an incomplete languages
such as SQL or QUEL), low-level efficiency, and object-orientation [4].

In this paper we examine the architectural issues in building storage sys-
tems for object-oriented database systems and persistent languages. We start in
Section 2 with techniques of placing small and large objects on disk, and disk
space management. Section 3 describes client-server architectures. In Section 3.3
we discuss mechanisms for caching objects or larger units of data on the client
workstation. Section 4 describes alternatives in making a programming language
persistent. Section 5 discusses pointer dereference mechanisms. Section 6 sum-
marizes our work.

2 Organizing Objects on Disk

Most database systems store objects on slotted pages [3, 37]. The basic idea is
as follows. A slotted page contains a header and a variable size array of slots at
the beginning and at the end of the page, respectively. The offset of each object
from the beginning of the page is kept in one of the slots. When the first object
is inserted into an empty page, it is placed right after the page header and slot[0]
points to that location. Subsequent records are inserted right after the previous
one, and their offsets are stored in the next slots (toward the beginning) of that
page. So, as the page gets filled up, records and their slots grow towards each
other and the free space is squeezed. Details for organizing and administering
slotted pages vary considerably from system to system. For instance, slots can
grow from left (right after the fixed-size page header) to right and objects from
right (starting at the end of the page) to left.

The physical address of the object consists of the page number and the disk
volume in which the object is stored and the slot number that contains the
object’s offset within the page. This way, objects can be shifted within the page,
e.g., to make room for new objects when existing ones are deleted, without
changing their address.

Object ids (oids) uniquely identify objects for the life of the database (sort
of). In some systems, oids are the physical address of the objects. Other systems
use logical oids, i.e., a value that maps through some kind of table to the actual
location of the object. Physical oids are large and fast (no need for translation
to locate an object) and logical oids are more flexible (allow free movement



Object Storage Management Architectures 3

of objects). With physical oids, object can be moved too; however, the new
address of the object must be kept in the original place so references to it can
be forwarded to the new address. There are also combinations. In Mneme for
example [30], oids always name objects within a single file. So, if an object needs
to refer to another one in the same file the oid of the referenced object would
suffice to identify it. References to objects in other files are made with one level
of indirection. In Section 4.1 we discuss the relationship between programming
language pointers and oids.

In any storage system, there must be a mechanism that gathers “related”
objects together; database files serve this purpose. On the physical level, a file
consists of a number of pages and/or segments — a number of physically con-
tiguous pages. Usually, pages and the objects stored on them belong to one file
only but there are systems that allow object replication in many files [21]. File
organizations are classified according to the technique used to insert objects in
them: in unsorted files a new object is placed in any of the file’s pages or it is
appended at the end of the file; in key-based files — such as sequential files, hash
files, B-tree files — an attribute value of the object is used to determine the page
in which the object is stored [19]. Note that in all key-based file organizations
an object may have to be moved to a different page than it was originally as-
signed to. This limits their practicality because pointers that were pointing to
the relocated objects become dangling. To avoid this problem, many systems use
unclustered indices; i.e., indices that store a pointer to the object rather than
the object 1tself.

At minimum, files must provide facilities for sequencing through the objects
they contain. In addition, good object stores and the OO DBMS language should
allow applications to exercise some control over the physical placement of objects
in a database. Although there are proposals for automatically clustering objects,
what seems in practice to have most impact on performance is user specified
clustering hints. Clustering hints may take the form “put the object near this
object”, “put the object on that disk volume”, “do not put more objects on the
page you place the new object”, etc. For example, the latter may be useful in
reducing contention because of locking for frequently accessed pages.

2.1 Large Objects

An object that can’t fit entirely in a single page i1s termed large. Multimedia
applications operate on very large objects such as digital images, continuous
media (digital audio and video), documents and books. To display images, show
movies, or play digital sound recordings, they require DBMSs to manipulate
large objects as efficiently as possible [1]. Large objects may also appear in other
non multimedia kind applications.

There are several functional requirements imposed on a storage manager for
manipulating large objects. First, ideally, the storage manager must have been
designed in a way that can support objects of virtually unlimited size (within the
bounds of the physical storage available). Second, the large object abstraction
must support operations that deal with a specific number of bytes within the



4 Alexandros Biliris and Jack Orenstein

object: read, write, insert, delete bytes starting at arbitrary positions within the
object, and append bytes at the end of the object.

There are also several performance requirements. First, the cost of allocat-
ing a large number of disk blocks must be minimal; this will reduce the cost of
creating a large object. Ideally, the allocation cost should be 1 disk access re-
gardless of the size of the requested space or the database size. The performance
of successive appends at the end of the object is of particular importance since
this is the expected way of creating very large objects.

Second, to perform a byte range operation we must first seek to a specific
byte in the large object which requires efficient random access, i.e., the cost of
locating any given byte within the object must be independent of the object
size. This requirement by itself rules out simple solutions such linking in a linear
fashion the pages on which the object is stored. After the first byte is located, we
need to efficiently sequentially access the remaining bytes of the range to perform
the operation. In turn, good sequential access performance means that the 1/0
rates in reading/writing a large chunk of bytes must be close to transfer rates.
In other words, the cost of byte range operations must depend on the number
of bytes involved in the operation rather than the size of the entire object. For
this to happen, disk seek delays must be minimized which in turn requires that
disk space is allocated in large units of physically adjacent disk blocks, rather
than on a block-by-block basis.

Finally, regarding updates, small changes should have small impact; e.g.,
inserting few bytes in the middle of the object should not cause the entire object
to be re-organized.

In early solutions to large object management [3, 20, 13], single disk blocks
were used to store consecutive byte ranges of the object. The problems with the
above schemes is lack of support for unlimited size objects and the loss of sequen-
tiality. As a result, reads are slow because virtually every disk page fetch most
likely results in a disk seek. More recent solutions store the object in segments of
physically adjacent blocks [11, 27, 5]. From the latter three, EXODUS [11] uses
fixed-size segments, Starburst [27] uses segments of fixed pattern of growth, and
EOS [5] uses variable-size segments. Comparative performance results of the last
three architectures are presented in [6].

In EOS [5], large objects of any size are stored in a sequence of variable-size
segments allocated using the scheme discussed in Section 2.2. These segments
are pointed to by a “count” B-tree-like structure. Each node of the tree con-
tains a sequence of (page-no, cnt) pairs, indicating the child page id and the
number of bytes stored under this child from the beginning of the node. Thus,
the rightmost pair of a node gives the total number of bytes stored below it,
and if the node is the root this value provides the total object size. When the
object’s size is known in advance, maximum size segments are used to hold the
field. Otherwise, successive segments allocated for storage double in size until the
maximum segment size is reached; then, a sequence of maximum size segments
is used until the entire large object is stored. In either case, the last segment is
trimmed, i.e., its unused blocks at the right end are freed. When updates (byte
range deletes and inserts) are performed on the large object, segments may have



Object Storage Management Architectures 5

to be broken up into smaller ones. If during an update operation, the two parts
of a split segment are smaller than some user specified number of blocks, the
segments are merged into a larger one.

2.2 Disk Space Management

Disk space management addresses the problem of allocation and deallocation of
disk blocks to database files. There are two broad techniques, block-based and
extent-based allocation.

In block-based allocation schemes each block is addressed individually (no no-
tion of physical contiguity). Free blocks can be managed by a simple linear linked
list. This is the approach taken by the design of Unix. The file directory contains
an array (inode) of 13 pointers: Pointers 0 through 9 contain the addresses of
the first 10 blocks. Pointer 10 points to a block that contains the addresses of
the next n blocks, where n is the number of block addresses that can fit in a
block. Pointer 11 points to a block that contains n pointers each of which points
to a block with n block addresses (total n?). Similarly for pointer 12. Total ad-
dressability: 10 + n + n? 4+ n3. The expected performance for databases is going
to be poor for two reasons. First, there is no notion of physical contiguity and
second the scheme may lead to an unbalanced directory for large files.

In extent-based allocation schemes, disk space is allocated in chunks of con-
tiguous blocks. An example of an extent-based allocation scheme is the one used
in EOS [5] and it is based on the binary buddy system [25]. Starburst uses a
similar scheme [27].

A disk area is partitioned into a number of equal-size extents. An extent is a
disk section of physically adjacent disk blocks. There is an allocation map direc-
tory associated with each extent that encodes the status (free or allocated) of
each block in the extent. Disk space allocation is performed in terms of segments
— variable-size sequences of physically adjacent disk blocks taken from one of the
extents. For example, a 128-Mbyte disk volume could be partitioned into sixteen
8-Mbyte extents. This allows allocation of segments up to 8-Mbyte long.

In the binary buddy system, segments of a given size can start only at blocks
whose block number is divisible by the size of the segment. For example, a
segment of size 8 can start only at blocks 0,8, 16, ..., etc. Suppose that a free
segment of size n = 2% exists in the extent. In searching for this free segment,
the buddy system always starts by checking the status of segment S = 0. If .S
is of size m # n, searching continues recursively at segment S = .S 4+ max(n,m)
until the desired segment is located. Thus, in order to locate a free segment of a
given size, there is no need to check every single byte of the allocation map.

If there is no free segment of size 2° we find the smallest free segment of size
27 such that j > t. Then this segment is split in half into two buddies each of
size 2771, One of these 277! block segments is marked as free and the other is
split up into two 272 block segments. This process continues recursively until a
segment of size 2! is finally made up.

Conversely, on deallocation of a segment of size 2¢, the allocation map is
updated to reflect the change. To avoid fragmentation, the buddy of the just



6 Alexandros Biliris and Jack Orenstein

deallocated segment is examined for possible coalescing. The buddy of a segment
can easily be found by simply taking the exclusive OR of the segment address
with its size. For example, the buddy of segment 619 = 01105 of size 275 = 00104
is segment 01105 & 00105 = 01005 = 41¢. If both of these 2-block buddies are
free, they are merged into the larger free segment 4 of size 4.

Notice that whereas segments are internally managed as if their sizes are
some integral power of 2, an application may request the allocation of a segment
of any size. Details of the algorithms can be found in [5].

3 Client Server Architectures

In a client-server architecture, the database resides on the database server ma-
chine. Objects in the shared database are accessed over computer networks by ap-
plications programs running on client workstations. Client/server architectures
could be classified according to the way they perform the following functions.

— Method execution site.
This refers to whether database queries and object functions in general are
evaluated on the server or client site or both. Traditionally, relational systems
do what is called query shipping: queries are shipped to the server and the
query is executed there. On the other hand, most OO DBMSs employ the
data shipping approach: data 1s shipped to the client where queries as well
as navigational type of operations are executed.

— Unit of data transfer between the server and client.
Depending on the unit of transfer, we have object servers and page servers
where the unit of transfer is an object and a page, respectively. In file servers,
the client and the server communicate via a remote file system such as NFS
[32].

— Caching and unit of data replication.
The goal of caching is to reduce the number of messages sent to and the need
to obtain data from the server in the first place. Thus, during normal trans-
action execution, a portion of the database as well as locks are cached on the
clients. Consequently, several copies of a shared object can exists in more
than one application cache at the same time. The terms intra-transaction
and inter-transaction caching refer to caching within a transaction and be-
tween transactions, respectively. If we keep in the cache objects of committed
transactions to be used by subsequent transactions we need to address the
cache consistency problem. This is because between the time one transaction
committed (and therefore all its locks are released) and a new one starts,
the copy of the object on the server may have been updated by another
transaction and so the object cached on the client becomes invalid.

— Unit of locking and recovery.
Access to shared data must somehow be synchronized to ensure the ACID
properties of transactions. Synchronization may occur at various granules
such as files, pages, and objects.



Object Storage Management Architectures 7

Although the above functions are conceptually more or less orthogonal, the
choice between the above approaches has significant impact on the overall design
and implementation complexity of the system as well as performance. Usually,
but not necessarily, the unit of transfer, locking and cache consistency is the
same. For example, object servers employee object-level locking and cache con-
sistency protocols, while virtually all existing page servers support locking and
cache consistency protocols at the level of a page. Other combinations however
are possible. For example, [29] proposed a scheme in the context of shared disk
systems where two-phase locking is used on objects to ensure serializability and
physical locks on pages for cache maintenance. Moreover, algorithms with adap-
tive granularity have been proposed in the context of shared disk systems [23]
and main memory databases [18] that, properly modified, can also be used in
a client server architecture. These algorithms use the idea of lock de-escalation:
locks are obtained at some coarse granule and if, later on, data contention in-
creases locks are de-escalated into finer-grained locks at the page or object level.

OO DBMSs using the object server approach include the MCC’s Orionl
[24], early versions of GemStone [14], a prototype of Oz [39], and Versant [40].
Storage systems that can be classified as page servers are EXODUS [12], EOS
[8], ObjectStore [26], Oz [15], GemStone [9]. In the Ontos system [34], users
can choose between the object and page server approach; the choice is indicated
statically on a per collection basis. Finally, Objectivity [33] is a page server using
NFS to transfer pages.

3.1 Query Execution Site

For a server to execute functions on objects it must understand the way objects
are stored in the database as well as know about the types of objects. Basically,
the functionality of the DBMS is replicated in both the server and the client.
Since the server 1s aware of objects, it is capable to retrieve a query from the client
that selects some objects from a collection of objects, process the query locally,
and return the result to the client. The advantage of executing functions at the
server is that if the result of the query against the collection is a small subset
of the collection, it avoids the communication cost of transferring the entire
collection to the client. As an example, consider an application that requires a
full scan of all the fingerprints in the database so they can be compared with
a target fingerprint. Transferring the target fingerprint to the server so it can
be compared there is more efficient that transferring the available fingerprint
collection to the client.

There are however several problems with this approach. First, for the server
to apply methods on objects, user code has to be linked with the server’s code
which makes this scheme practically difficult to employ. Second, if methods can
be applied on both the client and the server, their caches must be synchronized.
This is because an object update performed on the client site must somehow
become known to the server before the server applies methods to this object
cached in its own pool. Third, if the server is not powerful enough, the scheme
may face scalability problems. The server may become the bottleneck of the



8 Alexandros Biliris and Jack Orenstein

system, since most of the computations are carried out at the server side, while
at the same time workstations remain underutilized.

3.2 Unit of Data Transfer

Page servers deal with pages only thus, knowledge of object structure or behavior
is unnecessary. When the client needs an object it first searches its cache. If the
object is not found, the page in which the object resides is requested from the
server. The server sets the appropriate lock on the page, searches its own buffer
pool and if the page is not there it is retrieved from the disk; then, the page is
sent to the client. In this scheme, the server’s cache consists of page frames. The
client’s cache can be organized in terms of objects, pages or both.

Object servers respond to object-based requests and thus they must under-
stand the way objects are stored in the database. When the client needs an
object 1t first searches its object cache. If the object is not found, the request is
sent to the server. The server searches its own buffer pool and if the object is
not there, the page in which the object resides is retrieved from the disk. The
object is then extracted from the cached page and sent to the client.

One disadvantage of this scheme is increased communication cost for access-
ing objects on the client that might have been clustered in the same page. For
instance, assume a program running at the client that retrieves all employee ob-
jects from a database collection and displays some of their fields on the screen.
Although, there may be many such objects in the pages of the collection, the
client has to initiate a request to the server for each one of them. Also, object-
level transfer may not be appropriate for large objects. Even if the application
intends to access a subset of the object’s bytes, the entire object would need to
be transferred. This is the case for example, when the object is a digitized movie
stored at the server’s side, and the client wants to display on the screen a frame
of that movie at a time.

Finally, in file-servers the DBMS runs on one machine and it access databases
residing on a remotely mounted file system accessed via a remote file service
such as NFS. Since NFS is part of the operating system, the DBMS can use
this service directly to access database pages. The server however still has to
provide concurrency control and recovery which are not usually provided by
operating systems services. Thus to read or write a page, there must be two
message requests. One message to the DBMS server to perform locking and
recovery related activity, and the other to NFS to actually read or write the
page, respectively. The latter — writing a data page on disk — actually involves
an additional I/Os because the inode pointing to the block is written too.

A study that compares the performance of the above three architectures can

be found in [16].

3.3 Caching - Data Replication

During transaction execution, objects fetched from the server as cached in a
buffer pool. Typically, locks acquired on the server are also cached in some



Object Storage Management Architectures 9

internal structures of the client. When the transaction commits, data and locks
could be held for subsequent transactions. Caching items and/or locks on a
client machine between transactions is generally referred in the literature as
inter-transaction caching [43, 41, 12, 17, 35]. The following paragraphs elaborate
on techniques with or without inter-transaction cashing. We assume page-level
locking.

cache -
0O
T1
application L]
program
T2
T3 |

client workstation

Fig. 1. Caching.

2PL with no Inter-Transaction Caching

Let’s assume that an application running on a client workstation consists of
three transaction blocks, as shown in Figure 1, that are executed sequentially.
Suppose 2PL is used for concurrency with no intra-transaction caching. First
time page requests require a round-trip message interchange between the client
and the server. When the server receives the request, it first places the appro-
priate lock (read or write) on the page — i.e., a page requests implies a request
for page locking so these two messages are combined into one. The client caches
both the page and the lock mode acquired on it. Subsequent requests for pages
that have already been cached do not require any interaction with the server as
long as the lock mode held on the page is the same or stronger than the one re-
quired for the current access. Locks are held until the transaction terminates at
which point the locks are released at the server and the client’s cache 1s cleaned.
Deadlocks are detected at the server using some centralized deadlock detection
mechanism.

Referring to Figure 1, when the transaction T1 commits, its locks are re-
leased at the server so that other transactions may access them. When the next
transaction T2 begins, 1t sees a clean cache. Objects needed by this transaction



10 Alexandros Biliris and Jack Orenstein

must be requested from the server even if they were cached for the previous
transaction. The server will have to acquire the appropriate locks on the objects
before it transmits them to the client.

Data/No-Lock Cache 2PL

In this algorithm, pages cached in the client are retained across transaction
boundaries. However, locks acquired during a transaction are released at the end
of the transaction. When a transaction accesses, for the first time, a page cached
in the client’s pool by a previously running transaction, a read or write lock
for this page must be requested from the server. The client is blocked until the
server replies back that the lock is acquired. The page itself does not have to be
sent to the client as long as the two copies on the client and the server are the
same. If the server discovers that its local copy of the page is more recent than
the one cached on the client, it sends the fresh copy to the client along with the
reply.

For this scheme to work, for each page cached on a client workstation, the
server must know the client that performed the last update on the page. If a
client requests a lock on a page that has been modified by another client, the
server attaches the page itself to the reply message.

This technique does nothing more than to essentially extend the available
server pool to include the buffer pool space of all clients connected to the server.
Thus, compared to non-caching 2PL this method reduces the number of 1/Os
for pages cached in the client but swapped out of the server’s pool.

Data/Lock Cache 2PL (Callback Locking)

In callback locking when a transaction terminates, pages used by the trans-
action as well as their lock modes are retained in the client’s cache to be used
for the next transaction. No interaction with the server is needed when a client
accesses a cached page and the required lock is covered by the lock already held
on the page. However, when a stronger lock is needed or a page is not present
in the local cache, the server is contacted to place the lock, fetch the page or do
both.

When the server gets such a message from a client, it broadcasts to all clients
holding incompatible locks on the page, to give up their locks. If the client does
not need the lock on the page — i.e., non of the currently running transactions
holds the lock on the page — it releases the lock. On the other hand, if the
lock is needed the client holds the lock until the transaction terminates. This
mechanism is used in the Andrew File System [22] and ObjectStore database
system [26].

Optimistic Locking

This technique assumes that a page found in the local cache is valid. That is,
the application continues executing without being block when accessing cached
pages. Lock upgrade requests are still sent to the server. At commit time, the



Object Storage Management Architectures 11

server checks if conflicts developed during the normal transaction processing in
which case the transaction is aborted [42]. In this algorithm, a transaction may
continue executing even if the server knows the transaction will abort because
of conflicts.

In a variation of the above algorithm, when the server receives a page updated
by a committed transaction, it notifies all other clients holding copies of this
page in their cache that the copy is invalid. This reduces the likelihood to abort
a transaction at commit time. The server may also send the valid copy of the
page along with the notification message.

4 Persistence and Programming Languages

The best OO DBMSs combine influences from databases and programming lan-
guages in a clean way. Ideally, the same type system applies to both transient
and persistent data. That is, any type may have both transient and persistent
instances. This means that the application developer works with one data model
(or type system) and language, not two - one for transient data such as C and
another for persistent such as SQL. Finally, this means that there need be no
translation between in-memory and on-disk representations. Or if there is such
a translation, it is the responsibility of the OO DBMS and not the application
developer or the developer of each class that requires persistence.

An OO DBMS can be viewed as a conventional programming language ex-
tended with persistence, (and other features). This view leads to the question:
what is involved in adding persistence to a programming language?

In FORTRAN the basic types supported are numeric and string types, and
the only structuring facility is provided by arrays. FORTRAN (up through
FORTRAN-77) does not have pointers. Thus, it would be easy to add persistence
to FORTRAN.

Adding persistence to PL/I is more complex, because in addition to the types
provided by FORTRAN, there are pointers to deal with. However, some pointers
can be handled easily: Objects allocated in an “area” which refer to one another
via “offsets” can be made persistent easily. The entire area can be written to
disk and read back. The pointers, which are relative to the beginning of the
area, never have to be adjusted following retrieval. Ordinary pointers cannot be
handled so easily.

In Smalltalk and Lisp pointers are not accessible by the programmer. A
runtime system providing persistence has much latitude in how inter-object
references are represented and manipulated. Absolute addresses (i.e. ordinary
pointers) can be used; an area and offset scheme can be used; and there are
other possibilities. It is even possible to use more than one approach, since the
implementation is hidden in a way that is not possible with a language such as
C.

In Pascal, Ada, C and C++, the programmer has direct access to pointers.
Adding persistence to these languages is difficult. CAD applications spent much
of their time traversing pointers, and the approach to persistence should not



12 Alexandros Biliris and Jack Orenstein

require any significant change in the way programmers use pointers, or increase
the cost of dereference. What this means is that the languages most important
for CAD and many other applications are precisely the languages that are most
difficult to extend with persistence.

4.1 Pointers and Object ids

Pointers and object 1ds serve similar purposes - both serve to identify objects
- but in different contexts. A pointer is valid only during the execution of a
program; it specifies a location within a 32-bit address space; and operations on
pointers are extremely efficient since they are supported directly by hardware. In
order to be useful in an OO DBMS, an object id has to be valid for the lifetime
of the object, potentially beyond the lifetime of the process that creates the
object. The address space is much larger, typically 64 to 128 bits, and access is
usually slower. Object ids are not supported in hardware, so software mediation
is required, and the dereference may involve an access to a disk or a request sent
over a network.

In conventional application, (i.e., applications that don’t use an OO DBMS),
connections between objects are represented by pointers, and networks of ob-
Jjects are traversed by dereferencing pointers. In OO DBMS applications, objects
are connected by object ids, and these object ids (oids, for short), have to be
dereferenced. There 1s no question that oids, not pointers, must be stored in a
database. The question is what the programmer deals with during the execution
of an application. If the programmer is aware of oids, there are consequences for
performance and ease of use. The programmer has to use an oid to refer to any
potentially persistent object. If the programmer deals with pointers, then there
must be a translation from oids to pointers and this raises questions about how
in-memory and on-disk representations compare.

4.2 Object Layout

The in-memory and on-disk representations of an object may be the same or dif-
ferent. The former is determined by a compiler, (since the application is written
in the language supported by the compiler), while the latter is under control of
the OO DBMS. The OO DBMS may choose to store objects in some “neutral”
format, (i.e. different from the layout generated by every compiler used to create
an application accessing the database), or the layout may be identical to that
of one compiler, (i.e. different from the layout generated by every compiler but
one).

In many cases, the issue is decided by the approach taken to oids and pointers.
If oids are stored in the database and pointers are used in the application, and if
oids and pointers occupy different amounts of storage, then it is likely, but not
certain, that the in-memory and on-disk representations differ. In general, some
per-object processing is required in bring an object into memory. This processing
may range from a mere transfer in the best case, to generating of an object with
a different layout in the worst case. An intermediate case is one in which no
reformatting is required, but some fixup is needed.



Object Storage Management Architectures 13

4.3 Retrieving and Updating Objects

Another key architectural issue is object retrieval. It is rarely a good idea to
fetch a single object at a time. As we discussed in section 3, the request for an
object typically may go out over a network and have to be serviced by retrieving
an object from disk. Doing all this work for a single object is wasteful, so this
raises the question of what other objects should be retrieved. The possibilities
include the following: the requested object and connected objects, a logical clus-
ter containing the requested object, or a physical unit containing the required
object.

The retrieval may be implicit, triggered by a dereference, or explicitly re-
quested by the programmer. When an object (or some larger unit) is going to be
updated, it is necessary to record the fact for purposes of concurrency control
and recovery. Ideally, the programmer would simply update the object and the
OO DBMS would note the update. Also, if writes have to be noted explicitly,
this not only diminishes source compatibility, but introduces an opportunity for
subtle errors.

One approach, followed in [26], is to detect updates automatically as a result
of virtual memory protection violation, see section 5.3. Another approach, fol-
lowed in [2], is to have the compiler detect when an object becomes dirty, e.g.,
during an assignment, and pass flags to the underlying storage system.

5 OO DBMS Architectures

An OO DBMS architecture has to address all the issues identified above: what
are the roles of oids and pointers? how are object retrieval and update specified
and implemented? what are the in-memory and on-disk object representations?
These issues are not completely independent of one another. This section will
survey three OO DBMS architectures to examine how these problems have been
dealt with. The architectures to be surveyed are the following:

— Import/export object managers: Each type has functions for translating be-
tween in-memory and on-disk representations.

— Software dereferencing: Function call interface to all data management op-
erations, possibly hidden by syntactic sugar.

— Hardware dereferencing: Data management functions triggered by hardware
interrupts.

For each architecture, we will describe how it solves the problems of derefer-
encing, retrieval, update, and layout. We will describe the consequences of the
solution:

— Source compatibility. How does a program that manipulates persistent data
differ from the corresponding program for transient data? This issue is
strongly related to ease of use. If persistent data and transient data are
handled differently, then writing new code and migrating existing code will
both be more complicated than would otherwise be the case.



14 Alexandros Biliris and Jack Orenstein

— Binary compatibility. Does code have to be recompiled?
— Performance. When during execution does the overhead for persistence show
up?

5.1 Import/export Object Managers

An import/export object manager depends on the presence of a pair of functions
for carrying out translations between in-memory and on-disk representations.
This approach is common in “home-grown” systems and, for example, the NIH
class library.

Persistence is defined by reachability. That is, if object A refers to object B,
and A needs to be persistent, then B has to be persistent also. (In some cases,
the definer of type A may decide that the import/export functions do not need
to propagate across certain pointers, e.g. if B is purely transient data that is
only of interest within the scope of one process.)

In this architecture, only the import and export functions deal with oids, by
turning them into ordinary pointers to ordinary transient objects. This means
that object layout on disk is determined by the export functions. Retrieval is
requested by the programmer, and the extent of the retrieval is determined by
the import functions. Obviously, the finer the granularity, the more frequent are
the requests for retrieval by the programmer. The request from the programmer
may offer some advice about how much to fetch. Updates are also requested
explicitly; updated objects are written to disk by running the export functions
on updated objects.

Concurrency control, if implemented at all, is typically coarse-grain. Recovery
is often not supported.

This approach to persistence treats class implementers and class users dif-
ferently with respect to source compatibility. A class implementer must provide
import and export functions and must therefore be aware of both representa-
tions. A user of this class need not be aware of the different representations, but
need only initiate the retrieval or update. One aspect of representation that is
relevant to the user of a class is the extent of the retrieval - when a retrieval
occurs, the user must know how far traversal can proceed before another re-
trieval has to be issued. Binary compatibility is not an issue. Once an object has
been imported, then already compiled code manipulating the object can be run
without recompilation, provided the retrieval brings in all the objects that will
be touched. For example, consider a linked list, composed of individual nodes. If
there is a function that traverses the entire list, (e.g. mapcar), then this function
can be applied to a persistent list following a retrieval that fetches the entire
list. If retrieval of a node does not result in retrieval of a successor node, then
the mapcar implementation will fail.

The performance of this approach depends on the granularity of retrieval.
Import functions, which are written per type, determine the granularity of ac-
cess, and this granularity may be too fine for some applications and too coarse
for others. Each retrieval carries an overhead cost due to network and disk access



Object Storage Management Architectures 15

costs, so if granularity is too fine, then performance will suffer due to the accu-
mulation of these overhead costs. If granularity is too coarse, then performance
can suffer due to unnecessarily high transfer times and the cost of reformatting
objects.

5.2 Software Dereferencing

In a software dereferencing scheme, there are distinct types for pointers to tran-
sient objects and pointers to potentially persistent objects. The programmer
must be careful to use the correct kind of pointer. A pointer to a potentially
persistent object is dereferenced in software. This operation, sometimes called
swizzling, checks to see if the target object is present in the applications address
space [31]. This involves at least a hash table lookup. If the target is not present,
it is fetched. Once the object is present, the ordinary dereference, (the kind that
occurs for ordinary transient pointers), can take place. In some implementations,
the physical address is cached to optimize later dereferences.

In languages that do not provide direct access to pointers, (e.g. Smalltalk and
Lisp), the distinction between transient and persistent pointers can be hidden.
This is not possible in C and C++ because programmers have direct access
to pointers. Persistent pointers appear to the programmer as a distinct type.
Retrieval is triggered by the dereference of a persistent pointer. There are various
policies that determine what should be retrieved. The options include retrieval
of just the required object; objects in the same physical container, (e.g. a page);
and objects reachable from the requested object.

The in-memory and on-disk object layouts are usually the same, but the
architecture does not require this.

Transaction management relies on two-phase locking or optimistic concur-
rency control, and the unit of locking may be as small as a single object. Read
sets are maintained during the software dereference. Write sets are more difficult
to maintain this way, and if this can’t be done, then the user has to indicate
which objects have been modified by a transaction.

The software dereferencing scheme provides very poor source compatibility
since it requires every variable and argument that could be bound to a persis-
tent object to be declared as a persistent pointer. This is a serious problem when
porting existing code. Binary compatibility is also poor, since code compiled to
handle transient objects cannot manipulate persistent objects. Persistent point-
ers are typically larger than transient pointers. Typical CAD databases are so
full of pointers that this results in a significant increase in storage requirements
which in turn may lead to more I/Os [10]. There is a time penalty also, as
software dereferencing is slower than ordinary dereferencing.

One advantage of the software dereferencing scheme is that it permits dy-
namic reclustering. Because persistent pointers indirect through at least one ta-
ble, when an object is moved, only the tables need be updated, not each pointer
to the object.



16 Alexandros Biliris and Jack Orenstein

5.3 Hardware Dereferencing

A hardware dereferencing scheme does not require custom hardware; just the or-
dinary virtual memory management hardware. In hardware dereferencing, there
is only one kind of pointer, and it can be used to refer to both transient and
persistent objects.

There are two variations of this idea. The simplest implementation just maps
an entire database into virtual memory, (e.g. as if it were one big PL/T area).
Pointers may have to be located and adjusted for the base address. This limits
database size to the size of virtual memory, (typically no more than 232 bytes).
A more complex but more practical scheme maps portions of the database into
virtual memory dynamically [36, 26]. This allows arbitrarily large databases,
but limits the amount of storage that can be accessed in a single transaction to
the size of virtual memory. The rest of this discussion will focus on the second
variation.

The dynamic mapping scheme relies on the manipulation of memory protec-
tion bits. Objects that have been fetched reside in unprotected memory. Objects
that have not been fetched but are pointed to by memory-resident objects lie in
read-protected memory. An attempt to dereference such a pointer results in a
protection violation. An interrupt handler fetches the protected unit of memory,
e.g. a page, reduces protection to write- protection, and resumes the offending
instruction. It may be necessary to read-protect more memory, to accommodate
pointers on the retrieved page.

If, during a dereference, the target object has already been fetched, there is
zero runtime penalty. The machine code sequence implementing the dereference
is the same one used for an ordinary transient pointer. Indeed, transient and
persistent pointers are identical.

In-memory and on-disk object representations are identical. It might seem
that a pointer stored in the database would have to be larger than 32 bits, (since
the address space of a database is not limited to 32 bits). This is not the case
- conceptually the value stored in the pointer is used as a key to a table which
contains the full oid. The implementation does not require a table with an entry
for each object; large chunks of memory can be handled by a single table entry.

Transaction management is based on two-phase locking or optimistic concur-
rency control. Read and write sets are easy to maintain automatically. Violation
of read protection yields read set information. The first write to a write-protected
region of memory generates another interrupt. The handler for this interrupt re-
duces protection to unprotected, and maintains the write set.

Hardware dereferencing schemes provide nearly ideal source compatibility.
There 1s only one pointer type, so no code that manipulates pointers has to
be rewritten. Code written and compiled for ordinary transient data will also
work on persistent data, as long as the access takes place in the scope of a
transaction. The only caveat is that code doing allocation might have to be
modified so that allocation in the database can be implemented. Write sets are
maintained automatically, so no source modifications are required to indicate
dirty data.



Object Storage Management Architectures 17

Hardware dereferencing swizzles each retrieved pointer exactly once, when
the page is fetched. All subsequent dereferences proceed at full speed, (i.e. as if
they were ordinary transient dereferences). In hardware dereferencing schemes,
clustering is determined at the time of allocation. If dynamic reclustering is
required, then it is implemented above the basic dereferencing scheme, in a
library or in an application.

5.4 The C++ Hidden Pointers

Besides the problem of pointers discussed above, there are additional problems
in making the C++ programming language persistent. In particular, some C++
objects contain special pointers which point to function tables implementing
runtime dispatch of function calls. Such pointers are contained in C++ objects
of types that have virtual functions or virtual base classes. The pointers are
called hidden pointers [7] because they are not accessible to the user. In the case
of virtual functions, the hidden pointer points to a virtual function table that
is used to determine which function is to be called. In the case of virtual base
classes, the hidden pointers are used for sharing base classes [38].

Virtual functions are used for late binding. For example, a Person pointer
p may point to a Student object. Assume that class Person defines a function
address as virtual, and class Student defines its own version of address with
a different body. Then when p->address() is invoked, the actual function body
that is executed is determined at run time. If p points to a Person object,
the Person’s address function is invoked. If p points to a Student object, the
Student’s address function is invoked. The hidden pointers have to be handled
specially, since the function tables are transient.

The basic scheme followed in [7] is to apply an overloaded operator new to
invoke a constructor on an object that is just fetched from disk (and therefore
the hidden pointers it contains are bad) to fix the hidden pointers. Note that
the constructor must not initialize the values of the data members; it must
have null body. For this to happen, the compiler generates a function for each
class that sets the value of a global boolean variable to true before invoking
the overloaded version of the new operator (the one that does not allocate any
storage). Constructors are modified so that if this global variable is true they do
not execute any user specified code in the constructor body. The effect of the
constructor invocation is simply that the hidden pointers are assigned the right
values.

In ObjectStore [26] the schema records the layout of each object. This infor-
mation is used when a page is mapped into the client’s address space. Pointers
are relocated, as described in section 5.3, so that they are consistent for the
current address space. Schema generation is the process of analyzing class dec-
larations (or some equivalent, e.g. debug information), to understand object
layout. During schema generation, two notable events occur. First, pointers to
virtual tables are noted. Second, a table mapping type identifiers to virtual table
pointers is created. This table is filled in at link time. During relocation, virtual
table pointers are filled in by consulting the table.



18

Alexandros Biliris and Jack Orenstein

6 Summary

In this paper, we examined the architectural issues in building storage systems
for object-oriented database systems and persistent languages. We discussed
techniques for placing small and large objects on disk, disk space management,
client-server architectures and mechanisms for caching data on the client work-
station. Finally, we have described three pointer dereference mechanisms — im-
port/export, software dereference, and hardware dereference.

References

10.

11.

12.

13.

14.

. Special Issue on Digital Multimedia Systems. Communications of the ACM, 34(4),

April 1991.

. R. Agrawal and N. Gehani. ODE (Object Database and Environment): The Lan-

guage and the Data Model. In Proceedings of ACM-SIGMOD 1989 International
Conference on Management of Data, Portland, Oregon, June 1989.

M. M. Astrahan et al. System R: Relational approach to database management.
ACM Transactions on Database Systems, 1(2):97-137, June 1976.

M. Atkinson, F Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The
object-oriented database system manifesto. Technical Report 30-89, ALTAIR,
September 1989.

. A. Biliris. An efficient database storage structure for large dynamic objects. In

Proceedings of the Fighth International Conference on Data Engineering, Tempe,
Arizona, pages 301-308, February 1992.

A. Biliris. The performance of three database storage structures for managing
large objects. In Proceedings of ACM-SIGMOD 1992 International Conference
on Management of Data, San Diego, California, pages 276-285, May 1992.

A. Biliris, S. Dar, and N. Gehani. Making C++4 objects persistent: The hidden
pointers. Software Practice and Ezperience, 23(12):1285 — 1303, December 1993.
A. Biliris and E. Panagos. EOS User’s Guide, Release 2.0. Technical report,
AT&T Bell Laboratories, May 1993.

. P. Butterworth, A. Otis, and J. Stein. The GemStone object database manage-

ment system. Communications of the ACM, 34(10):51-63, October 1991.

M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 benchmark. In Proceed-
ings of ACM-SIGMOD 1993 International Conference on Management of Data,
Washington, D. C., pages 12-21, May 1993.

M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita. Object and file
management in the EXODUS extensible database system. In Proceedings of the
Twelfth International Conference on Very Large Databases, Kyoto, Japan, pages
91-100, August 1986.

M. J. Carey, M. Franklin, M. Linvy, and Shekita. Data caching tradeoffs in client-
server DBMS architectures. In Proceedings of ACM-SIGMOD 1991 International
Conference on Management of Data, Denver, Colorado, pages 357-366, May 1991.
H-T. Chou, D.J. DeWitt, R.H. Katz, and A.C. Klug. Design and implementation
of the Wisconsin storage system. Software Practice and Ezperience, 15(10):943—
962, October 1985.

G. P. Copeland and D. Maier. Making Smalltalk a database system. In Proceed-
ings of ACM-SIGMOD 198 International Conference on Management of Data,
Boston, Massachusetts, June 1984.



Object Storage Management Architectures 19

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

O. Deux et al. The O; system. Communications of the ACM, 34(10):51-63, Oc-
tober 1991.

D. J. DeWitt, D. Maier, P. Futtersack, and F. Velez. A Study of Three Alterna-
tive Workstation-Server Architectures for Object-Oriented Database Systems. In
Proceedings of the Sixzteenth International Conference on Very Large Databases,
Brisbane, pages 107-121, August 1990.

M. Franklin, M. Carey, and Livny M. Global memory management in client-server
DBMS architectures. In Proceedings of the Eighteenth International Conference
on Very Large Databases, Vancouver, British Columbia, pages 596-609, August
1992.

V. Gottemukkala and T. Lehman. The design and performance evaluation of
a lock manager for a memory-resident database system. In Proceedings of the
FEighteenth International Conference on Very Large Databases, Vancouver, British
Columbia, pages 533-544, August 1992.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann, San Mateo, California, 1993.

R. L. Haskin and R. A. Lorie. On extending the relational database system. In
Proceedings of ACM-SIGMOD 1982 International Conference on Management of
Data, Orlando, Florida, pages 207-212, May 1982.

M.F. Hornick and S.B. Zdonik. A shared, segmented memory system for an object-
oriented database. ACM Transactions on Information Systemns, 5(1):70-95, Jan-
uary 1987.

J. H. Howard et al. Scale and Performance in a Distributed File System. ACM
Transactions on Computer Systems, 6(1):51-81, February 1988.

A. Joshi. Adaptive locking strategies in a multi-node data sharing environment. In
Proceedings of the Seventeenth International Conference on Very Large Databases,
Barcelona, Spain, pages 181-191, September 1991.

W. Kim, J. Garza, N. Ballou, and D. Woelk. Architecture of the ORION next-
generation database system. IEEFE Transactions on Knowledge and Data Fngi-
neering, 2(1), March 1990.

P.D. Kotch. Disk file allocation based on the buddy system. ACM Transactions
on Computer Systems, 5(4), November 1987.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database
system. Communications of the ACM, 34(10):51-63, October 1991.

T.J. Lehman and B.G. Lindsay. The Starburst long field manager. In Proceedings
of the Fifteenth International Conference on Very Large Databases, Amsterdam,
Netherlands, pages 375-383, August 1989.

D. Maier. Making database systems fast enough for CAD applications. In W. Kim
and F. Lochovsky, editors, Object-Oriented Concepts, Applications and Databases,
pages 573-582. ACM and Addison-Wesley, New York, NY, 1989.

C. Mohan and 1. Narang. Recovery and coherency-control protocols for fast in-
tersystem page transfer and fine-granularity locking in a shared disks transaction
environment. In Proceedings of the Seventeenth International Conference on Very
Large Databases, Barcelona, Spain, pages 193—-207, September 1991.

J.E.B. Moss. Design of the Mneme persistent object store. ACM Transactions on
Information Systems, 8(2):103-139, April 1990.

J.E.B. Moss. Working with persistent objects: To swizzle or not to swizzle. IEEFE
Transactions on Software Engineering, 18(8):657-673, August 1992.

Network File System: Version 2 Protocol Specification. Sun Microsystems, Inc.,
Mountain View, California, 1988.



20

33.
34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

Alexandros Biliris and Jack Orenstein

Objectivity Inc. Objectivity/DB Documentation V2, 1993.

ONTOS Inc., Burlington, Massachusetts. Ontos DB 2.2 Reference Manual, 1992.
M. T. Ozsu, U. Dayal, and P. Valduriez. An introduction to distributed object
management. In M.T. Ozsu, U. Dayal, and P. Valduriez, editors, Distributed Ob-
ject Management, pages 1-24. Morgan Kaufmann, San Mateo, California, 1994.
V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: An Efficient, Portable Persis-
tent Store. In Proceeding of the Fifth Int’l Workshop on Persistent Object Systems,
San Miniato, Italy, pages 11-33, September 1992.

M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and implementa-
tions of Ingres. ACM Transactions on Database Systems, 1(3):189-222, September
1976.

B. Stroustrup. C++ Programming Language. Addison-Wesley, Reading, MA,
1987. 2nd ed.

F. Velez, G. Bernard, and V. Darnis. The O2 object manager: an overview. In
Proceedings of the Fifteenth International Conference on Very Large Databases,
Amsterdam, Netherlands, pages 357-366, August 1989.

Versant Object Technology, Menlo Park, California. VERSTANT System Refer-
ence Manual, Release 1.6, 1991.

Y. Wang and L. A. Rowe. Cache consistency and concurrency control in
client/server DBMS architecture. In Proceedings of ACM-SIGMOD 1991 Inter-
national Conference on Management of Data, Denver, Colorado, pages 367-376,
May 1991.

D. Weinreb et al. An Object-Oriented Database System to Support an Integrated
Programming Environment. [EEE Database Engineering Bulletin, 11(2):33-43,
June 1988.

K. Wilkinson and M. A. Neimat. Maintaining Consistency of Client-Cached Data.
In Proceedings of the Sixteenth International Conference on Very Large Databases,
Brisbane, pages 122-133, August 1990.

This article was processed using the IATEX macro package with LMAMULT style



