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Abstract

This paper presents the architecture of BeSS - a
high performance configurable database storage man-
ager providing key facilities for the fast development
of object-oriented, relational, or home-grown database
management systems. BeSS is based on a multi-client
multi-server architecture offering distributed trans-
action management facilities and extensible support
for persistence. We present some novel aspects of
the BeSS architecture, including a fast object refer-
ence technique that allows re-organization of databases
without affecting existing references and two opera-
tion modes that an application running on a client or
server machine can use to interact with the storage
system — copy on access and shared memory.

1 Introduction

This paper presents the design and implementation
aspects of BeSS, a Bell Laboratories Storage System,
which is a storage manager that facilitates the develop-
ment of high-performance database management sys-
tems. BeSS’s overall goal is to provide fast and trans-
parent access to persistent objects, independent of
their size and their physical location, in a distributed
computing environment based on a client-server archi-
tecture.

BeSS allows application programs to access and ma-
nipulate persistent objects directly on the segment on
which they reside, without incurring in-memory copy-
ing cost. It employs a fast object reference mechanism
that is based on memory mapping [19, 30, 34]. Our
scheme, however, does not involve a greedy allocation
of virtual memory addresses. Large objects spanning
multiple pages can be accessed and updated trans-
parently as if they were small objects. Efficient byte
range operations such as insert, append, and truncate
are also provided for those objects.

BeSS prevents database corruption caused by bad
pointers by storing control structures separately from
data. The control structures are protected by ordinary
mechanisms provided by the virtual memory manage-
ment hardware.

The BeSS architecture has been designed to be
highly modular and extensible so that it can meet
the diverse performance requirements of applications
with different needs. Client applications may asso-
ciate user-defined hook functions to be executed when
certain primitive events occur. BeSS traps primitive
events as they occur and causes the associated hooks
to be executed. This mechanism allows users to en-
hance and even modify the behavior of BeSS and their

applications without changing the application code or
the internals of the BeSS system.

Furthermore, the BeSS server is intended to be an
open server, capable of supporting a wide range of
applications. Sophisticated users can link with the
BeSS server a trusted piece of code in order to build
specialized servers, like SQL and multimedia servers.

BeSS offers concurrency control via locking and re-
covery via logging to support the traditional ACID
transaction properties. Data and locks accessed by
a transaction remain cached on the client where this
transaction was executed and can be used by sub-
sequent transactions running on the same machine.
Cache consistency is guaranteed by following the call-
back locking algorithm [17, 19].

Applications running on a client workstation usu-
ally have different performance requirements. A novel
aspect of the BeSS architecture is that it offers a num-
ber of different operation modes for accessing persis-
tent data. These modes allow applications to take
advantage of current advances in hardware technol-
ogy such as shared memory multiprocessors and vir-
tual memory management hardware offering a huge
address space. In this paper we describe the following
modes:

e Copy On Access. Applications operate on objects
after copying them into a private buffer pool.

e Shared Memory. Applications operate on objects
present in a buffer pool that is shared by all ap-
plications running on the same machine.

The architecture of the BeSS storage manager is not
tailored to a specific data model or language. It is pos-
sible to build relational and object-oriented database
systems and persistent languages on top of BeSS as
well as home-grown specialized database systems. For
example, the Ode object-oriented database system [1],
built on top of EOS [8], will be using BeSS. BeSS 1s
also being used as the storage engine of the AT&T’s
Prospector [18], a content based multimedia system,
that requires an extended relational interface to BeSS.
Calico, a storage system for continuous media which is
currently being implemented in AT&T Bell Labs [6],
uses BeSS to provide storage and transactional sup-
port for the metadata of continuous media as well as
disk space management facilities.

The rest of the paper is organized as follows. Sec-
tion 2 provides the storage structures used in BeSS,
pointer dereference, and issues related to preventing



database corruption caused by bad pointers, detect-
ing updates on objects, and extensibility. In Section 3
we present the multi-client multi-server BeSS architec-
ture. Section 4 presents the operation modes available
to client applications. In Section 5 we compare BeSS
with related work and Section 6 concludes our presen-
tation.

2 The BeSS System Architecture

At the conceptual level, BeSS manipulates
databases that are collections of BeSS files. BeSS files
contain object segments in which objects are stored.
An object segment is the clustering facility provided
to users to indicate that some objects need to be collo-
cated. A BeSS file groups objects so that they could be
retrieved later on via a cursor mechanism. However,
an individual object can be accessed directly without
first accessing the file containing it.

At the physical level, the database consists of a
number of storage areas, which are UNIX files or disk
raw partitions. Storage areas, are partitioned into a
number of ezxtents, and allocation of disk segments
from one of these extents is based on the binary buddy
system, as described in [3]. Storage areas that corre-
spond to UNIX files may expand in size by one extent
at a time.

All objects in a BeSS file are stored on object seg-
ments allocated from one storage area; however, a
storage area may contain objects belonging to mul-
tiple BeSS files. Initially all objects of all files in a
database may be placed in the same storage area. To
accommodate growth, objects within a BeSS file can
be moved to another storage area, and as we shall see
in the next section, without affecting existing object
references.

Since all objects in a BeSS file are stored within
a single area, the size of an individual BeSS file is
limited by the addressability of the operating system
(typically, 2 GB). BeSS offers multifiles, which behave
like regular BeSS files (e.g., they can be scanned, and
objects can be created in them) except that they ex-
pand over multiple physical storage areas and there-
fore their sizes are not limited by the operating system.
In addition, when a multifile expands over different
physical devices, perhaps on different disk controllers,
it provides a convenient mechanism for parallel /0
processing such as a parallel file scan. This capabil-
ity 1s used extensively in Prospector and MoonBase
systems to perform, on multiprocessor machines, fast
content-analysis and indexing on large databases of
multimedia objects [18].

2.1 Segment and Object Structures

Figure 1 illustrates the structure of an object seg-
ment. Each object segment consists of two basic parts:
the slotted segment and the data segment, each of
which is a sequence of one or more contiguous pages.
The slotted segment contains a fixed-size header and
an array of slots. The data segment contains the ac-
tual objects which can vary in size and consume no
predetermined amount of space. If needed, an over-
flow segment is used to hold additional control infor-
mation such as large object descriptors.
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Figure 1: Segment and object structure.

For every object in the data segment, there is an
object header that is stored in a slot in the slotted
segment. The object header contains certain amount
of meta-information that is necessary for managing the
object 1t refers to — such as a pointer to the object’s
type (TP), a pointer to the object’s data in the data
segment (DP), the object size, and other bookkeeping
information. Type descriptors contain the offsets of
pointers within the objects they describe.

The slotted segment header includes information
required for managing the object segment, such as the
number of objects and the available free space in the
data segment. It also includes a pointer to a memory
control structure (referred to as segment handle) that
keeps run time control information about the segment
such as dirty pages, lock data, etc.; a pointer to the
data segment; and a pointer to an overflow segment,
if there 1s one.

The object identifier (OTD) is a 96-bit number that
uniquely identifies an object in a BeSS system. It con-
tains the host machine number, the database number,
the offset of the object’s header within the database,
and a number to approximate unique oids — this num-
ber is stored in every slot and it is modified every time
the slot is re-used. Slotted segments (and their slots)
are allocated from one storage area and they are never
relocated. Data segments can be re-sized or moved to
a different location without affecting the validity of
existing OIDs. It’s possible that huge databases may
end up having one storage area exclusively for slotted
segments while data segments are spread over multiple
storage areas.

However, object references are not implemented
through the rather long and slow OIDs. Instead, refer-
ences among objects belonging to the same database
are pointers to the headers (slots) of the referenced
objects. References among objects belonging to differ-
ent databases, are implemented via a level of indirec-



tion: the reference points to a forward object, which is
stored in the database of the referencing object, that
contains the complete address of the referenced object.
Such inter-database references are handled transpar-
ently and exclusively by BeSS. After intra- or inter-
database references are processed as discussed in the
next paragraph, they point to the header of the refer-
enced object, which in turn contains in its DP field the
virtual memory address of data part of the referenced
object.

To 1illustrate how the above structures are used,
consider the actions taken when a slotted segment fault
occurs. First, the slotted segment is fetched in mem-
ory, and a virtual memory address range for its data
segment is reserved and access-protected. Then, for
every slot in the slotted segment representing an ob-
ject in the data segment, the DP field of the slot —
whose value is the address in which the object was
mapped the last time it was accessed — is adjusted to
point to the new (reserved) virtual memory address of
the object in the data segment. This involves just two
arithmetic operations.

Suppose now a data segment fault occurs when
some object within a data segment, for which ad-
dresses have been reserved as discussed above, needs
to be accessed. First, the data segment of the object
is either fetched as a whole or only the pieces needed
to access the object are fetched — this depends on the
availability of cache space. Second, BeSS examines the
type descriptor of every object O that is present in the
portion of the data segment that was actually fetched
and locates all references to other objects. For each
reference to an object O;, BeSS performs the following
actions. If the slotted segment containing O; has never
been referenced before in the current transaction, an
address range for the slotted segment is reserved and
access-protected. (If it has been referenced before, the
slotted segment 1s either in memory or virtual mem-
ory addresses have been reserved for it.) Then, O is
modified to point to the virtual memory address of
the header of O;. When later on O; is accessed, there
will be a slotted segment fault which will trigger the
actions described in the previous paragraph.

Thus, accessing an object potentially causes actions
in three waves. In the first wave, address ranges for
the referenced slotted segments are reserved. In the
second wave, as some of these slotted segments are ac-
cessed for the first time, slotted segments are fetched
in and address ranges for the corresponding data seg-
ments are reserved. Finally, accessing some objects
within one of these data segments causes the data seg-
ments to be fetched. The latter may trigger another
round of virtual memory address reservation and data
fetch.

Regarding large objects, BeSS offers transparent ac-
cess to fixed-size objects that cannot fit in a data seg-
ment — currently, up to 64KB. For such a large object,
when the slotted segment is fetched, the slot’s DP field
is fixed to point to an access-protected reserved ad-
dress range big enough to hold the entire object. The
actual object data may be fetched from the network
in one step, or dynamically as pages in the object’s
reserved address range are being accessed. A small

table that associates slots of large objects with disk
addresses is kept in the slotted segment.

Clearly, for “very” large objects the above scheme
may not work; there may be memory size constraints
that would make it impractical to build or access
the whole object. Also, typically, very large objects
are created in steps by successive appends while the
scheme of the previous paragraph works only for ob-
jects whose size is fixed at creation time.

BeSS offers a class interface for very large objects
that includes byte range operations — such as read,
write, insert, delete a number of bytes starting at
some arbitrary byte position within the object, and
append bytes at the end of the object. In anticipation
of object growth, hints about the potential size of the
object can be provided by the user. The large object is
stored in a sequence of variable-size segments indexed
by a tree structure [3, 4], and the root of the tree is
placed in the overflow segment. Large objects created
in such a way are not accessed transparently, i.e., as
small objects. Instead, the user would have to use the
interface provided in the class.

The advantages of the inter-object reference scheme
and the segment and object structures employed by
BeSS are the following:

e Databases can be re-organized on the fly with-
out affecting object references. Reorganization
includes compaction, resizing, or relocation of
data segments and movement of entire files be-
tween storage areas. This is an important issue
because our system is planned to be used in a
federated environment. In such an environment
it is impossible to locate and change references
to BeSS objects from the other database man-
agement systems that participate in the federa-
tion. This is also useful in parallel architectures
because it makes easy the I/O load balancing.

e Memory address space is reserved in a less greedy
fashion than the schemes presented in [19, 30, 34].
In BeSS, virtual address space for data segments
is reserved only when the corresponding slotted
segments are actually accessed.

e Persistent objects are manipulated directly on the
segment on which they reside, without incurring
any in-memory copying cost.

e Lock information is accessed via a pointer from
the object header, rather that by a slower mech-
anism such as hash table lookup.

2.2 Preventing Database Corruption

In BeSS, object references are virtual memory ad-
dresses. Thus, user code has direct access to BeSS
control structures such as slotted segments; and mech-
anisms to prevent database corruption caused by bad
pointers are of paramount importance. Pointer er-
rors are expected in database systems accessed by lan-
guages that have pointers, arrays or explicit dynamic
allocation. These errors are especially troublesome be-
cause usually they cannot be detected immediately.
Critical database structures can be corrupted by one



transaction and discovered later in another completely
unrelated one.

BeSS utilizes the standard facilities provided by
the underlying hardware for detecting access protec-
tion violations. The virtual memory management
hardware detects an illegal attempt to update write-
protected items at the time the update is attempted,
before the possible error takes place and propagates
to other structures. As shown in Figure 1, the slotted
segment is mapped into write-protected virtual mem-
ory and thus ordinary user code cannot modify this
memory section. Data segments are readable and po-
tentially writable by user code. Before BeSS (or some
other trustworthy software) updates critical control
structures, it explicitly unprotects the address space
containing these structures, and it reprotects the ad-
dress space after the update. This scheme allows cor-
rect software to modify protected data but prevents
accidental (but not malicious) database updates by in-

correct pointers’. The major cost associated with this
kind of protection is an increased number of system
calls [31], which for many applications is an accept-
able tradeoff for the benefits gained.

2.3 Detecting Updates

BeSS manages the locking of database pages in
an automatic and transparent way by using the vir-
tual memory protection mechanisms provided by the
underlying hardware. When an application program
gains access to a database page, BeSS write-protects
the virtual address space associated with this page.
A protection violation is signalled by the hardware
when the application attempts to modify that page
and the BeSS interrupt handler is invoked. The BeSS
interrupt handler records the update, performs lock-
ing, and grants write access to the page before the
offending instruction is resumed. In this way, BeSS au-
tomatically maintains the transactions’ read and write
sets and ensures that log records are written for all the
modified pages.

In comparison, other storage systems (e.g., Exo-
dus [28] and early implementations of EOS [8]) follow
a software approach where the programmer explicitly
indicates dirty data via a function call. This approach
makes programming cumbersome and error prone —
forgetting to invoke the function before an update may
result in either incorrect results because of concurrent
updates or loss of data because the updates were not
propagated to disk. Also, when a compiler generates
code for the storage system, the software approach is
problematic due to separate compilations. For exam-
ple, when an object pointer is passed as an argument
to a C function, the C or C++ compiler has to make
a conservative prediction that the object will be mod-
ified and thus, it generates an exclusive lock request —
even though the object is not actually updated during
the function execution.

Notice that hardware based detection works only
for granules that are integral multiples of the page size
used by the virtual memory system. We are currently

1 Clearly, if malicious software manages to unprotect memory
before updating it, this protection mechanism alone would not
work.

examining issues related to object level locking [27].
Object level locking is realized by following a software-
based approach.

2.4 Extensibility

One of our goals in designing BeSS was for its archi-
tecture to be extensible. In a system with a modular
architecture (e.g., such as [2], with “pluggable” com-
ponents) new functionality can be added by replacing
modules of the system. On the other hand, well de-
signed object-oriented systems support modularity by
separating interface and implementation.

BeSS consists of a number of interacting modules
with well-defined interfaces and has extensible facili-
ties provided by the storage system itself. These fa-
cilities provide controlled access to a number of entry
points in the system and allow applications to enhance
and extent the functionality offered by BeSS.

Consider a simple and pragmatic scenario. A user
wants to count the number of transaction commits
performed in a BeSS system during some period of
time. An impractical solution is to add a few lines of
measurement code to the source of every application.
Alternatively, the user could modify the BeSS commit
function to increment a counter each time a transac-
tion successfully commits. But this solution requires
user modification of the BeSS internals.

BeSS offers a better way. Programmers have con-
trolled access to a number of entry points in the system
via the notion of primitive events and hook functions.
In this way, users may enhance or modify the behavior
of BeSS and their applications without changing the
application code or changing the internals of the BeSS
system.

The hooks must be registered with BeSS, usually
before any access to persistent data is initiated. Ex-
amples of primitive events include segment fault or re-
placement, database open, locking, transaction com-
mit, and deadlocks. In addition to the events that
can be detected by its software components, BeSS also
traps the SIGSEGV and SIGBUS signals delivered by the
underlying hardware when a virtual memory protec-
tion violation is caught.

A partial implementation of the above mechanism
was part of early releases of EOS and has been used ex-
tensively. For example, the implementation of Ode [1]
uses hooks to fix hidden pointers in persistent C++
objects?. Hooks have also been used to more effec-
tively deal with very large objects by compressing
them when they are stored on disk, and uncompressing
them when they are fetched to memory. The compres-
sion/decompression functions are written by the user
and registered with the BeSS system.

2.5 Interface
Object retrieval i1s implicit — i.e., via dereference
— using a number of BeSS typed references that are

3

2These pointers are called hidden because they are not spec-
ified by the user [5]. They are placed by the compiler on objects
of types that have virtual functions or virtual base classes, and
they are invalid across program invocations.

3We use the term dereference for any indirect access — either
through dereference operators such as * and -> in C and C++,
or through indexing an array or pointer variable.



based on the ODMG-93 standard [14]. For example,
the C++ class ref<T> encapsulates a pointer to an
object header as discussed in section 2.1. It is pa-
rameterized with the type of the pointer for which
its instances can be substituted. Given a type, say,
Person with members name and spouse, the instanti-
ated type ref<Person> behaves like a pointer of type
Person. So, a variable p of type ref<Person> can be
used as if it were of type Person*; i.e., one can use
p—>spouse—>name to refer to the name member of the
p—>spouse object, or pass p to a function argument
expecting a Person* variable. Other kinds of type
references are discussed in section 4.

An object may also be retrieved explicitly by sup-
plying to BeSS the name of the object and a pointer
to the database the object is stored. Any BeSS ob-
ject can be given a name. For such so called “named”
or “root” objects, BeSS maintains a directory which
is implemented as a pair of hash tables. BeSS en-
forces the referential integrity between root objects
and their names, e.g., when a root object is removed
from a database so is the name of the object. Also,
explicit retrieval can be performed using the class
global ref<T> that encapsulates an OID but access
via this mechanism is somewhat slower compared to
the one described in the previous paragraph.

Finally, new objects in BeSS are created by a num-
ber of overloaded functions. These functions require
the size and a pointer to the type descriptor of the ob-
ject being created, as well as where the object should
be created — in a database, in a specific file, or in a
specific object segment. They return a pointer to the
object header of the newly created object, which may
then be cast to the appropriate type*.

3 The BeSS Distributed Architecture

BeSS operates on a multi-client multi-server envi-
ronment. A typical BeSS network configuration is il-
lustrated in Figure 2. Application programs are exe-
cuted either on client workstations (e.g. the applica-
tions running on node 1 and node 38 or on the same
machine as a BeSS server (e.g. the application run-
ning on node 2). Application programs may need to
interact with two kinds of BeSS processes during their
execution: the BeSS server and the BeSS node server.

Each BeSS server manages a number of storage
areas and it provides distributed transaction man-
agement, concurrency control and recovery for the
databases stored in these areas. The two phase com-
mit (2PC) protocol is employed for distributed com-
mits and timeouts are used for distributed deadlock
detection. The strict two phase locking algorithm is
used for concurrency control and recovery is based
on an ARIES-like [21] write-ahead log (WAL) proto-
col. Moreover, client-server interaction is minimized
by caching data and locks between transactions run-
ning on the same client. Cache consistency is provided
by employing the callback locking algorithm [17, 19],

4Tn languages such as C+4++ this can be done automatically
by overloading the new operator. We do not further discuss this
option.
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Figure 2: A network of BeSS servers and client work-
stations

which has been shown to have good performance over
a wide range of workloads [32, 13].

A BeSS node server is a BeSS server that does not
own any storage areas. Consequently, each BeSS node
server 1s a client of the BeSS servers that acts as a
server for the local applications. The BeSS node server
establishes a cache on the node it is running and it
is responsible for fetching the data requested by the
local applications from the BeSS servers that own the
data. In addition, the BeSS node server acquires locks
on behalf of the local applications and responds to
callback requests issued by BeSS servers.

Applications running on nodes with a BeSS server
or a node server can access the entire distributed
database space by communicating only with the local
BeSS server or node server, respectively. Applications
running on nodes without a BeSS server and BeSS
node server may have to communicate with multiple
BeSS servers in order to access a number of databases
(e.g., the application running on node 1 in Figure 2).
For those applications, data and locks are cached only
during the duration of a transaction. When the trans-
action terminates, it releases all locks and cleans its
private buffer pool. Furthermore, distributed transac-
tion processing for each of those applications is per-
formed by the first BeSS server the application estab-
lishes a connection with.

4 BeSS Process Structure

Figure 3 illustrates the structure of the cache cre-
ated in a node by the server or the node server. The
cache is created by using the shared memory facilities
provided by UNIX that associates a virtual address
range with a file. The cache is viewed as a contiguous
sequence of equal length frames, and the size of each
frame is equal to the page size. Control data in the
cache include lock tables, pending callback requests,
transaction control structures, etc.

4.1 Operation Modes

A user process can access the shared cache either di-
rectly (in-place access or shared memory) or indirectly
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through the node server (copy on access). In the for-
mer case, each process gains access to the shared cache
and all control data. In the latter case, each process
maintains only a private cache (Figure 3, application
B) and interprocess communication between the pro-
cess and the node server is used to fetch segments in
the private cache. If the segment is not present in the
shared cache, the node server will retrieve it from the
appropriate BeSS server.

Copy on access has the advantage that user pro-
cesses do not need to synchronize their accesses to
their private caches, but inter-process communication
is expensive. In-place access offers the potential for
high performance, especially for short transactions,
since 1t avoids interprocess communication and the
cost of copying data to a private space and back to
the cache. However, it incurs the cost of synchroniz-
ing concurrent access to the shared cache. The shared
memory mode enables sophisticated users with well
tested and debugged code to tailor the storage system
and build multiple specialized servers, such as multi-
media servers. Note also that the interface provided
by the node server is the same in both modes, it is
just the process boundaries that differ.

4.1.1 Copy On Access Mode

In the copy on access mode, each process has a private
buffer pool to cache segments. The buffer pool is im-
plemented as a fixed size file divided into a number of
frames whose size is equal to the BeSS page size. The
above file is mapped into the process’ virtual address
space using the UNIX mmap system call. Because the
file serves as backing store for the buffer pool, no phys-
ical or swap space is allocated for the virtual frames
that are mapped into the file, although the size of the
operating system’s page tables increases. When the
buffer pool becomes full, replacement takes place as
described in Section 4.2.

PVMA = private virtual memory
SVMA = shared virtual memory
Cache = the shared cache

D = access protected address

e

Figure 4: Implementation of shared virtual memory
address space.

4.1.2 Shared Memory Mode

In the shared memory mode, apart from the prob-
lem of synchronizing concurrent accesses to the shared
cache, pointers between database objects and their
control structures, pointers among the control struc-
tures, and pointers among database objects must be
valid to every application process accessing them.
BeSS uses latches (atomic test-and-set) for synchro-
nizing concurrent accesses and implementing atomic
read/write operations on the cached objects. Clean-
up of shared structures from process failures is handled
by keeping track of process actions as in [20].

BeSS insures the validity of the shared pointers by
treating them in a uniform way as offsets from the
beginning of a fictitious virtual address space as out-
lined below and illustrated in Figure 4. Each process
P maps the shared cache in a number of frames — each
having size equal to database page — in the process’
private virtual memory address range, referred to as
PVMA. PVMA may be much larger than the size of
the shared cache. Also, for our scheme to work all
processes must reserve the same number of PVMA
frames. Mapping of database pages to virtual frames
is performed via a mapping table, referred to as SMT,
shared by all processes. This means that if a process
maps a page at some frame, all processes see this page
at this frame (but possibly at different address).

Thus, pointers in the shared space are made valid
by a) mapping each database page fetched in the
shared cache to the same PVMA frame for all pro-
cesses, and b) using offsets instead of virtual memory
pointers. The shared mapping table in conjunction



with the use of offsets gives the illusion of a shared
virtual address space, referred to as SVMA. Note also,
that in this scheme a pointer needs to be fixed once by
the first process that fetched the corresponding page
in cache. A simple BeSS template class shm ref<T>
translates pointers from the process’s virtual address
space to pointers in the shared address space, and vice
versa.

Figure 4 illustrates how two application processes
P1 and P2 operate in the shared memory mode.
Assume an empty cache accessed by two processes.
When P1 wants to access page A the SMT assigns a
virtual frame for this page, say the first one. Next, A
is read into a cache slot and P1’s first PVMA frame
is mapped to this cache slot. The same procedure is
followed by P2 that wants to access page B and the
outcome is depicted in Figure 4(a). Next, P2 wants
to access page C'. The SMT assigns an unused virtual
frame to this page, say the last one, and B is replaced
by the cache replacement algorithm, presented in Sec-
tion 4.2, to make room for C'. The replacement of B
causes P2 to disable both read and write access to the
PVMA frame that is mapped to B. When P1 wants
to access C, the SVMA mapping indicates that the
last PVMA frame should be mapped to the second
cache slot that holds C. The result is presented in
Figure 4(b).

4.2 Cache Replacement

BeSS uses a clock-like (a.k.a. second chance) al-
gorithm for page replacement policy [16]. However,
BeSS does not implement the traditional clock algo-
rithm where a bit is kept for each slot in the cache,
indicating whether or not the slot has been accessed
since the last time the clock swept over it. This is
because the cache manager does not have enough in-
formation indicating which slots have been accessed
recently due to the memory mapping architecture.

BeSS solution to the clock algorithm is based on
the state of a virtual frame. Each virtual frame may
be either invalid, or protected, or accessible. A frame
is invalid when 1t is access-protected and i1t does not
correspond to any cache slot. A frame is protected
when it is access-protected and corresponds to a cache
slot. Finally, a frame is accessible when it can be
accessed by the application without causing an access
violation. An accessible frame always corresponds to
a cache slot.

The clock algorithm sweeps through the virtual
frames and skips all invalid frames. Accessible frames
are also skipped but after they are converted to pro-
tected. The cache slot corresponding to a protected
frame is selected for replacement in the copy on ac-
cess mode. In the shared memory mode, the above
cache slot cannot be unilaterally replaced because it
may being accessed by other processes.

Our solution to this problem is the following. BeSS
associates a counter with each cache slot. This counter
corresponds to the number of processes that can ac-
cess that slot and each process increments it when the
process gains access to that slot. In addition, the clock
algorithm is broken up in the following two levels.

The first level is the same as the clock algorithm in

the copy on access mode with the difference that the
protected frames are made invalid and the counter of
the slot they correspond to is decremented by one.
The second level operates on the cache slots and uses
the counter as an indication whether or not the slot
has been accessed since the last time the clock swept
over it. A cache slot with counter zero is selected for
replacement.

5 Related Work

In this section we draw comparisons with related
work in the area of object-oriented and client-server
systems.

Existing storage systems prevent database corrup-
tion by providing a function call interface to the client
applications (e.g., Exodus [11]). On the other hand,
BeSS offers direct access to objects and utilizes the
standard virtual memory facilities provided by hard-
ware to detect access protection violations. BeSS also
uses the underlying hardware to automatically detect
writes, as in ObjectStore [19, 24] and QuickStore [34].

Objects often contain references to other objects.
Usually, the on-disk representation of an object dif-
fers from the in-memory representation of the object
because of the way the storage manager treats inter-
object references. Some systems use object identifiers
(OIDs) for both the in-memory and on-disk represen-
tations [9]. Other systems use virtual memory point-
ers for both representations [29, 10, 19, 34]. Finally,
there are systems that use OIDs for the on-disk rep-
resentation and virtual memory pointers for the in-
memory representation. These systems convert the
OIDs to virtual memory pointers when they fetch the
objects from disk — this is referred to as swizzling
[23, 7]. The conversion can be done either in software
[33, 22, 15, 26, 25] or by using the facilities provided
by the underlying hardware [30, 35]. In BeSS, inter-
object references are represented by virtual memory
pointers to the headers of the referenced objects which
in turn contain the address of the object itself. Also,
since BeSS stores object headers in a different seg-
ment than the object data, segments containing ob-
ject data can be moved around without affecting the
inter-object references.

To meet the diverse needs of both present and fu-
ture applications, it is very important for a storage sys-
tem to be extensible. In advanced relational database
management systems, extensibility usually stems from
higher level system components such as query opti-
mization. In terms of storage systems, GENESIS [2]
extensibility comes in the form of building blocks that
can be inserted into or removed from the system in
order to meet application specific requirements. Ex-
tensibility in SHORE [12] is realized through the value
added server concept. A trusted piece of code can be
linked with the SHORE server to provide additional
features to applications.

Similar to SHORE, the BeSS server can be linked
with code written by sophisticated users to provide
specialized server facilities. In addition, BeSS offers
controlled access to a number of entry points in the
system by allowing applications to specify the actions
that should be taken when certain primitive events



(software or hardware) occur.

Finally, BeSS offers an adaptable process structure.
The client-server system closest to ours is ObjectStore
[19]. However, ObjectStore does not allow application
processes to operate directly on objects that reside in
the shared client cache. Instead, applications have to
copy the items they need into their private space.

BeSS differs in many respects from our previous
work in the context of EOS [9, 8] although, it includes
components of EOS that according to our experience
have worked very well — disk space allocation, large
objects, and user defined hooks are some of them.
First, pointer dereference in EOS is somewhat slow
because inter-object references are OIDs. BeSS offers
a fast pointer dereference mechanism by using virtual
memory pointers. References within an object are lo-
cated by looking up the object’s type descriptor that
is stored in the database, and they are swizzled to
virtual memory addresses when the segment contain-
ing the object becomes accessible to the application.
Second, object relocation in EOS is a tedious task
because OIDs are physical addresses. On the other
hand, BeSS uses one level of indirection which facili-
tates on the fly database reorganization — compaction,
resizing, and relocation of data segments — without
affecting existing references. Third, unlike EOS that
requires explicit calls for setting locks, BeSS utilizes
the virtual memory mechanisms provided by ordinary
hardware for guarding against software errors, such
as stray pointers, and for automatic lock acquisition.
Fourth, BeSS is an open-server system; i.e., user code
can be linked with the BeSS server to build application
specific servers, as opposed to running the application
as a client, the only alternative offered by EOS. Fi-
nally, BeSS offers to application processes running on
the same machine the capability of accessing data in
a shared cache.

6 Conclusions

In this paper we have presented the architecture of
the BeSS storage system as well as a preliminary per-
formance evaluation of the operation modes offered.
The alpha implementation of BeSS was completed in
November 1993 and a beta release was completed in
November 1994. BeSS has been implemented in C++
and 1t 1s operational for SUN and SGI platforms. Also,
we are planning on porting BeSS on a multiprocessor
machine such as the NCR 3600 with board level shared
memory.

We are currently working on issues related to client-
logging to offer high performance transaction manage-
ment to client applications [27]. The BeSS node server
running on a node that has local disk space can ex-
ploit this space for logging purposes. In this way, the
BeSS node server will be able to commit local trans-
actions, rollback local transactions, and recover from
node crashes.
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