Proc. IEEE 11th Int’l Conference on Data Engineering, March 1995, pages 308-315

Transactions in the Client-Server EOS Object Store

Alexandros Biliris and Euthimios Panagos
AT&T Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974

{biliris, thimios}@research.att.com

Abstract

This paper describes the client-server software ar-
chitecture of the FOS storage manager and the con-
currency control and recovery mechanisms it employs.
Unlike most client-server storage systems that use
the standard two-phase locking protocol, EOS offers a
semi-optimistic locking scheme based on a multigran-
ularity two-version two-phase locking protocol. Under
this scheme, many readers are allowed to access a data
item while it 1s being updated by a single writer. For
recovery, EOS maintains a write-ahead redo-only log
because of the potential benefits it offers in a client-
server environment. First, there are no undo records,
as log records of aborted transactions are never in-
serted in the log; this minimizes the I/O and network
transfer costs associated with logging during normal
transaction execution. Secondly, it reduces the space
required for the log. Thirdly, it facilitates fast recov-
ery from system crashes because only one forward scan
of the log s required for installing the updates per-
formed by transactions that commaitted prior to the
crash. Performance results of the EQS recovery sub-
system are also presented.

1 Introduction

Most commercial and experimental database sys-
tems of today operate in a client-server environment.
The concurrency control and recovery sub-systems
employed by most client-server architectures are based
on the protocols found in centralized and replicated
DBMSs. In particular, the standard two-phase lock-
ing protocol is used for concurrency control, while
the redo/undo recovery protocol protects the database
from transaction aborts and system crashes [2]. In
this paper we describe the implementation and perfor-
mance characteristics of a semi-optimistic two-phase
locking protocol and a no-undo/redo recovery scheme,
based on our experience in building the EOS client-
server system.

In traditional centralized database architectures
and most of today’s commercial client-server relational
database systems, queries and operations are shipped
from client machines to the server which processes the
requests and returns back the results. In contrast, the
vast majority of object-oriented client-server DBMSs
follows a data shipping approach where clients oper-
ate on the data items the server sends to them (e.g.,
[7,9, 11, 10]). Although there is a number of alterna-
tives on the granularity of the data items exchanged
between the server and the clients, the majority of the
client-server systems employ the page-server model
because of its simplicity and potential performance

advantages over the other alternatives [8]. In a page-
server environment, the server and the clients interact
by using pages or groups of pages.

In a data shipping client-server system each client
has a buffer pool, also referred to as client cache,
where 1t places the pages fetched from the server.
Clients perform most of the database modifications,
while the server keeps the stable copy of the database
and the log. An important observation is that each
client cache can be considered as an extension of the
server’s cache and the updated pages present in the
client’s cache can be considered as being shadows of
the pages residing on the server. Hence, the two-
version two-phase locking protocol [2] could be im-
plemented with no additional overhead. Furthermore,
if the pages updated by a transaction running on a
client are never written to the database before this
transaction commits, then there is no need to gener-
ate undo log records and the system is able to offer
redo-only recovery. This is because the database will
never contain modifications that must be undone when
a transaction aborts or when the system restarts after
a crash.

EOS is based on a page-server architecture follow-
ing the data-shipping approach. The implementation
of transaction processing in EQOS involves two main
components. The concurrency control subsystem pro-
vides correct concurrent execution of transactions ac-
cessing the same database. The recovery subsystem
uses the information stored on a log file to provide
database consistency despite transaction and system
failures. To reduce the amount of work during crash
recovery, EOS checkpoints the database periodically.
It is essential that the concurrency control, logging,
and checkpointing activities of a transaction manager
interfere as little as possible with normal transac-
tion execution. The major characteristics of the EOS
transaction processing mechanism are the following;:

e Concurrency control is based on the multigran-
ularity two-version two-phase locking protocol.
A given database page has a committed version
present either in the server’s buffer pool or on
disk. A second version of the page may temporar-
ily reside in the cache of a client that is in the
process of updating it. If the client commits, the
modified copy of the page is placed in the server’s
buffer pool and it becomes the committed ver-
sion of the page. If the client aborts, the modi-
fied copy is discarded. The scheme allows many
readers and one writer to concurrently access the
same page without incurring extra overhead to
the client and server buffer managers.

e Recovery is based on a write-ahead redo-only log-
ging scheme that (a) minimizes the I/O and net-
work transfer costs associated with logging dur-
ing normal transaction execution because no undo
log records are written, (b) reduces the space re-
quired by the log since log records contain only
after images of updates, and (c) requires only one
forward scan of the log in order to re-apply the
committed updates, which results in fast system
restarts.

e Checkpoints are non-blocking; active transactions
are allowed to continue accessing databases while
a checkpoint is taken.

The remainder of the paper is organized as follows.
Section 2 presents an overview of the EOS client-server
architecture and emphasizes the concurrency control
and logging protocols employed. Transaction oper-
ations, such as commit and abort, are discussed in
Section 3. Crash recovery and checkpointing are pre-
sented in Section 4. The performance of the logging
and recovery implementation is presented in Section 5.
We discuss related work in Section 6 and, finally, we
state our concluding remarks in Section 7.

2 Architecture Overview

Figure 1 sketches the architecture of the EOS client-
server storage manager. The EOS server is the repos-
itory of the database and the log. It mediates concur-
rent accesses to the database and restores the database
to a consistent state when a transaction or system fail-
ure occurs.

EQOS databases are collections of EOS files in which
objects are stored. Databases are created in storage
areas — UNIX files or raw disk partitions. Each storage
area consists of a number of extents which are fixed-
size sequences of physically adjacent disk pages. The
allocation policy within storage areas is based on the
binary buddy system which imposes minimal I/O and
CPU costs and it provides excellent support for very
large objects [4].

Objects are stored on slotted pages and they
are identified by system generated unique object ids
(oids). If an object cannot fit within a single page,
EQOS stores the object in a number of segments — con-
tiguous pages allocated in an extent — and a descriptor
that points to these segments is stored on the slotted
page [3]. EOS provides transparent access to small
and large objects. Both kinds of objects can be ac-
cessed either via byte-range operations such as read,
write, append, insert, etc. — specially suited for very
large, multimedia objects (gigabytes) — or directly in
the client’s cache, without incurring any in-memory
copying cost.

An application program is linked with the EOS
client library. The application may consist of many
transactions but only one transaction at a time is ex-
ecuted. Each application has a buffer pool for caching
the pages requested from the server, a lock cache, some
transaction information, and a logging subsystem that
generates log records for the updated pages. These log
records are sent to the server during transaction exe-
cution and at commit time. Inter-transaction caching

EOS Server
Database Log

management {4

1 Logging

Disk I/O Transaction
management ~ Recovery

Administration
Communication

Locking

Communication Communication

Transaction & 3[4
Log subsystems Buffer

management

Transaction & ||
Log subsystems Buffer

management

Lockcache = "FT T/ | emeenann Lock cache

Interface Interface

Application

Application

Client 1 Client N

Figure 1: The EOS client-server architecture

is not currently supported and the application buffer
pool is empty at the beginning of each transaction. A
least-recently-used (LRU) buffer replacement policy is
employed by the client and server buffer managers.

The EOS server is implemented as a multi-threaded
daemon process. At transaction begin, the server as-
signs a new transaction identifier and creates a new
thread when there is no active one serving this client
application. At transaction abort, the server sends an
abort message to the transaction the next time the
transaction communicates with the server.

The communication between the server and the
clients is done by using reliable TCP/TP connections
over UNIX sockets [14]. To avoid blocking T/O opera-
tions, the server creates a disk process for each storage
area accessed by client applications. These disk pro-
cesses access directly the server buffer pool, which is
stored in shared memory, and communicate with the
server threads using semaphores, message queues and
UNIX domain sockets [14].

2.1 Concurrency Control
EOS employes the two-version two-phase locking

(2V-2PL) locking protocol. When the 2V-2PL pro-
tocol is applied in a client-server environment where
each application has its own buffer pool, it enables
many transactions to read an object while another
transaction updates the same object without the
need of maintaining different physical versions in the
database. In addition, the 2V-2PL is coupled with
multigranularity locking (MG-2V-2PL).

Lock acquisition and release is implicit for each read
or write operation. Transactions acquire locks on data
items before they access them, and they release all
locks they hold when they are finished (committed or
aborted). EOS supports three locking granularities:
page, file, and database.

A page, the smallest lock granule, can be locked by
a transaction 7 in one of the following modes:

Compatibility Table
Mode Existing
Requested [IS [s [IX [X [sIX]IC | C
IS Y |Y|Y|Y Y Y | N
S Y|Y|Y|Y Y N | N
IX Y |Y|Y|N Y Y | N
X Y| Y| N|N N N | N
SIX Y| Y| Y |N Y N | N
IC Y | N|Y [N N Y | N
C N|N|N|N N N | N

Table 1: The lock compatibility table

Intention shared (IS): T intends to read an object
belonging to a file residing on this page.

Shared (S): T wants to read an object stored on this
page.

Intention exclusive (IX): T intends to update an
object belonging to a file residing on this page.

Shared intention exclusive (SIX): There is a file
object on this page and either T read the file ob-
ject and intends to update an object in this file,
or T updated an object belonging to this file and
now wants to read the file.

Exclusive (X): T wants to update an object stored
on this page.

Intention commit (IC): T had an IX or SIX lock on
this page and 1t is in the process of committing.

Commit (C): T had an X lock on this page and it is
in the process of committing.

Table 1 determines whether a lock request can be
granted or not — “Y” means that the lock request can
be granted and “N” means that the request has to be
blocked. When a transaction locks a page, the file con-
taining this page is also locked in the corresponding
intention mode. In addition, when a transaction locks
a file in either S or X mode, the pages this file con-
tains are not locked explicitly, unless the transaction
locked the file in S mode and updated a page in the
file. Transactions that are in the process of commit-
ting their updates are blocked when there are active
transactions that read the updated pages in order to
generate serializable schedules. In addition, transac-
tions attempting to read a page which has been up-
dated by a committing transaction are blocked. In this
way, committing update transactions may be blocked
only for a finite time period.

Table 2 is used for lock upgrades. A lock upgrade
occurs when a transaction holding a lock on a data
item wants to lock this item in a different mode. An
entry containing -’ corresponds to either a violation of
the assumption that no locks will be acquired while the

Lock Upgrade Table
Mode Granted
Requested | IS | 8 [IXx | X [sIx|IC|cC
I8 IS S IX X SIX - -
S S S SIX X SIX - -
IX IX SIX IX X SIX - -
X X X X X X - -
SIX || SIX | SIX | SIX | SIX | SIX - -
IC - - IC 1C 1C - -
C - - C C C - -

Table 2: The lock upgrade table.

transaction entered its commit phase, or an impossible
situation.

In every lock-based concurrency control algorithm,
deadlocks may occur. Since in a client-server environ-
ment delays are inherent due to the communication
network and the fact that most of the computation is
performed by the client, mistaking a long wait for a
deadlock would affect the performance of the system
dramatically. For this reason, EOS uses a deadlock de-
tection algorithm as opposed to a timeout approach.

Deadlock detection is performed when a lock re-
quest has to be blocked. The deadlock detection al-
gorithm consists of two steps. The first step attempts
to discover a cycle involving transactions that tried to
upgrade their locks on the same locked page. If no cy-
cle is discovered during the first step and the blocked
request is waiting for a transaction that has a blocked
lock request, then the second step dynamically con-
structs the waits-for graph (WFG) and searches for a
cycle by traversing the constructed graph in a depth
first fashion. EOS evicts the transaction whose lock
request resulted in the formation of a deadlock cycle.
An alternative approach that we may adopt in the fu-
ture is to never evict a committing transaction, unless
it is the only choice!.

2.2 Recovery

EOS maintains a write-ahead redo-only log on disk.
The generated log records contain the after image of
the modified page or the byte ranges within this page
that have been updated. The log contains three kinds
of records: checkpoint records indicating that a check-
point has been taken; commit records indicating that
a transaction has successfully committed; redo records
containing the results of the updates generated by
committed transactions.

EOS partitions the log into two kinds of logs: a
global log and a number of private logs, as shown in
Figure 2. Each private log is associated with one trans-
action only and contains the physical after images of

IEOS becomes aware of the fact that a transaction is about
to commit because a transaction that wants to commit requests
from the lock manager to convert its locks to commit locks (IC
and C).

|| Global Log File

u Checkpoint record
0 Commit record
o Private log file

X

Figure 2: The physical structure of the log file

the updates generated by the corresponding transac-
tion. The global log contains records that are either
commit or checkpoint records. A commit record con-
tains the committed transaction’s id and the address
of its private log. The checkpoint record contains the
location of the commit record belonging to the first
transaction that placed a commit record and which
had not finished posting its updates to the database
while checkpointing was in progress. When a transac-
tion aborts its private log is simply discarded.

Each log record has a small header that contains
the page id, the byte range updated and the actual
update. Currently, EOS performs full page logging
and the byte range value of each log record is equal
to the database page size. Log records may be sent
to the server asynchronously while the transaction is
running. When a transaction commits, however, all of
its remaining log records are sent to the server. When
a log record is written in the private log, the log man-
ager returns a key for the record — called log sequence
number (LSN) — that can be used later to access that
record.

3 Transaction Execution

A committed transaction 7T goes through the fol-
lowing phases: actiwe, committing, and write. T is in
the active phase from the time it starts up to the time
it finishes normal execution and it is ready to com-
mit. At this point 7" must convert all exclusive locks
it acquired to commit locks and send the remaining of
the log records to its private log. During this process,
T is in the commutting phase. After the log records
are written to the stable storage and a commit record
is placed in the global log, T is said to be commit-
ted. The last phase is the one where T establishes its
updates in the server buffer pool; this phase is called
write phase. A transaction can be aborted at any time
during the active and the committing phases. Once
the transaction reached the write phase, its updates
are guaranteed to persist.

3.1 Active Phase

During normal transaction processing locks are ac-
quired from the server and database pages are cached
in the application’s private buffer pool. When the pri-
vate pool is full, pages are replaced to make room for
new ones. In the redo-only logging approach, a dirty
page being replaced should never be written to its disk
location in the database before the transaction com-
mits because no undo information is kept in the log.
Avoiding to write an uncommitted dirty page to the
database 1s achieved by either prohibiting the replace-
ment of modified pages or by employing a shadow-like
approach.

Prohibiting the replacement of modified pages is
not an option because it severely restricts the number
of pages a transaction can update. On the other hand,
shadowing can be implemented by storing the replaced
pages either in the database (as in Oz [7]) or in a
swap area. We abandoned following Os’s approach
because of the extra overhead it adds to the server
buffer manager and recovery subsystem.

When a dirty page is replaced from the client’s pri-
vate pool, it is placed in the swap space and the loca-
tion of the page is kept by the client buffer manager.
The next time the page needs to be fetched in the
application’s cache, the page is taken from the swap
space. The swap area in EOS can be either on the
client or the server machine and it is specified in the
configuration files offered by EOS. As a special case,
the private log of a transaction could be used as the
swap space for uncommitted updates — this is the de-
fault in our current implementation [5]. When a dirty
page is replaced from the application’s private pool,
EOS generates a log record whose data part contains
the entire page and the LSN of the log record is kept
by the client’s buffer manager.

For every page P in the private buffer pool of a
transaction 7' there is a control block (CB) contain-
ing locking information related to P and a pointer to
a buffer frame where P is stored. When a transac-
tion wants to read/write an object in a page, it calls
the buffer manager and passes along the lock mode L
that needs to be acquired on P. The buffer manager
executes the following algorithm.

1. Scan the buffer pool to locate the CB of P.

2. If the CB of P is not found then make room in the buffer
pool by evicting the least recently used page Prry. If
Prry is dirty then send it to the private log file and
save the returned LSN in the CB of Prrr.

3. If the CB of P is found and the page is present in the
buffer pool then continue with step 5 if the lock mode
needs to be upgraded, else return.

4. If the CB of P is found and the page is swapped out,
then make room in the buffer pool by replacing a page
as in step 2 above and request P from the private log
using the LSN stored in P's CB.

5. Request from the server L-lock on P and [IL-lock on
P’s file.

3.2 Transaction Abort

When a transaction 7" aborts, no undo action needs
to be carried out besides cleaning up possible object
copies in the transaction private space and removing
the private log. In other words, 7" sends an abort
message to the server, frees various control structures
used, and purges the local cache.

When the server receives an abort transaction mes-
sage, it frees all resources used by 7T'. In particular, all
locks held by T are released, the private log associated
with 7" is discarded, and T is added to the list of the
aborted transactions.

3.3 Transaction Commit

When the transaction 7T finishes its active phase
and it is ready to commit, it follows the steps pre-
sented below:

1. Without waiting for a response send a convert locks
message to the server.

2. Send asynchronously to the private log all remaining log
records.

3. Send a commit transaction message to the server and
wait for the acknowledgment.

While T is executing step 2 or waiting on step 3, the
server may reply with an abort message. The reason
for the abort may be: (a) 7" was involved in a deadlock
that materialized when the server was acquiring the
commit locks on behalf of T', or (b) an internal error
occurred while writing the log records or flushing the
private log.

When the server receives a convert locks message
from a transaction, it upgrades all IX and SIX locks
to IC and all X locks to C. Next, the server releases all
IS and S locks and replies with a success message.

All the log records generated by a committing
transaction have been sent to server when the trans-
action sends the commit message to the server. When
the server receives the commit message it follows the
steps described below.

1. Flush the private log to stable storage.

2. Insert a commit record in the global log and flush the
global log.

3. Send a success message to the application.

4. Install the updates performed by the committed trans-
action.

5. Release all remaining locks (i.e., C and IC locks).

If an error occurs while the server executes the first
two steps of the above algorithm, it aborts the trans-
action and replies with an abort message.

3.4 Write Phase

The log records generated by a committed transac-
tion are used to apply the updates to the database.
Thus, the fourth step of the commit algorithm pre-
sented in the above section is done as follows.

1. For each log record in the private log of the committed
transaction do the following:

(a) If the log record contains the after image of an
entire page, then overwrite the page if it is present
in the server buffer pool. Otherwise, place the data
part of the log record in the pool.

(b) If the log record contains an update performed on
some byte range of a page, then overwrite this
particular byte range. If the page is not present
in the server buffer pool, bring it in first and then
perform the overwriting.

3.5 Recovery for Large Objects

Recovery for large objects differs from that men-
tioned above. First, large objects are not buffered
in the server buffer pool. Secondly, updates on large
objects are applied directly to the database without,
however, overwriting the object in the database [3].
When a transaction gets aborted, the updates it per-
formed on the allocation bitmaps are thrown away. In
addition, no other transaction can see these changes
because of the write lock held on the page containing
the large object descriptor.

4 Recovery from Server Crashes

To reduce the amount of work the recovery man-
ager has to do during recovery from a system crash,
the EOS server periodically issues checkpoints. In the
current implementation, the checkpoint algorithm ex-
ecutes the following steps.

1. Let RestartLoc be the earliest commit record inserted
in the global log by transactions that have not finished
their write phase yet.

2. For each dirty page in the server buffer pool do:

(a) Latch the page and write it to disk.
(b) Mark the page clean and unlatch it.

3. Place a checkpoint record in the global log containing
the RestariLoc computed at the first step.

4. Save the location of the checkpoint record in a place
well known to the restart procedure.

Even though the second step of the checkpoint al-
gorithm does not block active transactions while the
server buffer pool is flushed to stable storage, flushing
of dirty pages makes the checkpoint algorithm expen-
sive. Currently, we are implementing a new check-
point algorithm that is based on the fuzzy checkpoint
method described in [2]. This algorithm flushes to
stable storage only the frequently updated pages that
were not flushed out since the last checkpoint.

System restart is done by scanning the log file and
re-doing all the updates made by committed trans-
actions in exactly the same order as they were orig-
inally performed. The redo processing starts at the
RestartLoc value present in the last complete check-
point record. After the database state has been re-
stored a checkpoint is taken and the system is oper-
ational again. If the server crashes while restart is
performed, the subsequent restart performs the same
work again in an idempotent fashion.

5 Performance Results

In this section we present an initial study of the
performance of the logging and the recovery compo-
nents of EOS. In this study we measure the logging
overhead, the time required to abort a transaction,
and the time spent when restarting the system after
a crash. Some comparison with the client-server Exo-
dus storage manager (ESM-CS) [9] is also presented.
This comparison is necessarily rough, because ESM-
CS uses a totally different recovery protocol and a dif-
ferent hardware configuration.

DB Objects Object Objects Pages
Name in DB Size per page 1n DB
FewObyj 6000 500 6 1000
Medium Obj 30000 100 30 1000
ManyObj 100000 20 100 1000

Table 3: The configuration of the databases used

All the experiments presented were run on two
SPARCstation 10’s running SunQOS version 4.1.3 and
having 32M bytes of main memory and 142M bytes
of swap space. The client and server processes were
run on separate machines and they were connected by
an Ethernet network. The database was stored in a
raw disk partition to minimize the operating system’s
buffering overhead and the database page size was 4K
bytes. The log was stored in a regular UNIX file and
fsync() was used for flushing any internal operating
system buffers to disk at transaction commit time. All
the times reported are in seconds and they were ob-
tained using gettimeofday().

5.1 Database and System Model

Due to the limited number of published perfor-
mance results for the logging and recovery compo-
nents of client-server systems, we adopted a variation
of the model presented in [9]. Table 3 describes the
three databases used for the experiments we ran. Each
database consists of 1000 pages and the key difference
among them is the number of objects they contain.
The first database FewQObj contains 6000 objects of
size 500 bytes each. The second database MediumQbj
contains 30000 objects of size 100 bytes each. The
third database ManyObj contains 100000 objects of
size 20 bytes each.

We used only one kind of transaction for the exper-
iments performed: Update, which sequentially scans
the entire database and overwrites part of each en-
countered object. The server buffer pool was set to
2000 pages so that the entire database was cached
in main memory and the writing of log records was
the only I/0 related activity. The application’s buffer
pool was also set to 2000 pages. In this way the en-
tire database fits in the private pool during transac-
tion processing. However, as mentioned in 2, the local
pool is empty at the beginning of each run. All the
numbers presented in the forthcoming sections were
obtained by running each transaction five times and
taking the average of the last four runs.

5.2 Logging Results

In the first set of experiments we measured the over-
head of writing the log records to the log disk, as it was
observed by the application process. In order to com-
pute this overhead we altered the EOS server to allow
the writing of the log records to be selectively turned
on and off. Table 4 shows the average times com-
puted and Figure 3 illustrates them pictorially. The
execution time for a transaction includes the time to
initialize all EOS internal structures, execute and com-

DB Logging (sec) Logging
Name ON OFF Overhead
FewObj 172 | 157 | 1.5 (9.55%)
MediumObj | 18.9 | 17.3 | 1.6 (9.24%)
ManyObj | 25.6 | 238 | 1.8 (7.56%)

Table 4: Writing to the log disk overhead

mit the transaction as well as the generation, shipping,
and writing of log records and the forcing the log to
stable storage.

Table 4 indicates that the overhead of shipping
log records to the server and forcing them to disk
decreases as the number of objects accessed by the
application program increases. As mentioned in Sec-
tion 2.2, EOS logs entire pages. Because the number of
pages that are updated is the same in all three experi-
ments, the number of log records generated is also the
same. Thus, the logging overhead is reduced when the
processing time of the application program increases.

While in EOS the logging overhead decreases when
the processing time is increased, in ESM-CS the log-
ging overhead increases. Because EOS logs pages
whose after image can found in the application’s buffer
pool, there is no need to write log records in a sepa-
rate log page for each operation that updates an ob-
ject, as done by ESM-CS. Thus, the construction of
the 32-byte log header is the only processing overhead
related to the generation of a log record. Figure 4 il-
lustrates the logging overhead of the ManyOb; exper-
iment for both EOS and ESM-CS under the assump-
tion that regular transaction execution (including log-
ging) takes one time unit. In this experiment, the
logging overhead of ESM-CS is almost 5 times higher
than the logging overhead of EOS. ESM-CS gener-
ated 100 log records per page while EOS generated
only one. Secondly, for each individual page that was
modified ESM-CS generated 6400 bytes of log headers
(each log header takes 64 bytes) while EOS generated
only 32 bytes.

5.3 Transaction Abort and Recovery Re-
sults

The time to abort a transaction was measured by
the same set of experiments that were run to measure
the impact of the logging subsystem during normal
transaction processing. This time, each transaction is
aborted after it finishes normal execution and the ship-
ping of all log records to the server. Table 5 shows the
results of these experiments together with the normal
processing time (taken from Table 4) for comparison.
Figure 3 illustrates these results pictorially.

The abort tests showed a slight increase in the time
needed to abort a transaction as the number of up-
dated objects increased. The results presented in Ta-
ble 5 correspond to the time needed to release all the
locks held by the aborted transaction plus the time
needed to clean all data structures used on the client.
The release of locks takes the same time for all three

DB Execution Abort Restart
name time (sec) time time
FewObj 17.2 1.0 1.3
MediumObj 18.9 1.1 1.3
ManyObj 25.6 1.7 1.3

Table 5: Transaction abort and Restart time

Transaction execution
i N

] with logging Ol
] o Transaction execution —
25 with logging OFF
- I Transaction Abort
:] System restart
20—
- 4
° 4 [—
153
S - I
8
& 15—
£
> 4
E -
= 4
10—
5 —]
0 FewObj MediumObj ManyObj

Experiments

Figure 3: EOS performance results

databases since page level locking is used by EOS and
the same number of pages is accessed. Thus, the clean-
ing of the data structures used is responsible for the
increase in the abort time. This is reasonable since the
number of structures used corresponds to the num-
ber of objects accessed. The fact that no transaction
rollback and writing of compensation log records are
needed for aborting a transaction in EOS, keeps the
abort time very small compared to normal processing
time. This is in contrast to the time needed to abort a
transaction in ESM-CS that uses a redo/undo recov-
ery protocol. ESM-CS has to read all pages updated
by the transaction from the database and generate
compensation log records.

For measuring the time needed to redo the updates
performed by a committed transaction, we turned off
the checkpoint activity and the server was crashed
immediately after the transaction committed. Dur-
ing restart, the entire log had to be scanned and the
updates made by the committed transaction were re-
done. The restart tests showed that the time needed
to redo the committed updates is independent from
the number of objects updated. This is so because the
number of log records processed during restart was the
same for all three databases used.

The times showed in Table 5 indicate that EOS of-
fers a fast restart procedure compared to normal pro-
cessing time. Because only after images of updates are
logged there i1s not need to analyze the transaction’s
log. Thus, only one scan over the log is performed.
The ESM-CS performs considerably worse that EOS
since it has to analyze all log records written first and

— Transaction execution
1.07) I with logging ON
_ Generation, shipping and
0.9 [writing of log records
System restart
0.8 7| L
0.7 7|
£ 067
=
E
g2 o5
=
0.4 7|
0.3 7|
0.2 7|
0.0 EOS ESM-CS

Architectures

Figure 4: Normalized logging and system restart over-

head

then redo the committed updates by re-scanning the
log. Figure 4 illustrates the restart overhead of the
ManyObj experiment for both EOS and ESM-CS.

6 Related Work

Although client-server systems have received a
great deal of attention in recent years, information
on recovery problems and solutions of existing client-
server architectures is limited.

The Exodus client-server storage manager (ESM-
CS) [9] employs an ARIES-based [12] recovery ap-
proach. Unlike ESM-CS that requires three passes
over the log during restart recovery, EOS needs only
one pass. In addition, ESM-CS requires each database
page to contain an LSN-like field and handles large ob-
Jjects in a page-at-a-time fashion by stripping the head-
ers present on them. EOS, on the other hand, does not
store log related information on database pages and it
does not alter the data of the segments where large
objects are stored.

Objectstore [11], an object-oriented database man-
agement system based on a memory mapped architec-
ture, uses a strict two-phase page-level locking algo-
rithm and the write-ahead log protocol for recovery.
In addition, Objectstore forces to disk all the updated
pages at transaction commit.

O [7] employs an ARIES-based recovery approach
using shadowing to provide a Redo-only scheme. Mod-
ified pages that are replaced from a client’s cache are
sent to the server’s and they are written to a shadow
area when they are replaced from the server’s buffer
pool. EOS cannot place dirty pages in the server’s
buffer pool because in MG-2V-2PL an S is compati-
ble with an X lock. Alternatively, EOS logs the entire
page and it does not have to keeps track of the shadow
pages as Oz does.

ORION-1SX [10] uses both logical and physical
locking. The logical locking 1s applied on the class hi-
erarchy, whereas the physical locking is used for trans-
ferring objects atomically. ORION-1SX employs an
undo-only recovery protocol and pages updated by a
committed transaction are flushed to stable storage as

part of the commit process.

7 Conclusions

EQOS is a storage manager that has been prototyped
at AT&T Bell Laboratories as a vehicle for research
into distributed storage architectures for database sys-
tems and specially those that integrate programming
languages and databases. EOS is the storage manager
of ODE [1], an object oriented database management
system also being developed at Bell Laboratories.

In this paper we have described the client-server
architecture of EOS and the concurrency control and
recovery mechanisms it provides. The MG-2V-2PL
concurrency control protocol was chosen with the goal
of increasing the concurrency level of the system in
the client-server environment. The no-undo/redo re-
covery method was designed with the goal of mini-
mizing the impact of the recovery related activities
during normal transaction processing, while providing
fast transaction abort and system restart times. We
also presented measurements of the recovery imple-
mentation in EOS. From the results computed, and
from the limited number of published performance re-
sults for logging and recovery systems, we concluded
that the recovery overhead in EOS is minimal, despite
the write-intensive nature of the tests we ran.

We are currently working on issues related to inter-
transaction caching within the same application and
across applications that share the same cache, provid-
ing support for multiple servers, distributed transac-
tions, and client-side logging [6, 13].

References
[1] R. Agrawal and N. Gehani. ODE (Object Database
and Environment): The language and the data model.
In Proceedings of ACM-SIGMOD 1989 International
Conference on Management of Data, Portland, Ore-
gon, June 1989.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley, Reading, MA, 1987.

[3] A. Biliris. An efficient database storage structure
for large dynamic objects. In Proceedings of the
FEighth International Conference on Data Engineer-
ing, Tempe, Arizona, pages 301-308, February 1992.

[4] A. Biliris. The performance of three database storage
structures for managing large objects. In Proceedings
of ACM-SIGMOD 1992 International Conference on
Management of Data, San Diego, California, pages
276-285, May 1992.

[5] A. Biliris and E. Panagos. EOS User’s Guide, Release
2.0. Technical report, AT&T Bell Laboratories, May
1993.

[6] A. Biliris and E. Panagos. A high performance con-
figurable storage manager. In Proceedings of the
Ninth International Conference on Data Engineering,

Taipei, Taiwan, March 1995. To appear.

[7] O. Deux et al. The O, system. Communications of
the ACM, 34(10):51-63, October 1991.

[8] D. J. DeWitt, D. Maier, P. Futtersack, and F. Velez.
A study of three alternative workstation-server archi-
tectures for object-oriented database systems. In Pro-
ceedings of the Sixzteenth International Conference on
Very Large Databases, Brisbane, pages 107-121, Au-
gust 1990.

[9] M. Franklin, M. Zwilling, C. Tan, M. Carey, and
D. DeWitt. Crash recovery in client-server EXODUS.
In Proceedings of ACM-SIGMOD 1992 International
Conference on Management of Data, San Diego, Cal-
ifornia, June 1992.

[10] W. Kim, J. Garza, N. Ballou, and D. Woelk. Architec-
ture of the ORION next-generation database system.
IFEFE Transactions on Knowledge and Data Engineer-
ing, 2(1), March 1990.

[11] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb.
The ObjectStore database system. Communications
of the ACM, 34(10):51-63, October 1991.

[12] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method
supporting fine-granularity locking and partial roll-
backs using write-ahead logging. ACM Transactions
on Database Systems, 17(1):94-162, March 1992.

[13] E. Panagos, A. Biliris, H.V. Jagadish, and R. Rastogi.
Exploiting client disks for high performance client-
server architectures. Submitted for publication.

[14] R. Stevens. UNIX Network Programming. Prentice-
Hall Software Series, 1990.

