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Abstract

In this paper, we propose logging and recovery algo-
rithms for distributed architectures that use local disk
space to provide transactional facilities locally. FEach
node has its own log file where all log records for up-
dates to locally cached pages are written. Transaction
rollback and node crash recovery are handled ezclu-
swely by each node and log files are not merged at
any time. Qur algorithms do not require any form
of time synchronization between nodes and nodes can
take checkpoints independently of each other. Finally,
our algorithms make possible a new paradigm for dis-
tributed transaction management that has the potential
to exploit all available resources and improve scalabil-
ity and performance.

1 Introduction

The proliferation of inexpensive workstations and
networks has created a new era in distributed com-
puting. At the same time, non-traditional applications
such as computer aided design (CAD), computer aided
software engineering (CASE), geographic information
systems (GIS), and office information systems (OIS)
have placed increased demands for high-performance
transaction processing on database systems. The com-
bination of these factors gives rise to significant perfor-
mance opportunities in the area of distributed trans-
action processing.

Today, the major distributed database architec-
tures are client-server, shared nothing and shared
disks. Most of these architectures use logging for re-
covery. In a client-server system, both the database
and the log are stored with the server and all log
records generated by the clients are sent to the server.
In a shared nothing system, the database is parti-
tioned among several nodes and each node has its own
log file. Each database partition is accessed only by
the owning node and a distributed commit protocol is
required for committing transactions that access mul-
tiple partitions. In a shared disks system, the database
is shared among the different nodes. Some shared
disks systems use only one log file and require system
wide synchronization for appending log records to the
log (e.g., Rdb/VMS [18]). Some other shared disks
systems use a log file per node (e.g., [14], [11]). How-
ever, these systems either force pages to disks when
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these pages are exchanged between two nodes or they
merge the log files during a node crash.

1.1 Paper Contributions

This paper proposes a new paradigm for distributed
transaction processing. In this new approach, updates
on data items performed by a node are logged locally,
regardless of whether the data items are stored in a
local database or in a database managed by a remote
node. Local logging eliminates the need to send log
records to remote nodes during transaction execution
and at transaction commit.

Figure 1 shows the distributed architecture we as-
sume while presenting our recovery algorithms. The
system consists of several networked processing nodes.
A node having databases attached to it, such as nodes
1 and 3, 1s referred to as owner node with respect to
the items stored in these databases. All owner nodes
have local logs. Nodes that do not own any database,
such as nodes 2 and 4, may or may not have local logs.
Although nodes with no local logs may participate in
a distributed computation, our algorithms apply only
to nodes that have local logs.
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Log Log
Database
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Figure 1: Distributed System Architecture

A user program running on node N accesses data
items that are owned by either N or some other remote
node. These data items are fetched in N’s cache, i.e.,
we assume a data shipping architecture. Log records
for data updated by N are written to the local log file
and transaction commitment is carried out by N with-
out communication with the remote nodes. To accom-
plish this, we have designed algorithms that correctly
handle transaction aborts and node crashes, while in-
curring minimal overhead during normal transaction



processing. The main characteristics of our algorithms
are the following.

e Log records for updates to cached pages are writ-
ten to the log file of each node.

e Transaction rollback and node crash recovery are
handled exclusively by each node.

e Node log files are not merged at any time.
e Node clocks do not have to be synchronized.

e Nodes can take checkpoints independently of each
other.

1.2 Applicability to Existing Distributed
Architectures

The algorithms presented in this paper are of po-
tential value to a variety of distributed computing
environments. They can be applied to both shared
nothing and shared disks architectures. They can also
be applied to client-server architectures where client
disks are used for logging and peer-to-peer architec-
tures (e.g., Shore [3], BeSS [2]).

In existing client-server database systems, trans-
action management is carried out exclusively by the
server. The main argument for not allowing clients
to offer transactional facilities is twofold. First, client
machines may not be powerful enough to handle such
tasks; the high cost of main memory and disks in the
past made 1t more cost effective to increase the re-
sources of the server rather than the resources of each
client. The second, and more important, argument
is data availability and client reliability — client ma-
chines could be connected to or disconnected from the
network or simply turned off at arbitrary times.

Today, advances in hardware and software have re-
sulted in both reliable network connections and reli-
able workstations that approach server machines re-
garding of resources. Thus, client reliability concerns
become less and less important. Concerns related to
availability are more a function of the computing envi-
ronment rather than of the technology. In many com-
puting environments, such as corporate, engineering,
and software development, client workstations are con-
nected to the server(s) all the time. Of course, discon-
nection of these machines from the network for some
reason does happen but it is a rare event (say, once a
month) and can be handled in an orderly fashion. In
such environments, additional performance and scala-
bility gains are realized when clients offer transactional
facilities, because dependencies on server resources are
reduced considerably.

Our algorithms can be used even in environments
where some nodes are often disconnected from the rest
for a long period of time, if node updates need not be
available to the rest of the nodes. For instance, con-
sider the vision of hand-held notebook computers car-
ried by every day tradespeople. In a utility company,
there may be a repair technician with a hand held
notebook going out to a customer’s home to attend to
a complaint. Customer data is in a database attached

to some other node. This data is copied into the hand-
held notebook computer and cached there. Now, as
the technician notes the status of the repair work,
or other data, she may wish to achieve transactional
durability guarantees for orders recorded in the note-
book computer without repeatedly having to call the
server in the central office. This can be accomplished
with an algorithm such as the one we describe here
where we consider the node to be a mobile machine,
and the user chooses to keep the log locally to min-
imize communication cost and save energy. Clearly,
often disconnected mobile nodes are not highly avail-
able. However, in the kind of applications described
here it is unlikely that data items “checked-out” by
a particular technician will need to be referenced by
anyone else in the meantime.

The remainder of the paper is organized as follows.
In Section 2 we state our assumptions about the dis-
tributed environment, we describe our recovery algo-
rithms for both single and multiple node crashes, and
we address issues related to log space management.
We compare our work with relevant work that appears
in the literature in Section 3 and, finally, we summa-
rize in Section 4.

2 Client-Based Logging

2.1 Assumptions

Transactions are executed in their entirety in the
node where they are started. Data items referenced by
a transaction are fetched from the owner node before
they are accessed. The unit of inter-node transfer is
assumed to be a database page. Each node has a buffer
pool (node cache) where frequently accessed pages are
cached to minimize disk I/O and communication with
owner nodes. The buffer manager of each node follows
the steal and no-force strategies [7]. Pages containing
uncommitted updates that are replaced from the local
cache are either written in-place to disk or sent to
the owner node, depending on whether they belong
to the local database. Pages that were updated by
a terminated transaction (committed or aborted) are
not necessarily written to disk or sent to the owner
node before the termination of the transaction.

Concurrency control is based on locking and the
strict two-phase locking protocol is used. Each node
has a lock manager that caches the acquired locks and
forwards the lock requests for data items owned by an-
other node to that node. Each node maintains both
the cached pages and the cached locks across transac-
tion boundaries — this is generally referred to in the
literature as inter-transaction caching [22, 21, 4, 6].
The callback locking protocol [8, 10] is used for cache
consistency. We also assume that both shared and ex-
clusive locks are retained by the node after a transac-
tion terminates (whether committing or rolling back).
Cached locks that are called back in exclusive mode
are released and exclusive locks that are called back in
shared mode are demoted to shared. The granularity
of both locking and callback is assumed to be at the
level of a database page.

Each database page consists of a header that among
other information contains a page sequence number
(PSN), which is incremented by one every time the



page 1s updated. The owner node initializes the PSN
value of a page when this page is allocated by fol-
lowing the approach presented in [15] (i.e., the PSN
stored on the space allocation map containing infor-
mation about the page in question is assigned to the
PSN field of the page).

The log of each node is used for logging transaction
updates, rolling back aborted transactions, and recov-
ering from crashes. Recovery is based on the write-
ahead log (WAL) protocol and the ARIES redo-undo
algorithm [13] is employed. Log records are written to
the local log before an updated page is replaced from
the node cache and at transaction commit. Each node
log manager associates with each log record a log se-
quence number (LSN) that corresponds to the address
of the log record in the local log file. Log records de-
scribing an update on a page contain among other
fields the page id and the PSN the page had just be-
fore 1t was updated.

2.2 Normal Processing

When a node wishes to read a page owned by an-
other node and not present in its cache, it sends a
request for the page to the owner node. If no other
node holds an exclusive lock on the page, the owner
node grants the lock and sends a copy of the page
to the requester. If some other node holds an exclu-
sive lock on the page, the owner node sends a callback
message to that node and waits until that node (a)
downgrades/releases its lock and (b) sends the copy
of the page present in its buffer pool, if any. Then,
the owner node grants the lock and sends the page to
the requester.

When a node wants to update a page on which
it does not hold an exclusive lock, the node requests
an exclusive lock from the owner node. The owner
node grants the lock immediately when the page is
not locked by any other node. If the page is locked
by some nodes, then the owner node sends a callback
message to these nodes. Once the owner node receives
the acknowledgments to all callback requests, it grants
the exclusive lock and sends a copy of the page to
the requester, if the requester does not have the page
cached in its cache.

Nodes periodically take checkpoints. Each check-
point record contains the dirty page table (DPT) and
information about the transactions that were active at
the time of the checkpointing. The DPT contains en-
tries which correspond to pages that have been mod-
ified by local transactions and the updates are not
present in the disk version of the database. An entry
in the DPT of a node N for a page P contains at least
the following fields.

PID: P’s page id

PSN: P’s PSN the first time P was updated.
CurrPSN: P’s PSN the last time P was updated.
RedoLSN: LSN of the log record that made P dirty.

An entry for a page P is added to the DPT of N
when N obtains an exclusive lock on P and no entry
for this page already exists in the table. The PSN of P
is assigned to the PSN and CurrPSN fields and the
current end of the local log is conservatively assigned

to the RedoLSN field. The RedoLSN corresponds
to the LSN of the earliest log record that needs to be
redone for a page during restart recovery. Every time
P is updated by a local transaction, the CurrPSN
value of the DPT entry is set to the PSN value of P
after the update.

An entry corresponding to a page owned by N is
removed from N’s DPT when the page is forced to
disk. An entry corresponding to a page owned by a
remote node is dropped from N’s DPT when N re-
ceives an acknowledgment from the owner node that
the page has been flushed to disk, and the page has
not been updated again after the last time it was re-
placed from the local cache. Dropping an entry for an
updated page that is present in the local cache could
result in incorrect recovery if N were to crash after
taking a checkpoint. This is because the DPT stored
in the checkpoint record would not contain an entry
for this page.

Transaction rollback is handled by each node. Fur-
thermore, nodes can support the savepoint concept
and offer partial rollbacks. Both total and partial
transaction rollbacks open a log scan starting from the
last log record written by the transaction. Since up-
dated pages are allowed to be replaced from the node’s
cache, the rollback procedure may have to fetch some
of the affected pages from the owner nodes.

2.3 Single Node Crash Recovery

When a node fails, its lock table and cache contents
are lost. As a consequence, any further lock and data
requests with respect to the data owned by the failed
node are stopped until the node recovers. However,
transaction processing on the remaining nodes can
continue in parallel with the recovery of the crashed
node.

The recovery of a crashed node involves the recov-
ery of updates performed by locally executed transac-
tions. In addition, the recovery of a crashed node may
involve the recovery of updates performed by trans-
actions that were executed in another node, referred
to as remote transactions. This i1s because updated
pages that are replaced from a node’s cache are sent
to the owner node. If the failed node does not own
any data, the recovery of remote transactions is not
required (For instance, in a client-server environment,
the crash of a client does not involve the recovery of
transactions that were executed in another client or
the server). During its recovery, the crashed node has
to (a) determine the pages that may require recov-
ery, (b) identify the nodes involved in the recovery,
(c) reconstruct lock information, and (d) coordinate
the recovery among the involved nodes.

In the following sections we present our solutions to
the above problems. While presenting our solutions,
we assume that recovery is carried out by the crashed
node when this node restarts. Nevertheless, our algo-
rithms allow any node that has access to the database
and the log file of the crashed node to perform crash
recovery. This is realized in shared disks architectures
where all nodes have access to the same database and
all log files, as well as in shared nothing and client-
server architectures that use hot standby nodes.



2.3.1 Determining the Pages that may Re-
quire Recovery

When a node fails, all dirty pages present in the cache
of this node have to be recovered. These pages belong
to two categories: pages owned by the crashed node
and pages owned by a remote node. While pages be-
longing to the first category may have been updated by
both local and remote transactions, pages in the sec-
ond category have been updated only by local trans-
actions.

Since each node writes log records for updates to
pages in its own log file, the pages that were updated
by local transactions can be determined by scanning
the local log starting from the last complete check-
point. These pages correspond to the entries in the
DPT that is constructed during the analysis phase of
the ARIES algorithm. Among these pages, the candi-
dates for recovery are: (a) pages owned by the crashed
node that are not present in the cache of any other
node, and (b) pages owned by a remote node that were
exclusively locked by the crashed node at the time of
the crash.

The basic ARIES algorithm cannot be used to de-
termine all dirty pages that belong to the first cate-
gory. This is because under ARIES, a page is not con-
sidered dirty if it is not included in the DPT logged
in the last checkpoint before the crash, and no log
records for this page are logged after the checkpoint.
There are two reasons that a page owned by a node is
not considered dirty when it is present in the node’s
cache at the time of the crash. The first is that the
page was updated only by local transactions and it was
forced to disk before the checkpoint was taken. This
case does not cause any problems because the page is
no longer dirty at this point. The second reason is
that the page was updated only by remote transac-
tions after the checkpoint was taken and the page was
not included in the logged DPT. In this case, no log
records for updates to the page are found in the local
log file.

However, according to the way each DPT is up-
dated for pages owned by remote nodes, pages that
were updated before the crash will have an entry in at
least one DPT of the remaining nodes. Among these
pages, the pages that may have to be recovered are
only those that are present in the DPT of a node and
not present in the cache of any other node. The rest
of the pages, which are present in the cache of some
node, contain all the updates performed on them be-
fore the owner node’s crash and they do not require
recovery. Thus, when the crashed node N restarts,
it requests from each operational node N, the list of
all pages owned by N that are present in N,’s cache,
as well as all entries in N,.’s DPT that correspond to
pages owned by N. After all operational nodes send
the above lists to N, N is able to determine the pages
that may have to be recovered based on these lists and
its own DPT.

But, pages owned by the crashed node that are
present in the DPTs of some nodes and the caches
of some other nodes may not be recovered at all or
recovered incorrectly if a node were to crash after the

owner node finishes its restart recovery. Pages that
are not in the DPT of the crashed node would not
be recovered at all, while pages that are in the DPT
would be recovered incorrectly if the disk version of
them did not contain all the updates performed by
the rest of the nodes in the past. Our solution to this
problem is as follows. After the owner node constructs
the list of the pages that may have to be recovered,
it requests the pages that are present in the cache of
a node and have entries in the DPTs of some other
nodes from the nodes that have them in their caches.
If there are multiple nodes that have the same page
in their caches, only one node is notified to send the

page.

2.3.2 Identifying the Nodes Involved in the
Recovery

The crashed node identifies the nodes that are involved
in the recovery of a page during the procedure of iden-
tifying the pages that require recovery. These nodes
belong to two categories: nodes whose DPT entry for
P has a PSN value greater than or equal to P’s PSN
value on disk, and nodes whose DPT entry for P has
a PSN value less than P’s PSN value on disk. Nodes
in the first group have to recover their committed up-
dates. However, some of the nodes in the second group
may not have to recover P at all if their log files do
not contain any log record that was written for P and
whose PSN value is greater than or equal to P’s PSN
value. This happens when all the updates these nodes
made on P took place before P was forced to disk.
Thus, a node whose CurrPSN value in its DPT en-
try for P 1s less than or equal to P’s PSN value is not
involved in the recovery process and it can drop P’s
entry from its DPT.

2.3.3 Reconstructing Lock Information

Before the crashed node N starts recovering the pages
that were identified to require recovery, N has to re-
construct its lock information so that normal transac-
tion processing can continue in parallel with the recov-
ery procedure. The lock information includes all the
locks that had been granted to both local and remote
transactions. The locks that were granted to remote
transactions are present in the lock tables of the nodes
where those transactions were executed. In addition,
locks that were granted to local transactions for pages
owned by remote nodes are also present in the lock
tables of the remote nodes.

During restart recovery, each operational node N,
releases all shared locks held by the crashed node. Ex-
clusive locks are retained so that operational nodes are
prevented from accessing a page that has not yet been
recovered. The list of locks N, had acquired from the
crashed node as well as the list of exclusive locks held
by the crashed node are sent to the crashed node. Af-
ter all the lock lists have been sent, the crashed node
can establish its lock tables. In addition, the crashed
node needs to acquire exclusive locks for the pages
present in its DPT that do not have a lock entry. At



this point, all lock tables contain all the needed locks
and normal transaction processing can continue.

2.3.4 Coordinating the Recovery Among the
Involved Nodes

After the crashed node N identifies both the pages
that require recovery and the nodes that will partic-
ipate in the recovery of these pages, the recovery of
each page P has to be done in the correct order. This
order corresponds to the order in which transactions
that were executed at the involved nodes updated P.
Since the granularity of locking is a page, only one
node can update P at a time. Hence, the PSN val-
ues stored in the log records written for P determine
the order of updates. In fact, the PSN value stored in
the first log record written for P by each transaction
that updated P is enough for determining the order
of updates. The construction of the above list of PSN
values for each page that requires recovery, referred to
as NodePSNList, 1s explained below.

When a remote node N, receives the list of pages
that require recovery from N, it scans its log file start-
ing from the minimum of all RedoLSN values belong-
ing to DPT entries for the pages that are included
in the above list. The PSN value present in a log
record examined during the scan is inserted into the
NodePSNList when (a) the log record corresponds to
an update performed on a page present in the above
list, and (b) the transaction that wrote the log record
is not the same as the transaction that wrote the log
record whose PSN field is the last PSN inserted into
the NodePSNLust, if any. In addition, the location of
this log record is remembered and it will be used dur-
ing the recovery of the page. When the scan is over,
N, sends the NodePSNList to N.

In parallel to the above process, N constructs its
own NodePSNList for the pages that require recovery,
in the same way as the one described above!. Once all
nodes involved in the recovery have sent their NodeP-
SNLists to N, N coordinates the recovery of a page
P in the following way.

1. Order the nodes involved in the recovery of P in an as-
cending ordering based on P's PSN values present in the
NodePSNLists sent, including your own Node PSNList.
Adjacent entries that correspond to the same node are
merged into one entry, whose PSN value is the minimum
of the two PSNs.

2. Send P to the node N, having the minimum PSN en-
try in the above list. The second minimum PSN value

1Since N has already scanned its log during the analysis
phase of ARIES, we could build part of the Node PSNList dur-
ing this scan. Then, once all pages that require recovery are
identified, N scans its log starting from the minimum of all
RedoLLSN values present in the DPT entries for these pages
and stopping when the last complete checkpoint is found. A
new entry is inserted into the Node PSNList when the two con-
ditions mentioned above are true and the transaction that wrote
the log record is not the same as the transaction that wrote the
log record whose PSN field is the first PSN inserted into the
NodePSNList, if any.

present in the list is also sent to N, if any.

3. When N, sends back P, place P in the buffer pool and
remove the entry from the list.

4. Repeat the previous two steps until there are no more
entries for P in the list.

When a node receives P from N together with a
PSN value, it recovers P by scanning its log start-
ing from either the log record with LSN equal to the
RedoLLSN value present in the DPT entry for P or the
log record remembered in the analysis process men-
tioned above. The node stops the recovery process
when it finds a log record written for P whose PSN
value is greater than the PSN value N sent along with
P, or when the entire log is scanned. In the former
case, the node sends P back to N and remembers the
current location in the local log. This location will be
the starting point for the continuation of the recovery
process for P. In the latter case, the node sends only
P back to N. If no PSN value was sent along with P,
the node stops the recovery process when the entire
log is scanned.

During the recovery process, nodes update the DPT
entries corresponding to pages that are being recov-
ered. In particular, a node that does not apply any
log record to a page drops the entry from its DPT
when it does not hold a lock on the page. If the node
holds a lock on the page, it sets the RedoLSN value
of the DPT entry to the current end of the log. The
former case is realized when the owner node crashes
before acknowledging the writing of the page to disk.
The latter case corresponds to the case where all the
updates the node performed in the past are present
on the disk version of the page and the node has not
updated the page since.

2.4 Multiple Node Crash Recovery

So far, we have presented our recovery algorithms
for the case of a single node crash. However, a second
node may crash while another node is in the process of
recovering from its earlier failure. Recovery from mul-
tiple node crashes is similar to the recovery from a sin-
gle node crash, although it is more expensive as more
log files have to be examined and processed and the
recovery of a crashed node may have to be restarted.
Similar to the single node crash, operational nodes
may continue accessing the pages they have in their
local caches while the rest of the nodes are in the pro-
cess of recovering.

As in the single node crash case, we have to: (a
determine the pages that may require recovery, gb
identify the nodes that are involved in the recovery, (c
reconstruct the lock information of each crashed node,
and (d) coordinate the recovery of a page among the
involved nodes. Once we have determined the pages
that may require recovery, the nodes that are involved
in their recovery, the reconstruction of the lock infor-
mation, and the coordination of the recovery among
the involved nodes is done in the same way as in the
single node case. Hence, the rest of this section dis-
cusses only the solution to the first problem.

As in the single node case, each crashed node has
to recover the pages that had been updated by local



transactions, as well as the pages that it owns and
which had been updated by remote transactions and
were present in its cache at the time of the crash.
Pages belonging to the first category can be identi-
fied from the log records written in the local log file.
Unlike the single node crash case, not all pages belong-
ing to the second category can be identified by using
only the entries in the DPTs and caches of the op-
erational nodes. The DPTs of the crashed nodes are
also needed, for some of these pages may have been
updated by several of these nodes.

Although each crashed node lost its DPT during
the crash, a superset of each node’s DPT can be re-
constructed by scanning the node’s log file. In partic-
ular, each crashed node scans its log by starting from
the last complete checkpoint and updates the DPT
stored in that checkpoint by inserting new entries for
the pages that do not have an entry and are referenced
by the examined log records. Once the analysis pass is
done, the DPT entries that correspond to pages owned
by another node are sent to the owner node. Each op-
erational node also sends the DPT entries that corre-
spond to pages owned by another node and the list of
these pages that are present in the local cache to the
owner node. The owner node merges all the received
entries with the entries it has in its own DPT for the
same pages, after removing all entries that correspond
to pages cached in an operational node. The resulting
list corresponds to the pages this node has to recover.
Similar to the single node crash, pages present in the
cache of an operational node and the DPT of another
node are sent to the owner node.

2.5 Log Space Management

Log space management becomes an issue when a
node consumes its available log space and it has to
overwrite existing log records. Since the earliest log
record needed for recovering from a node crash cor-
responds to the minimum of all the RedoLSN values
present in the DPT of this node, the node can reuse its
log space only when the minimum RedoLSN is pushed
forward. In the algorithms we have presented so far,
the minimum RedoL SN may be pushed forward only
when an entry is dropped from the DPT. But, this may
not be enough to prevent the node from not having
enough log space to continue executing transactions.

Our solution to the above problem is the following.
When a node replaces a dirty page P from its cache, 1t
remembers the current end of its log. When the owner
node forces P to disk, it informs all nodes that had
replaced P. These nodes replace the RedoLSN field
of the DPT entry referring to P with the remembered
end of the log LSN for this page. When a node faces
log space problems, it replaces from its cache the page
having the minimum RedoLSN value in the DPT and
asks the node owning this page to force the page to
disk. If, however, the page is not present in the node’s
cache, the node just asks the owner node to force the
page to disk. If the node needs more log space, it
repeats the above procedure. Note that the owner
node may be the same as the node that needs to make
space in its local log file. In this case, if the page is
present in the node’s cache, the page is forced to disk.

Otherwise, the page is first requested from a node that
has it in its cache and then it is written to disk.

3 Related Work

In the following sections, we compare our work
with relevant work in the areas of client-server, shared
disks, and distributed file systems.

3.1 Client-Server Systems

Local disk space i1s used in the architecture pre-
sented in [5]. In that work, local disks are used to
store relational query results that are retrieved from
the server. Transaction management is carried out ex-
clusively by the server and all updates to the database
are performed at the server. Our work differs signifi-
cantly in that we permit clients with local disk space
to offer transaction management facilities to the local
transactions.

Versant [20], a commercially available OODBMS,
also explores client disk space. In Versant, users can
check out objects by requesting them from the server
and store them locally in a “personal database”. In
addition, locking and logging for objects stored in a
personal database can be turned off to increase per-
formance. The checked out objects are unavailable to
the rest of the clients until they are checked in later
on. All modified and new objects in the client’s object
cache must be sent to the appropriate server so that
changes can be logged at transaction commit. Our
architecture is more effective since it avoids generat-
ing all log records at commit time, and allows local
transaction management.

In ARIES/CSA [15], clients send all their log
records to the server as part of the commit process-
ing. ARIES/CSA employs a fine-granularity concur-
rency protocol that prevents clients from updating the
same page concurently by using the update token ap-
proach prersented in [14]. Similar to our schemes,
ARIES/CSA clients do not send modified pages to the
server at transaction commit and transaction rollback
is performed by clients. However, client crashes are
still handled by the server. Unlike our algorithms,
client checkpoints in ARIES/CSA are stored in the
log maintained by the server and server checkpointing
requires communication with all connected clients.

3.2 Shared-Disks Systems

In [17], logging and recovery protocols are presented
for a shared disks architecture employing the primary
copy authority (PCA) locking protocol. Under the
PCA locking protocol, the entire lock space 1s divided
among the participating nodes and a lock request for
a given 1tem is forwarded to the node responsible for
that item. Although PCA is similar to our work, there
are several important differences. Unlike PCA that
supports only physical logging, our algorithms support
both physical and logical logging. PCA employs the
no-steal buffer management policy — only pages con-
taining committed data are written to disk — which is
argued to be an inflexible and expensive policy [13].

Like our algorithms, PCA allows pages to be mod-
ified by many systems before they are written to disk.
However, commit processing involves the sending of
each updated page to the node that holds the PCA



for that page. Furthermore, double logging is required
for every page that is modified by a node other than
the PCA node. During normal transaction processing
the modifying node writes log records in its own log
and at transaction commit it sends all the log records
written for remote pages to the PCA nodes respon-
sible for those pages. Our algorithms do not require
updated pages to be sent to the owner nodes at trans-
action commit time, nor do they require log records
to be written in two log files.

In [14], four different recovery schemes for a shared
disks architecture were presented and analyzed. The
algorithms were designed to exploit the fast inter-
node communication paths usually found in tightly-
coupled data sharing architectures, and they use fine-
granularity locking. Similar to [14], our algorithms are
based on write-ahead logging and the steal no-force
buffer replacement policy. However, we do not assume
that the clocks of all the nodes are perfectly synchro-
nized. Finally, our algorithms do not force pages to
disk when they are exchanged between nodes as it is
done in the stmple and medium schemes presented in
[14], nor do they require merging of the local logs at
any time. Private logs have to merged in the fast and
super-fast schemes presented in [14] even in the case
where only a single node crashes.

The shared data/private log recovery algorithm pre-
sented in [11] motivated our work. However, our re-
covery algorithms do not require a seamless ordering
of PSNs nor do they associate for each database page
extra information with the space management sub-
system. Unlike [11], our algorithms do not force mod-
ified pages to disk before they are replaced from a
node’s cache.

Rdb/VMS [18] is a data sharing database sys-
tem executing on a VAXcluster. Earlier versions of
Rdb/VMS employed an undo/no-redo recovery proto-
col that required, at transaction commit, the forcing to
disk of all the pages updated by the committing trans-
action. More recent versions offer both an undo/no-
redo and an undo/redo recovery scheme [12]. In ad-
dition, a variation of the callback locking algorithm,
referred to as lock carry-over, is used for reducing the
number of messages sent across the nodes for locking
purposes. However, Rdb/VMS does not allow multi-
ple outstanding updates belonging to different nodes
to be present on a database page. Thus, modified
pages are forced to disk before they are shipped from
one node to another.

In Rdb/VMS, each application process can take its
own checkpoint after the completion of a particular
transaction. The checkpointing process forces to disk
all modified and committed database pages. Unlike
Rdb/VMS, our algorithms support different variations
of fuzzy checkpoints [1, 9]. Those checkpoints are asyn-
chronous and take place while other processing is going
on. Another important difference is that Rdb/VMS
uses only one global log file. Consequently, the com-
mon log becomes a bottleneck and a global lock must
be acquired by each node that needs to append some
log records at the end of the log.

3.3 Distributed File Systems

Coda [19] is a distributed file system operating on
a network of UNIX workstations. Coda is based on
the Andrew File System [8] and cache coherency is
based on the callback locking algorithm. The granu-
larity of caching is that of entire files and directories.
Coda’s most important characteristic, which is closely
related to our work, is that it can handle server and
network failures and support portable workstations by
using clients disks for logging. This ability 1s based on
the disconnected mode of operation that allows clients
to continue accessing and modifying the cached data
even when they are not connected to the network. All
updates are logged and they are reintegrated to the
systems on reconnection.

However, Coda does not provide the same trans-
actional semantics as our algorithms. In particular,
failure atomicity is not supported and updates cannot
be rolled back. Another important difference is that
our algorithms guarantee that the updates performed
by a transaction survive various system failures and
they are altered only when a later transaction modi-
fies them. Coda, on the other hand, guarantees per-
manence conditionally; updates made by a transaction
may change if a conflict is discovered at the time these
updates are being reintegrated into the system.

4 Conclusions

In this paper we have presented a new paradigm for
distributed transaction processing which has the po-
tential to exploit every available system resource and
improve scalability and performance. In particular,
we have presented recovery algorithms that exploit lo-
cal disk space for offering transactional facilities lo-
cally, while maintaining the transaction semantics as-
sociated with traditional database systems. Our algo-
rithms are of potential value to a variety of distributed
computing environments. They can be applied to both
shared nothing and shared disks architectures. They
can also be applied to client-server architectures where
clients disks are used for logging and peer-to-peer ar-
chitectures.

The key advantages of our algorithms are: (1) up-
dated pages are not forced to disk at transaction com-
mit time or when they are replaced from a node cache,
(2) transaction rollback and node crash recovery are
handled exclusively by the nodes, (3) local log files
are never merged during the recovery process, (4)
each node can take a checkpoint without synchronizing
with the rest of the operational nodes, and (5) clocks
do not have to be synchronized across the nodes and
lock tables are not checkpointed.

We have extended the work presented in this pa-
per to include fine-granularity locking in [16]. We are
currently evaluating the performance of client-based
logging by implementing our algorithms in BeSS [2].
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