
The BeSS Object Storage Manager� Architecture

Overview

Alexandros Biliris and Euthimios Panagos
AT�T Research� Murray Hill� NJ �����

fbiliris� thimiosg�research�att�com

Abstract

BeSS is a high performance� memory�mapped object
storage manager o�ering distributed transaction man�
agement facilities and extensible support for persis�
tence� In this paper� we present an overview of the
peer�to�peer architecture of BeSS� and we discuss is�
sues related to space management� inter�object ref�
erences� database corruption� operation modes� cache
replacement� and transaction management�

� Introduction

BeSS� a Bell Laboratories Storage System� is a stor�
age manager that facilitates the development of high�
performance database management systems� The ar�
chitecture of BeSS is not tailored to a speci�c data
model or language� It is possible to build relational
and object�oriented database systems as well as home�
grown database systems and persistent languages on
top of BeSS�

BeSS allows application programs to access and ma�
nipulate persistent objects directly on the segment on
which they reside� without incurring in�memory copy�
ing cost� It employs a fast object reference mechanism
that is based on memory mapping ��� �	� �
�� How�
ever� as we shall see� our scheme does not involve a
greedy allocation of virtual memory addresses� BeSS
prevents database corruption caused by bad pointers
by protecting control structures� which are stored sep�
arately from data� using the virtual memory manage�
ment facilities provided by the underlying hardware�

An interesting aspect of the BeSS architecture is
that it o�ers two operation modes for accessing per�
sistent data� copy on access and shared memory � In
the copy on access mode� applications operate on ob�
jects after copying them into a private bu�er pool� In
the shared memory mode� applications operate on ob�
jects present in a bu�er pool that can be shared by
many applications running on the same machine�

BeSS is based on a peer�to�peer architecture and
provides distributed transaction facilities� BeSS of�
fers concurrency control via locking and recovery via
logging to support the traditional ACID transaction
properties� Inter�transaction caching of both data and
locks is supported� and cache consistency is guaran�
teed by using the callback locking algorithm �� ���

The remainder of the paper is organized as follows�
Section
 describes the architecture of BeSS� includ�
ing storage structures� object references� and protec�
tion from stray pointers� Implementation issues are
discussed in Section �� Transaction management is
covered in Section � and� �nally� Section concludes
our presentation�

� System Architecture

A typical BeSS network con�guration is illustrated in
Figure �� Some nodes� such as nodes � and �� own
databases while some others� such as nodes
 and ��
are client workstations that do not own any database�
Similar to the peer�to�peer architecture of Shore ����
there is a BeSS server process running on every node�
The presence of a BeSS server process on a node en�
ables sharing of data across transactions that are part
of either the same or di�erent application processes
running on this node� An application running on a
node may access the entire distributed database space
by communicating only with the local BeSS server�

��� Storage Entities

At the conceptual level� BeSS manipulates databases�
which are collections of BeSS �les� BeSS �les are col�
lections of object segments on which objects are stored�
BeSS �les group objects so that they can be retrieved
one by one via a cursor mechanism� However� objects
can be accessed directly� without accessing the �le�s�
containing them� Object segments are the clustering

�

Node 3

Log
Database BeSS

Server

Node 4

 BeSS
Server

Node 2

 BeSS
Server

Node 1

Database
Log BeSS

Server

Figure �� The BeSS distributed architecture

facility provided to users for physically co�locating ob�
jects on disk�

At the physical level� each database consists of one
or more storage areas� which are either UNIX �les or
raw disk partitions� Storage areas are partitioned into
several extents� and allocation of disk segments from
one of these extents is based on the binary buddy sys�
tem ���� Storage areas that correspond to UNIX �les
may expand in size by one extent at a time�

At database creation time� the name of a storage
area �i�e�� the name of a UNIX �le or a raw disk par�
tition�� which is referred to as the root storage area�
must be provided� A database is identi�ed by the
name of the root storage area� All data structures
needed for managing a database� such as space allo�
cation maps� physical location of all storage areas be�
longing to the database� etc�� are stored in the root
storage area� Storage areas can be added to or re�
moved from the database dynamically�

A BeSS �le is stored entirely in single storage area�
and each storage area may contain multiple BeSS �les�
To accommodate growth� BeSS �les can be moved
from one storage area to another� without a�ecting
existing references to the objects within the moved
�les� In particular� a database may initially contain
only the root storage area� and all user �les are created
in this area� As �les grow� new storage areas can be
attached to the database and some �les can be moved
to them� The maximumsize of a single BeSS database
is �
� Terabytes�

��� Segment and Object Structures

Each object segment consists of the slotted segment

and the data segment � each of which is a sequence
of one or more physically contiguous disk pages �Fig�
ure
�� Slotted segments are allocated from the root
storage area and they are never relocated� Slotted
segments contain a �xed�size header and an array of

slots� Each header includes information required for
managing the object segment � such as the number
of objects� and the available free space in the data
segment�

Size ...TP DP Object

Data Segment

S
eg

m
en

t
 H

ea
de

r

Slotted Segment

 Object
Segment

Read−only Access Read−Write Access

Figure
� The structure of an object segment

Objects are stored in data segments� For each ob�
ject there is an object header that is stored in a slot
in the slotted segment� The object header contains
meta�information that is necessary for managing the
object it refers to � such as a pointer to the object�s
type �TP�� a pointer to the object�s data in the data
segment �DP�� and the object�s size� Type descrip�
tors contain the o�sets of all pointers stored in the
objects they describe� Data segments can be re�sized
or moved to a di�erent location in the same or a di�er�
ent storage area� In the current implementation� the
maximum size of a data segment is �� Kilobytes�

Large objects� which cannot �t in a data segment�
are stored in a sequence of variable�size segments in�
dexed by a tree structure ���� These objects are man�
aged by using an interface that includes byte range
operations such as read� write� insert� delete a
number of bytes starting at some arbitrary byte posi�
tion within the object� and append bytes at the end of
the object� BeSS o�ers fast random access to an arbi�
trary byte within a large object �
�� memory�type op�
erations similar to UNIX memcmp� memcpy� memchr�
asynchronous byte range operations� stripping over
several storage areas� and prefetching�

��� Object References

References among objects belonging to the same
database are pointers to the headers �slots� of the ref�
erenced objects� References among objects belonging
to di�erent databases are implemented via a level of
indirection� the reference points to a forward object
that contains the complete address of the referenced
object� The forward object is stored in the database
of the referencing object� Inter�database references
are handled transparently and exclusively by BeSS�
The advantage of the above reference scheme is that

databases can be re�organized� on the �y without af�
fecting object references�

To illustrate how BeSS manages object references�
consider the actions taken when a slotted segment is
fetched in memory during the processing of a slotted

segment fault � First� a virtual memory address range
for its data segment is reserved and access�protected�
Then� the DP �eld of every slot that corresponds to
an object in the data segment � whose value is the
address in which the object was mapped the last time
it was accessed � is adjusted to point to the new �re�
served� virtual memory address of the object in the
data segment�

A data segment fault occurs when some object
within a data segment� for which addresses have been
reserved as discussed above� is accessed� Depending
on the availability of cache space� the whole data seg�
ment or the part needed to access the object is fetched�
Next� the type descriptor of every object contained in
the fetched portion is examined� and each reference
to some object O is updated to point to the virtual
memory address of O�s header� If the slotted segment
containing O�s header has never been referenced be�
fore in the current transaction� an address range is
reserved and access�protected before the reference to
O is modi�ed� When O is accessed� a slotted segment
fault occurs� and the actions described in the previous
paragraph are repeated�

Thus� accessing an object potentially causes actions
in three waves� In the �rst wave� address ranges for
the referenced slotted segments are reserved� In the
second wave� as some of these slotted segments are ac�
cessed for the �rst time� slotted segments are fetched
in memory and address ranges for the corresponding
data segments are reserved� Finally� accessing some
objects within one of these data segments causes the
data segment to be fetched� The latter may trigger
another round of virtual memory address reservation
and data fetching� Under this scheme� memory ad�
dress space is reserved in a less greedy fashion than
the schemes presented in ��� �	� �
��

��� Preventing Database Corruption

Since object references are virtual memory addresses�
user code has direct access to BeSS control structures
such as slotted segments� Hence� mechanisms to pre�
vent database corruption caused by bad pointers are of
paramount importance� BeSS uses the facilities pro�
vided by the underlying hardware for detecting ac�

�Reorganization includes compaction� resizing� or relocation

of data segments and movement of entire �les between storage

areas�

cess protection violations� The virtual memory man�
agement hardware detects an illegal attempt to up�
date write�protected items at the time the update is
attempted� before the possible error takes place and
propagates to other structures�

As shown in Figure
� slotted segments are mapped
into write�protected virtual memory and ordinary user
code cannot modify them� Data segments are read�
able and potentially writable by user code� Before
BeSS �or some other trustworthy software� updates
control structures� the address space containing these
structures is explicitly unprotected before the up�
date and reprotected after the update is over� This
scheme allows correct software to modify protected
data but prevents accidental database updates by in�
correct pointers� However� if malicious software man�
ages to unprotect memory before updating it� this pro�
tection mechanism alone would not work� The major
cost associated with this mechanism is an increased
number of system calls ����� However� for many ap�
plications this cost is an acceptable tradeo� for the
bene�ts gained�

� Implementation Issues

In this section� we discuss implementation issues re�
garding the two operation modes� memory mapping�
and cache replacement�

��� Operation Modes

Each BeSS server manages a cache �see Figure ��
which stores pages that have been accessed by local
transactions� These pages may belong to databases
managed by the local server� if any� as well as
databases managed by remote servers� The cache is
created using the mmap UNIX system call� and it is
viewed as a contiguous sequence of cache frames� each
of which can hold a database page� The server is re�
sponsible for forwarding requests made by local ap�
plications to remote servers �e�g�� for fetching remote
data�� and for processing requests made by remote
servers �e�g�� callback requests��

A user process can access the shared cache either
directly �in�place access or shared memory� or indi�
rectly through the server �copy on access�� In the for�
mer case� each process gains access to the shared cache
and all control data by mapping the cache into its ad�
dress space� In the latter case� each process maintains
a private cache �Figure �� application B� and commu�
nication with the local server is required for fetching
segments� This private cache of each process is im�

Node

Lock/Data
Requests

B

A
User Code

BeSS Code

ControlCache Callback
Lock
Requests

BeSS Server

User Code

BeSS Code
Buffer Pool

Figure �� Modes of operation

plemented as a �xed size �le that is mapped into the
process� virtual address space� The �le is divided into
frames� each of which can hold a database page� Note
that the interface provided by BeSS is the same for
both modes� it is just the process boundaries that dif�
fer�

Copy on access has the advantage that user pro�
cesses do not synchronize their accesses to their private
caches� However� inter�process communication is re�
quired� Shared memory access o�ers the potential for
high performance by avoiding inter�process communi�
cation and copying of data� However� it incurs the
cost of synchronizing concurrent access to the shared
cache� In addition� pointers between database objects
and their control structures� pointers among the con�
trol structures� and pointers among database objects
must be valid to every application process accessing
them�

BeSS uses latches �atomic test�and�set� for synchro�
nizing concurrent accesses to the shared cache� Clean�
up of shared structures from process failures is handled
by keeping track of process actions as in ���� BeSS en�
sures the validity of the shared pointers by treating
them as o�sets from the beginning of a �ctitious vir�
tual address space� In particular� each process maps
the shared cache in a number of frames � each hav�
ing size equal to database page � in its private virtual
memory address space �PVMA�� The size of PVMA
may be much larger than the size of the shared cache�
however� for our scheme to work all processes reserve
the same number of PVMA frames�

Each database page fetched in the shared cache is
mapped to the same PVMA frame for all processes by
using a mapping table that is shared by all processes�
The shared mapping table together with the use of o��
sets give the illusion of a shared virtual address space�

V
irt

ua
l

A
dd

re
ss

S
pa

ce

(a) (d)

A B C D

0

A

(b)

0 1 2 3

A B C D

A C D B

E A C D

0 1 2 3 4

A C D B E

P
hy

si
ca

l
C

ac
he

(c)

0 1 2 3 0 1 2 30 1 2 3 0 1 2 3

B C DE

0 1 2 3 4

A C D B E

Figure �� The BeSS memory mapping approach

Under this scheme� a pointer needs to be �xed once by
the �rst process that fetched the corresponding page
in the cache� A simple BeSS template class translates
pointers from the process�s virtual address space to
pointers in the shared address space� and vice versa�

��� Memory Mapping

As we mentioned in the previous section� BeSS main�
tains a mapping from virtual frames to physical cache
frames� Let us assume that a transaction needs to ac�
cess page A that happens to be in cache frame 	� per�
haps fetched by another transaction� as shown in Fig�
ure ��a�� Some virtual frame� say frame 	� is mapped
to cache frame 	� pointers within the virtual frame 	
are �xed if needed� and the application gets read�only
access to this frame�

The transaction keeps accessing pages in the fash�
ion described above until the number of accessed pages
reaches the capacity of the cache� as shown in Figure
��b�� where the transaction has mapped its virtual
frames 	� ��
� and � to cache frames 	�
� �� and
�� respectively� Next� the transaction needs to access
page E� which is not currently in the cache� As shown
in Figure ��c�� page A is evicted from cache frame
	 and the virtual frame 	 is access protected� page
E is fetched in cache frame 	� the virtual frame � is
mapped to this cache frame� and the application gets
read access to this virtual frame�

The cache�to�virtual frame mapping is dynamic in
the sense that the same virtual address frame may be
mapped to di�erent physical frames during the execu�
tion of a transaction� For instance� if page A needs
to be brought back in cache� it may be placed in any
cache frame and the virtual frame 	 will be mapped
to that new cache frame� see Figure ��d��

��� Cache Replacement

Cache replacement in based on a clock�like algorithm�
However� BeSS does not use the traditional clock al�
gorithm where a bit indicates whether a slot has been

accessed since the last time the clock swept over it��
Instead� the clock algorithm is based on the state of
a virtual frame� A virtual frame may be invalid� pro�

tected� or accessible� A frame is invalid when it is
access�protected and it is not mapped to any cache
slot� A frame is protected when it is access�protected
and it is mapped to a cache slot� Finally� a frame is
accessible when it is mapped to a cache slot and it can
be accessed by the application� The clock algorithm
sweeps through the virtual frames and skips all invalid
frames� Accessible frames are also skipped but after
they are converted to protected�

In the copy on access mode� a cache slot that cor�
responds to a protected frame is selected for replace�
ment� In the shared memorymode� however� the cache
slot of a protected frame cannot be unilaterally re�
placed because another application may be accessing
it� For this reason� BeSS associates a counter with
each cache slot� The counter corresponds to the num�
ber of applications that can access the slot� Each ap�
plication increments the counter of a slot when it gains
access to the slot�

In addition� the clock algorithm is broken up in two
levels� The �rst level is the same as the clock algo�
rithm in the copy on access mode with the di�erence
that a protected frame is converted to invalid� and the
counter of its slot is decremented by one� The second
level operates on the cache slots and uses the counter
as an indication whether the slot has been accessed
since the last time the clock swept over it� A cache
slot with counter zero is selected for replacement�

� Transaction Management

BeSS provides two�phase locking for concurrency con�
trol with read�write lock for each page� Transactions
involving more than one server are coordinated using
the two�phase commit protocol� and timeouts are used
for distributed deadlock detection� BeSS supports
inter�transaction caching of data and locks� Cache
consistency is maintained by using the callback lock�

ing algorithm �� ��� Recovery is based on the ARIES
��� write�ahead logging protocol�

��� Detecting Updates

BeSS detects updates by using the virtual mem�
ory management facilities provided by the underly�
ing hardware� When a page is mapped in the appli�

�Because of the memory�mapped architecture� the cache

manager does not have enough information to identify the slots

that have been accessed recently�

cation�s virtual space for the �rst time� it is write�
protected and a page descriptor is created for it� The
page descriptor� which contains information about the
mapped address of the page and the access permis�
sions� is inserted into a balanced tree whose key is the
virtual memory address of the page� An attempt to
modify this page signals a protection violation and the
BeSS fault handler is invoked�

The fault handler �rst makes sure that the address
of the fault is within some virtual frame F handled
by BeSS � if not� the fault propagates to the appli�
cation� Next� based on the address of F � the above
tree is searched to locate the descriptor of the page
P corresponding to F � Then� a write lock is acquired
on P � if needed� and the appropriate recovery actions
take place� The following cases need to be considered�

�� F is access protected and P is not cached� P is
fetched in the cache� as explained in Section ��
�
and the steps described in case � below are taken�

� F is access protected because of the normal ac�
tivity of the cache replacement mechanism� and
P is cached� The mapping between P and F is
re�established� F is write�protected� and control
is returned to the application process�

�� F is write�protected and P is cached� The cur�
rent image of P is copied into a separate space�
referred to as recovery bu�er � and the descrip�
tor of P is made to point to this recovery bu�er�
Write access is enabled for F � and control is re�
turned to the application process�

This approach o�ers a transparent� automatic� and
fast way of detecting updates� The overhead asso�
ciated with updates �locking and logging� occurs ex�
actly once� when the page is updated for the �rst time�
Any subsequent updates proceed at full speed� This is
important for many applications� such as CAD� that
typically work on many objects by repeatedly travers�
ing relationships between these objects and updating
some of them as well�

��� Generating Log Records

Although the virtual memory management hardware
detects updates� the granularity of the detection is
that of the page size supported by the virtual mem�
ory system � typically � Kilobytes� Consequently� the
modi�ed regions on a page cannot be detected� Gen�
erating a log record for the entire page� i�e� assuming
the whole page is dirty� may have implications in the
performance of the system ����� For this reason� BeSS

follows the page di�ng ��	� �� ��� approach� which
presents an e�cient way to locate modi�ed portions
on a page� Under the page di�ng approach� the up�
dated portions of a page are identi�ed by comparing
the updated copy of the page against a clean copy of
the same page�

Log records are generated when the recovery bu�er
is full� or when an updated page is replaced from the
client cache� or at transaction commit� The copy of
the updated page in the recovery bu�er is compared
against the copy of the page in the cache for deter�
mining the regions that are di�erent� Next� the before
and after image of each modi�ed region are used to
generate the log record for the page� This log record
is then inserted in an in�memory log bu�er� which is
�ushed to the log at commit time or when it becomes
full�

� Conclusions

In this paper we have presented the architecture of
the BeSS storage system� The alpha implementation
of BeSS was completed in November ���� and a beta
release was completed in November ����� BeSS has
been implemented in C�� and it is operational for
SUN and SGI platforms� Also� we are planning on
porting BeSS on a multiprocessor machine such as the
NCR ��		 with board level shared memory� Currently�
BeSS is being used as the storage engine of the Tera�
data�s content based multimedia system that provides
an extended relational interface ����

References

��� A� Biliris� An e�cient database storage structure
for large dynamic objects� In Proceedings of the

Eighth International Conference on Data Engineer�

ing� Tempe� Arizona� pages ���	��
� February �����

��� A� Biliris� The performance of three database storage
structures for managing large objects� In Proceedings

of ACM�SIGMOD ���� International Conference on

Management of Data� San Diego� California� pages
��	�
�� May �����

��� M� J� Carey� D� J� DeWitt� M� J� Franklin� N� E� Hall�
M� McAuli�e� J� F� Naughton� D� T� Schuh� and M� H�
Solomon� Shoring up persistent applications� In Pro�

ceedings of ACM�SIGMOD ���� International Con�

ference on Management of Data� Minneapolis� Min�
nesota� pages �
� 	 ���� May �����

��� A� L� Hosking� E� W� Brown� and J� E� B� Moss� Up�
date logging for persistent programming languages� A
comparative performance evaluation� In Proceedings

of the Nineteenth International Conference on Very

Large Databases� Dublin� Ireland� pages ���	���� Au�
gust �����

��� J� H� Howard� M� Kazarand� S� Menees� D� Nichols�
M� Satyanarayanan� R� Sidebotham� and M� West�
Scale and performance in a distributed �le system�
ACM Transactions on Computer Systems� �������	
��
February ��

�

��� C� Lamb� G� Landis� J� Orenstein� and D� Weinreb�
The ObjectStore database system� Communications

of the ACM� ���������	��� October �����

�� D� Lomet� R� Anderson� T� K� Rengarajan� and
P� Spiro� How the Rdb�VMS data sharing system be�
came fast� Technical Report CRL ����� Digital Equip�
ment Corporation Cambridge Research Lab� �����

�
� C� Mohan� D� Haderle� B� Lindsay� H� Pirahesh� and
P� Schwarz� ARIES� A transaction recovery method
supporting �ne�granularity locking and partial roll�
backs using write�ahead logging� ACM Transactions

on Database Systems� �������	���� March �����

��� W� O�Connell� T� Ieong� D� Schrader� C� Watson�
G� Au� A� Biliris� S� Choo� P� Colin� G� Linderman�
E� Panagos� J� Wang� and T� Walter� A Teradata
content�based multimedia object manager for mas�
sively parallel architectures� In Proceedings of ACM�

SIGMOD ���� International Conference on Manage�

ment of Data� Montreal� Canada� pages �
 	
� May
�����

���� V� Singhal� S� V� Kakkad� and P� R� Wilson� Texas�
An e�cient� portable persistent store� In Proceed�

ing of the Fifth Int�l Workshop on Persistent Object

Systems� San Miniato� Italy� pages ��	��� September
�����

���� M� Sullivan and M� Stonebraker� Using write pro�
tected structures to improve software fault tolerance
in highly available database management systems�
In Proceedings of the Seventeenth International Con�

ference on Very Large Databases� Barcelona� Spain�
pages ��	�
�� August �����

���� S�J� White and D�J� DeWitt� QuickStore� A high
performance mapped object store� In Proceedings

of ACM�SIGMOD ���� International Conference on

Management of Data� Minneapolis� Minnesota� pages
���	���� May �����

���� S�J� White and D�J� DeWitt� Implementing crash re�
covery in QuickStore� A performance study� In Pro�

ceedings of ACM�SIGMOD ���	 International Con�

ference on Management of Data� San Jose� California�
pages �
	��
� June �����

