The BeSS Object Storage Manager: Architecture
Overview

Alexandros Biliris and Euthimios Panagos

AT&T Research, Murray Hill, NJ 07974

{biliris, thimios}@research.att.com

Abstract

BeSS is a high performance, memory-mapped object
storage manager offering distributed transaction man-
agement facilities and extensible support for persis-
tence. In this paper, we present an overview of the
peer-to-peer architecture of BeSS, and we discuss is-
sues related to space management, inter-object ref-
erences, database corruption, operation modes, cache
replacement, and transaction management.

1 Introduction

BeSS, a Bell Laboratories Storage System, is a stor-
age manager that facilitates the development of high-
performance database management systems. The ar-
chitecture of BeSS is not tailored to a specific data
model or language. It is possible to build relational
and object-oriented database systems as well as home-
grown database systems and persistent languages on
top of BeSS.

BeSS allows application programs to access and ma-
nipulate persistent objects directly on the segment on
which they reside, without incurring in-memory copy-
ing cost. It employs a fast object reference mechanism
that is based on memory mapping [6, 10, 12]. How-
ever, as we shall see, our scheme does not involve a
greedy allocation of virtual memory addresses. BeSS
prevents database corruption caused by bad pointers
by protecting control structures, which are stored sep-
arately from data, using the virtual memory manage-
ment facilities provided by the underlying hardware.

An interesting aspect of the BeSS architecture is
that it offers two operation modes for accessing per-
sistent data: copy on access and shared memory. In
the copy on access mode, applications operate on ob-
jects after copying them into a private buffer pool. In
the shared memory mode, applications operate on ob-
jects present in a buffer pool that can be shared by
many applications running on the same machine.

BeSS is based on a peer-to-peer architecture and
provides distributed transaction facilities. BeSS of-
fers concurrency control via locking and recovery via
logging to support the traditional ACID transaction
properties. Inter-transaction caching of both data and
locks 1s supported, and cache consistency is guaran-
teed by using the callback locking algorithm [5, 6].

The remainder of the paper is organized as follows.
Section 2 describes the architecture of BeSS, includ-
ing storage structures, object references, and protec-
tion from stray pointers. Implementation issues are
discussed in Section 3. Transaction management is
covered in Section 4 and, finally, Section 5 concludes
our presentation.

2 System Architecture

A typical BeSS network configuration is illustrated in
Figure 1. Some nodes, such as nodes 1 and 3, own
databases while some others, such as nodes 2 and 4,
are client workstations that do not own any database.
Similar to the peer-to-peer architecture of Shore [3],
there is a BeSS server process running on every node.
The presence of a BeSS server process on a node en-
ables sharing of data across transactions that are part
of either the same or different application processes
running on this node. An application running on a
node may access the entire distributed database space
by communicating only with the local BeSS server.

2.1 Storage Entities

At the conceptual level, BeSS manipulates databases,
which are collections of BeSS files. BeSS files are col-
lections of object segments on which objects are stored.
BeSS files group objects so that they can be retrieved
one by one via a cursor mechanism. However, objects
can be accessed directly, without accessing the file(s)
containing them. Object segments are the clustering
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Figure 1: The BeSS distributed architecture

facility provided to users for physically co-locating ob-
jects on disk.

At the physical level, each database consists of one
or more storage areas, which are either UNIX files or
raw disk partitions. Storage areas are partitioned into
several extents, and allocation of disk segments from
one of these extents 1s based on the binary buddy sys-
tem [1]. Storage areas that correspond to UNIX files
may expand in size by one extent at a time.

At database creation time, the name of a storage
area (i.e., the name of a UNIX file or a raw disk par-
tition), which is referred to as the root storage area,
must be provided. A database is identified by the
name of the root storage area. All data structures
needed for managing a database, such as space allo-
cation maps, physical location of all storage areas be-
longing to the database, etc., are stored in the root
storage area. Storage areas can be added to or re-
moved from the database dynamically.

A BeSS file is stored entirely in single storage area,
and each storage area may contain multiple BeSS files.
To accommodate growth, BeSS files can be moved
from one storage area to another, without affecting
existing references to the objects within the moved
files. In particular, a database may initially contain
only the root storage area, and all user files are created
in this area. As files grow, new storage areas can be
attached to the database and some files can be moved
to them. The maximum size of a single BeSS database
is 128 Terabytes.

2.2 Segment and Object Structures

Each object segment consists of the slotted segment
and the data segment, each of which i1s a sequence
of one or more physically contiguous disk pages (Fig-
ure 2). Slotted segments are allocated from the root
storage area and they are never relocated. Slotted
segments contain a fixed-size header and an array of

slots. Each header includes information required for
managing the object segment — such as the number
of objects, and the available free space in the data
segment.
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Figure 2: The structure of an object segment

Objects are stored in data segments. For each ob-
ject there is an object header that is stored in a slot
in the slotted segment. The object header contains
meta-information that is necessary for managing the
object it refers to — such as a pointer to the object’s
type (TP), a pointer to the object’s data in the data
segment (DP), and the object’s size. Type descrip-
tors contain the offsets of all pointers stored in the
objects they describe. Data segments can be re-sized
or moved to a different location in the same or a differ-
ent storage area. In the current implementation, the
maximum size of a data segment is 64 Kilobytes.

Large objects, which cannot fit in a data segment,
are stored in a sequence of variable-size segments in-
dexed by a tree structure [1]. These objects are man-
aged by using an interface that includes byte range
operations such as read, write, insert, delete a
number of bytes starting at some arbitrary byte posi-
tion within the object, and append bytes at the end of
the object. BeSS offers fast random access to an arbi-
trary byte within a large object [2], memory-type op-
erations similar to UNIX memcmp, memcpy, memchr,
asynchronous byte range operations, stripping over
several storage areas, and prefetching.

2.3 Object References

References among objects belonging to the same
database are pointers to the headers (slots) of the ref-
erenced objects. References among objects belonging
to different databases are implemented via a level of
indirection: the reference points to a forward object
that contains the complete address of the referenced
object. The forward object 1s stored in the database
of the referencing object. Inter-database references
are handled transparently and exclusively by BeSS.
The advantage of the above reference scheme is that



databases can be re-organized! on the fly without af-
fecting object references.

To illustrate how BeSS manages object references,
consider the actions taken when a slotted segment is
fetched in memory during the processing of a slotted
segment fault. First, a virtual memory address range
for its data segment is reserved and access-protected.
Then, the DP field of every slot that corresponds to
an object in the data segment — whose value 1s the
address in which the object was mapped the last time
it was accessed — is adjusted to point to the new (re-
served) virtual memory address of the object in the
data segment.

A data segment fault occurs when some object
within a data segment, for which addresses have been
reserved as discussed above, 1s accessed. Depending
on the availability of cache space, the whole data seg-
ment or the part needed to access the object is fetched.
Next, the type descriptor of every object contained in
the fetched portion is examined, and each reference
to some object O is updated to point to the virtual
memory address of O’s header. If the slotted segment
containing O’s header has never been referenced be-
fore in the current transaction, an address range is
reserved and access-protected before the reference to
O is modified. When O is accessed, a slotted segment
fault occurs, and the actions described in the previous
paragraph are repeated.

Thus, accessing an object potentially causes actions
in three waves. In the first wave, address ranges for
the referenced slotted segments are reserved. In the
second wave, as some of these slotted segments are ac-
cessed for the first time, slotted segments are fetched
in memory and address ranges for the corresponding
data segments are reserved. Finally, accessing some
objects within one of these data segments causes the
data segment to be fetched. The latter may trigger
another round of virtual memory address reservation
and data fetching. Under this scheme, memory ad-
dress space is reserved in a less greedy fashion than
the schemes presented in [6, 10, 12].

2.4 Preventing Database Corruption

Since object references are virtual memory addresses,
user code has direct access to BeSS control structures
such as slotted segments. Hence, mechanisms to pre-
vent database corruption caused by bad pointers are of
paramount importance. BeSS uses the facilities pro-
vided by the underlying hardware for detecting ac-

1Reorganization includes compaction, resizing, or relocation
of data segments and movement of entire files between storage
areas.

cess protection violations. The virtual memory man-
agement hardware detects an illegal attempt to up-
date write-protected items at the time the update is
attempted, before the possible error takes place and
propagates to other structures.

As shown in Figure 2, slotted segments are mapped
into write-protected virtual memory and ordinary user
code cannot modify them. Data segments are read-
able and potentially writable by user code. Before
BeSS (or some other trustworthy software) updates
control structures, the address space containing these
structures 1s explicitly unprotected before the up-
date and reprotected after the update is over. This
scheme allows correct software to modify protected
data but prevents accidental database updates by in-
correct pointers. However, if malicious software man-
ages to unprotect memory before updating it, this pro-
tection mechanism alone would not work. The major
cost associated with this mechanism is an increased
number of system calls [11]. However, for many ap-
plications this cost is an acceptable tradeoff for the
benefits gained.

3 Implementation Issues

In this section, we discuss implementation issues re-
garding the two operation modes, memory mapping,
and cache replacement.

3.1 Operation Modes

Fach BeSS server manages a cache (see Figure 3)
which stores pages that have been accessed by local
transactions. These pages may belong to databases
managed by the local server, if any, as well as
databases managed by remote servers. The cache is
created using the mmap UNIX system call, and it is
viewed as a contiguous sequence of cache frames, each
of which can hold a database page. The server is re-
sponsible for forwarding requests made by local ap-
plications to remote servers (e.g., for fetching remote
data), and for processing requests made by remote
servers (e.g., callback requests).

A user process can access the shared cache either
directly (in-place access or shared memory) or indi-
rectly through the server (copy on access). In the for-
mer case, each process gains access to the shared cache
and all control data by mapping the cache into its ad-
dress space. In the latter case, each process maintains
a private cache (Figure 3, application B) and commu-
nication with the local server is required for fetching
segments. This private cache of each process is im-
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Figure 3: Modes of operation

plemented as a fixed size file that is mapped into the
process’ virtual address space. The file is divided into
frames, each of which can hold a database page. Note
that the interface provided by BeSS is the same for
both modes; it 1s just the process boundaries that dif-
fer.

Copy on access has the advantage that user pro-
cesses do not synchronize their accesses to their private
caches. However, inter-process communication is re-
quired. Shared memory access offers the potential for
high performance by avoiding inter-process communi-
cation and copying of data. However, it incurs the
cost of synchronizing concurrent access to the shared
cache. In addition, pointers between database objects
and their control structures; pointers among the con-
trol structures, and pointers among database objects
must be valid to every application process accessing
them.

BeSS uses latches (atomic test-and-set) for synchro-
nizing concurrent accesses to the shared cache. Clean-
up of shared structures from process failures is handled
by keeping track of process actions as in [7]. BeSS en-
sures the validity of the shared pointers by treating
them as offsets from the beginning of a fictitious vir-
tual address space. In particular, each process maps
the shared cache in a number of frames — each hav-
ing size equal to database page — in its private virtual
memory address space (PVMA). The size of PVMA
may be much larger than the size of the shared cache,
however, for our scheme to work all processes reserve
the same number of PVMA frames.

Each database page fetched in the shared cache is
mapped to the same PVMA frame for all processes by
using a mapping table that is shared by all processes.
The shared mapping table together with the use of off-
sets give the illusion of a shared virtual address space.
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Figure 4: The BeSS memory mapping approach

Under this scheme, a pointer needs to be fixed once by
the first process that fetched the corresponding page
in the cache. A simple BeSS template class translates
pointers from the process’s virtual address space to
pointers in the shared address space, and vice versa.

3.2 Memory Mapping

As we mentioned in the previous section, BeSS main-
tains a mapping from virtual frames to physical cache
frames. Let us assume that a transaction needs to ac-
cess page A that happens to be in cache frame 0, per-
haps fetched by another transaction, as shown in Fig-
ure 4(a). Some virtual frame, say frame 0, is mapped
to cache frame 0, pointers within the virtual frame 0
are fixed if needed, and the application gets read-only
access to this frame.

The transaction keeps accessing pages in the fash-
ion described above until the number of accessed pages
reaches the capacity of the cache, as shown in Figure
4(b), where the transaction has mapped its virtual
frames 0, 1, 2, and 3 to cache frames 0, 2, 3, and
1, respectively. Next, the transaction needs to access
page E, which is not currently in the cache. As shown
in Figure 4(c), page A is evicted from cache frame
0 and the virtual frame 0 is access protected; page
E is fetched in cache frame 0, the virtual frame 4 is
mapped to this cache frame, and the application gets
read access to this virtual frame.

The cache-to-virtual frame mapping is dynamic in
the sense that the same virtual address frame may be
mapped to different physical frames during the execu-
tion of a transaction. For instance, if page A needs
to be brought back in cache, it may be placed in any
cache frame and the virtual frame 0 will be mapped
to that new cache frame, see Figure 4(d).

3.3 Cache Replacement

Cache replacement in based on a clock-like algorithm.
However, BeSS does not use the traditional clock al-
gorithm where a bit indicates whether a slot has been



accessed since the last time the clock swept over it?.
Instead, the clock algorithm is based on the state of
a virtual frame. A virtual frame may be invalid, pro-
tected, or accessible. A frame is invalid when it 1s
access-protected and it is not mapped to any cache
slot. A frame is protected when it is access-protected
and 1t is mapped to a cache slot. Finally, a frame is
accessible when it is mapped to a cache slot and it can
be accessed by the application. The clock algorithm
sweeps through the virtual frames and skips all invalid
frames. Accessible frames are also skipped but after
they are converted to protected.

In the copy on access mode, a cache slot that cor-
responds to a protected frame is selected for replace-
ment. In the shared memory mode, however, the cache
slot of a protected frame cannot be unilaterally re-
placed because another application may be accessing
it. For this reason, BeSS associates a counter with
each cache slot. The counter corresponds to the num-
ber of applications that can access the slot. Each ap-
plication increments the counter of a slot when it gains
access to the slot.

In addition, the clock algorithm is broken up in two
levels. The first level is the same as the clock algo-
rithm in the copy on access mode with the difference
that a protected frame is converted to invalid, and the
counter of its slot is decremented by one. The second
level operates on the cache slots and uses the counter
as an indication whether the slot has been accessed
since the last time the clock swept over 1t. A cache
slot with counter zero is selected for replacement.

4 Transaction Management

BeSS provides two-phase locking for concurrency con-
trol with read/write lock for each page. Transactions
involving more than one server are coordinated using
the two-phase commit protocol, and timeouts are used
for distributed deadlock detection. BeSS supports
inter-transaction caching of data and locks. Cache
consistency 1s maintained by using the callback lock-
ing algorithm [5, 6]. Recovery is based on the ARIES
[8] write-ahead logging protocol.

4.1 Detecting Updates

BeSS detects updates by using the virtual mem-
ory management facilities provided by the underly-
ing hardware. When a page is mapped in the appli-

2Because of the memory-mapped architecture, the cache
manager does not have enough information to identify the slots
that have been accessed recently.

cation’s virtual space for the first time, it is write-
protected and a page descriptor is created for it. The
page descriptor, which contains information about the
mapped address of the page and the access permis-
sions, is inserted into a balanced tree whose key is the
virtual memory address of the page. An attempt to
modify this page signals a protection violation and the
BeSS fault handler is invoked.

The fault handler first makes sure that the address
of the fault is within some virtual frame F' handled
by BeSS — if not, the fault propagates to the appli-
cation. Next, based on the address of F', the above
tree is searched to locate the descriptor of the page
P corresponding to F'. Then, a write lock is acquired
on P, if needed, and the appropriate recovery actions
take place. The following cases need to be considered:

1. F is access protected and P is not cached. P is
fetched in the cache, as explained in Section 3.2,
and the steps described in case 3 below are taken.

2. F' is access protected because of the normal ac-
tivity of the cache replacement mechanism, and
P is cached. The mapping between P and F' is
re-established, F' is write-protected, and control
is returned to the application process.

3. F is write-protected and P is cached. The cur-
rent image of P is copied into a separate space,
referred to as recovery buffer, and the descrip-
tor of P is made to point to this recovery buffer.
Write access is enabled for F'; and control is re-
turned to the application process.

This approach offers a transparent, automatic, and
fast way of detecting updates. The overhead asso-
ciated with updates (locking and logging) occurs ex-
actly once, when the page is updated for the first time.
Any subsequent updates proceed at full speed. This is
important for many applications, such as CAD, that
typically work on many objects by repeatedly travers-
ing relationships between these objects and updating
some of them as well.

4.2 Generating Log Records

Although the virtual memory management hardware
detects updates, the granularity of the detection is
that of the page size supported by the virtual mem-
ory system — typically 4 Kilobytes. Consequently, the
modified regions on a page cannot be detected. Gen-
erating a log record for the entire page, 1.e. assuming
the whole page is dirty, may have implications in the
performance of the system [13]. For this reason, BeSS



follows the page diffing [10, 4, 13] approach, which
presents an efficient way to locate modified portions
on a page. Under the page diffing approach, the up-
dated portions of a page are identified by comparing
the updated copy of the page against a clean copy of
the same page.

Log records are generated when the recovery buffer
is full, or when an updated page is replaced from the
client cache, or at transaction commit. The copy of
the updated page in the recovery buffer is compared
against the copy of the page in the cache for deter-
mining the regions that are different. Next, the before
and after image of each modified region are used to
generate the log record for the page. This log record
is then inserted in an in-memory log buffer, which is
flushed to the log at commit time or when it becomes

full.

5 Conclusions

In this paper we have presented the architecture of
the BeSS storage system. The alpha implementation
of BeSS was completed in November 1993 and a beta
release was completed in November 1994. BeSS has
been implemented in C4++4 and it is operational for
SUN and SGI platforms. Also, we are planning on
porting BeSS on a multiprocessor machine such as the
NCR 3600 with board level shared memory. Currently,
BeSS is being used as the storage engine of the Tera-
data’s content based multimedia system that provides
an extended relational interface [9)].
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