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Abstract
The Teradata Multimedia Object Manager is a general-
purpose content analysis multimedia server designed for
symmetric multiprocessing and massively parallel
processing environments. The Multimedia Object Manager
defines and manipulates user-defined functions (UDFs),
which are invoked in parallel to analyze or manipulate the
contents of multimedia objects. Several computationally
intensive applications of this technology, which use large
persistent datasets, include fingerprint matching,
signature verification, face recognition, and speech
recognition/translation.

Index Terms - Parallel Multimedia Database, Teradata,
User-Defined Functions, Content-Based Analysis.

1     Introduction

Multimedia applications have become affordable and more
widespread as computer technology advances.
Performance acceleration of these applications requires
moving computation into servers, especially when there is
a large amount of shared data or a large amount of
computing. There are two types of multimedia
applications that require server support:

• Storage/retrieval

• Content-based analysis

The first kind of applications store and retrieve multimedia
objects and perhaps perform a few simple transformations
on the objects such as compression and decompression.
Content analysis applications require far more processing
on the multimedia objects. Examples include tumor
recognition in a set of magnetic resonant images, face

recognition in a set of images, speech recognition in a
stored audio clip, and keyword searching of a document.

To support both kinds of applications, NCR is building a
powerful multimedia database back-end server to store
and share multimedia objects and perform
computationally demanding operations on them.
Symmetric multiprocessing (SMP) and massively parallel
processing (MPP) hardware architectures provide such
capabilities. The computer resources on these machines
can be configured as a shared-nothing set of virtual
processors (vprocs), each with its own CPU, memory, and
disk space. These vprocs operate in a shared-nothing
database environment [1]. Each vproc operates
independently and in parallel with other vprocs. The
number of vprocs on these machines is configurable and
not necessarily equal to the number of physical CPUs. By
using vprocs as addressable logical processors, system
reconfiguration and fault resilience operations become
more manageable. This flexibility allows addressable
vprocs to be moved between physical nodes

The goal of the Multimedia Object Manager project at
NCR is to provide content analysis capability on
multimedia data on massively parallel platforms. The
Multimedia Object Manager team is building a highly
reusable technology platform that leverages expertise in
the Teradata parallel database system and core Bell Labs
competencies in multimedia. It is used as a parallel object
engine that extends the Teradata database with SQL3
multimedia capabilities on both SMP and MPP platforms
[2][3].

The system’s infrastructure of programmable agents
(tasks) allows system developers to load and execute user-
defined functions (UDFs). UDFs are algorithms for
content-based analysis of the objects. Agents are
programmed with the sequence of vprocs to visit and the
operations they will perform on each vproc. Agents may
be dispatched to all or a subset of the vprocs. Each agent
attempts to invoke the UDFs as close to the multimedia
objects as possible to prevent large object movement on
the interconnect; the idea is to move computation instead
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of data. The Multimedia Object Manager is a generic
extendable platform that incorporates transactional
semantics for easily executing UDFs in parallel. Objects in
the system are maintained in a parallel persistent storage
system. Object location is hidden from the external user.
Furthermore, as the system is reconfigured, objects are
transferred transparently from one vproc to another.

The remainder of the paper is organized as follows:
Section 2 highlights the key contributions. Section 3
provides a system overview. Section 4 discusses
programmable agents. Section 5 covers parallel persistent
storage. Section 6 discusses the User Defined Function
library software. Section 7 describes feature extractions.
Section 8 describes some preliminary performance
evaluations. Section 9 relates experience with terabyte
relational databases and reflects on their use with large
multimedia datasets. Section 10 summarizes our work.

2     Key Contributions

Experience with the Teradata Database System has shown
that performance is important as larger amounts of data are
required and the complexity of computation increases.
These demands require hardware/software designs that
support effective scale-up and speed-up.1 The Multimedia
Object Manager project at NCR provides content analysis
capability on multimedia data on massively parallel
platforms with excellent scalability. Its parallel UDF
invocation mechanisms for massively parallel platforms
allow large data sets to be manipulated/analyzed. The
system incorporates the following:

• A generic platform that is application-independent and
extensible.

• Programmable agents to meet the needs of the
application.

• An open interface and content-based object analysis
capabilities through system-supplied multimedia
functions (UDFs).

• Memory-mapping techniques that provide near-
memory-speed pointer dereferencing (for memory-
resident objects in the cache).

• Extensive support for large object data placement,
including capabilities for striping across disk volumes.

• A UNIX-like file system application programming
interface (API) for accessing very large objects.

1. NCR builds the largest commercial database
with over 11 terabytes of on-line relational data
on NCR MPP platforms using the Teradata data-
base.

3     The Multimedia Object Manager System

As shown in Figure 1, the Multimedia Object Manager’s
software architecture consists of the following:

• An Interface Manager

• Object managers

• Multimedia infrastructure

The Interface Manager is the entry point into the
Multimedia Object Manager. It comprises a set of global
API services accessible from any vproc. These services
are global transaction management, agent/event
dispatching, and parallel file management. The
dispatching service is used to parallelize a user request
using agents spanning the appropriate vprocs for
processing.

Figure 1   Multimedia Object Manager Software Architecture

The Object Managers are local to each vproc and provide
access to the persistent storage and UDF library. Once the
Interface Manager has dispatched the agents, one or more
Object Managers may be involved in servicing the agents
in parallel. The Multimedia Infrastructure provides
communication and system resource management across
the vprocs.

Three Multimedia Object Manager software components
are discussed in this paper:

• Programmable agents [5]

• A parallel storage system

• A library of User-Defined Functions (UDFs) [4]

Each user request results in agents being dispatched, in
parallel, to the appropriate vprocs. Each request is
transformed into one or more agents by the Multimedia
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Object Manager’s agent API. The agents are programmable
through scripts and are executed by an executor, one on each
vproc. Agents may be dispersed over all vprocs in parallel
and/or may migrate between vprocs. Each agent applies
UDFs on a set of objects. As a result, computation is based
on agents’ execution of tasks, which is triggered by the
receipt of events.

The Multimedia Object Manager’s parallel storage system
provides storage/retrieval capabilities with transactional
semantics on all vprocs. All vprocs on one node share one
instance of the parallel storage system. Since the Multimedia
Object Manager operates in a shared-nothing architecture,
each vproc supports computation, storage, and retrieval. All
objects in the Multimedia Object Manager are maintained in
the parallel persistent storage system. The location of each
object is hidden from the external user. The Multimedia
Object Manager provides an object identifier (OID) for each
object. The parallel file system determines the location of an
object, given its OID. Furthermore, as the system is
reconfigured, objects are transferable from one vproc to
another without changing the OID.

The UDF library provides an extensible set of abstract data
type (ADT) algorithms to do content-based analysis on
multimedia objects. These algorithms may be applied in
parallel by agents on multiple vprocs. Each parallel agent
applies the UDFs over a subset of the objects in a vproc. The
system supplies a standard UDF library that contains simple
building blocks, such as compression and decompression
algorithms. The system also allows applications to load,
store, and execute application-specific UDFs-- examples
include color histograms or texture mapping for image
ADTs.

The following sections describe each of these three software
components in more detail. Section 4 describes the
programmable agents. Section 5 discusses the parallel
storage system. Section 6 discusses the UDF library.

4     Programmable Agents

Computation in the system is based on the execution of tasks
(agents). A computation is triggered by the receipt of a
message (event). First, a user request invokes the dispatcher
API. The dispatcher installs agents at appropriate vprocs in
the system., depending on the location of data to be
accessed. After these agents are installed, a start event is
broadcast to initiate computation.2 When, in the course of
executing its script, an agent discovers an operation that has
a set operand, and the objects in the set reside on other

2. To reduce communication overhead, the broadcasts
of the start event and the installation of agents can
be piggybacked.

vprocs, it clones itself on the appropriate vprocs. The
instructions depend on the user’s request.

The agents remain dormant until events trigger their
execution; the agents then execute on vprocs. During an
agent’s execution, it may do any of the following:

• Trigger other events

• Access the Multimedia Object Manager’s persistent
storage

• Execute UDFs

Agents may also migrate between vprocs. Agent migration
is useful when a task requires one or more objects not
residing on the same vproc. If the objects are not needed
concurrently, the agent can migrate to the appropriate vprocs
sequentially to access the objects. An agent is moved with its
current state information; this is less costly than moving
large multimedia objects over the interconnect. The
migrating agent’s context is piggybacked along with the
event that is sent to its new location (vproc). When an agent
needs to access two non-co-resident objects concurrently,
remote object access (ROA) is used for the object residing
on the another vproc. In this case, an object (usually the
smaller) is moved over the interconnect. ROA over the
interconnect is not done when objects reside on another
vproc but on the same physical node (for example, an SMP
node).

After execution completes, the agent waits until another
event triggers its execution. An agent may remove itself
from the system when it receives an appropriate event type.

4.1 Agent Model

The Multimedia Object Manager’s agent model consists of
the following four components:

• A script3

• Context

• Events (messages)

• A mailbox (to receive events) [6]

Agents are programmed through a scripting language, which
defines the control flow and invocation of UDFs. Since the
agent executor must understand the semantics of the script,
the operations that an agent can perform range from very
simple to very complex. Agent scripts are executed by an
executor, one on each vproc. The agents’ initial context is set
via its initial event.

The model’s basis is the Actors programming model. [6] The

3. A script is a set of instructions telling the agent
what to do.
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Multimedia Object Manager team has extended the model
for appropriate step-execution of UDFs by the agent scripts
[3][7]. The model provides a powerful transportation
mechanism for data as well as an execution mechanism for
control structures. An agent is a script along with its context
and a mailbox. The arrival of an event in its mailbox triggers
its execution [6]. This triggering causes the agent to execute
the agent’s script.

The degree of concurrency in the system can be controlled
by adding or reducing the number of agents in the
Multimedia Object Manager. Agents may be initially placed
on all or a subset of the parallel vprocs [6].

4.2 Agent Flexibility and Scalability

Using an asynchronous light-weight agent model as the basic
form of computation offers advantages over process-oriented
models. In addition to easier dataflow modeling, [7] the
agent infrastructure provides flexibility. Encapsulating the
UDF execution into agents provides additional flexibility in
optimizing system performance: Agents can be dispatched to
the vprocs so the amount of remote object access required in
UDF execution is minimized. Furthermore, agents fit nicely
into a massively parallel environment. This is due to the
asynchronous nature of agents concurrently overlapping
communication and computation [7]. The computation
scales easily by increasing the number of cloned agents on
the system. These cloned agents operate in parallel with the
only control synchronization at the point of merging answer
sets.

4.3 Installing Agents

Agents can be sent/installed from any application to any
vproc (through the Multimedia Object Manager’s API) in
one of the following three modes:

• Monocast

• Multicast

• Broadcast

These operations are very efficient on networks such as the
BYNET interconnect in the NCR 5100M MPP machine [9].
In the multicast mode, the application can select a predefined
subset of vprocs. Broadcast mode involves all vprocs.
Sending events to agents can also be done in any mode.

The cloning of agents is a powerful model of computation.
An agent makes a copy of itself on one or more vprocs; this
is a scatter operation. The results of all the cloned agent
computations are returned to the cloning agent; this is a
gather operation. These scatter/gather operations may be
done recursively by one or more of the cloned agents which
forms a tree structure of computation. In the case of a tree

structure, results propagate back to the root agent. The
completion of the gathering operation returns the results to
the requesting application.

4.4 Executing Events

Events received by an agent are processed in the order of
arrival. Depending on the application’s requirements, after
an agent’s execution finishes, it either returns the event
message with the results to the sender, or it forwards the
event to another vproc. By forwarding the event, control flow
migrates through the various vprocs. This is not agent
migration in which we piggyback the agent’s context along
with the event, but it is the ability to control the flow of
computation by conditionally sending events to other agents
based on the current agent’s state information. This is a form
of data flow [7].

This provides a very powerful computation paradigm in
which a multi-step agent execution plan can be
accomplished by a number of vprocs. More important, this
occurs in a massively parallel environment where many
agents execute simultaneously.

4.5 Agents and UDF Invocation

Each agent’s script is a set of instructions indicating what
operations (UDFs) should be applied to which object(s).
Since the code for each UDF is replicated on all nodes, a
UDF operation can be performed in parallel on all or a
subset of vprocs.

UDFs can be treated as building blocks so that agents can
channel the output of one UDF to the input of another; for
example, a decompression UDF followed by a feature
extraction UDF. This allows many simple transformations to
be sequenced as a pipeline to accomplish complex
operations. The system supplies a core set of UDFs that are
available to applications. These core UDFs can be
augmented by user-provided, application-specific UDFs.

For security or asset management reasons, each UDF
invocation requires the requesting application to have access
to all the UDF(s) involved in its operation(s). Each agent’s
context contains information about the originating user
request. This allows the agent executor to verify that an
application has security access to the desired UDF(s).

5     Parallel Persistent Storage System

The Multimedia Object Manager exploits parallelism, data
availability, and partitioning strategies to obtain high
performance and reliability on the system. Stringent data
availability requirements dictate that application data must
stay available despite hardware component failures. This is
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done by allowing objects to be accessed by adjacent physical
nodes during node faults. Several partitioning strategies are
used to distribute objects across the shared-nothing vprocs
on the MPP to improve performance on various types of
access patterns and to increase total storage capacity.
Parallelism is achieved through data distribution, allowing
UDF invocation to be done on each vproc in parallel.

The Multimedia Object Manager utilizes BeSS (Bell Labs
Storage System) to provide persistent storage and allocation,
concurrency control, and recovery [8]. BeSS is a high-
performance configurable database storage manager that
provides Two-Phase Commit and Two-Phase Locking
protocols to the Multimedia Object Manager [10]. All
operations in BeSS are performed under database
transactional semantics. Additionally, BeSS uses memory
mapping techniques that provide near-memory-speed pointer
dereferences (for memory-resident objects). BeSS also
offers extensive support for large objects, including
capabilities for striping across disk volumes. The BeSS
server running on each physical node has its own cache to
maintain cache coherency and manage the shared virtual
memory addresses for the cache frames. An interesting
aspect of BeSS used in the Multimedia Object Manager is
that it allows processes to access data cached on memory
shared by other processes.

The system stores similarly typed objects in directories.
Each directory is defined with one of numerous object
distribution strategies over the vprocs. The system does not
impose limits on the size of the objects. Single objects may
span multiple disks on a vproc.

5.1 Data Organization

Data organization is key to the Multimedia Object
Manager’s shared-nothing massively parallel architecture.
Data location can have a dramatic impact on performance,
due to the expense of copying large multimedia objects
between physical nodes and/or to the client. Object
identifiers (OIDs) provide physical location independence
allowing data objects to migrate when the machine scales (to
balance the load). In addition, logical OIDs allow objects to
be accessed through adjacent nodes during node faults.

Due to the stringent data availability requirement on high-
end systems (where individual hardware faults have a higher
probability of occurrence), multiple hardware data paths are
provided to each physical storage device. This technique is
used by the Teradata database running on the NCR System
5100M MPP machine [9]. This technique increases the
availability of data in case of path failures (for example, a
lost physical node). In cases of storage device failures (for
example, a lost disk), data redundancy is used.

In the Multimedia Object Manager, the concept of a datapath
is defined with two end points: an application process and
the storage device. The datapath includes the interconnect
network and a node connected to the storage device. In the
case of the failure of a component in the datapath, the system
does fast failover. Availability is accomplished by supplying
multiple shared SCSI adapters on the same I/O bus (disk
array). As a result, more than one node has access to any one
physical disk.

The system is configured to perform best when using a
particular subset of all paths (primary data paths). However,
when failure occurs, nodes connected to alternate datapaths
may become overloaded. One solution for an alternate path
in the system is to provide a backup for each node. In the
case of a path failure, each backup node will have twice its
normal load, affecting overall performance. The minimal
theoretical performance reduction in the system would then
be1/N  for anN-node system. In reality, experience with the
Teradata DBS indicates that this results in dreadful
interconnection problems on a large system.

5.1.1 Cliques

The Multimedia Object Manager uses the Teradata database
technique called cliques [3]. Cliques are groups of nodes of
sizeC (whereC is configurable, typically as four nodes). By
grouping nodes in cliques, instead of by twos, the work of a
failed node is split evenly acrossC-1  nodes. To achieve this,
the disks on each node are split intoC-1  sets; also, in
addition to each disk being connected to a node by a primary
path, an alternate path exists to each of the otherC-1  nodes
in the clique (see Figure 2).

Figure 2   Clique Where Size C=3

However, cliques introduce a software problem. Because
disks are divided intoC-1  partitions, a clique of sizeC must
be treated asC*(C-1)  independent subsets. For cliques of
size C=3, we get six subsets. ForC=4, we get 12 subsets.
Large values ofC exacerbate this problem and provide
diminishing returns. That is why Teradata typically
configures clique sizes of 4 (depending on size of machine).
Each of theC*(C-1)  subsets are known as a virtual
processor (vproc). When a node fails, each of theC-1
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vprocs on that node move to a predetermined alternate node
in the clique.

5.1.2 Data Redundancy

Figure 2 illustrates a clique configuration whereC=3. In this
case there are six vprocs (two per node). Each node has two
alternate paths, one to each of the other node’s storage
devices. In case of a node failure, the computation from each
of its vprocs goes to a preassigned node in its clique.

In case of storage device failure, data availability is
maintained through data redundancy. Two types of
redundancy are available to recover from failed storage
devices: data duplication and redundant array of inexpensive
disks (RAID). The Multimedia Object Manager uses RAID
technology. Failed devices are hot swapped and rebuilt when
on-line.

5.1.3 Data Distribution

Similarly typed objects are grouped logically into
directories. Each directory is defined with one of numerous
distribution strategies over the vprocs. The system does not
impose limits on object size.4 Single objects may span
multiple disks on a vproc.

Figure 3   Directory Organization

While directories are distributed over multiple vprocs, each
individual vproc manages one BeSS database, which
consists of one or more physical storage areas. Directories

4. The maximum length in bytes is limited by physi-
cal storage.

spanning multiple vprocs have a directory entry in each of
their vprocs’ databases. Each storage area in a database is a
character device raw disk partition. In this case, we bypass
all buffering done by the operating system; the storage
manager on each node encapsulates its own cache and buffer
management facilities [8][11].

5.1.4 Distribution Scope

Directories can be distributed over all or a subset of all
vprocs. Each directory can select a system pre-defined
distribution scope, which can be one, all, or a fraction of all
vprocs in the system, for example: 1/2, 1/3, 1/5, 1/10, and so
forth. Distribution scope allows flexibility in data
distribution and helps balance the load on each vproc across
the system. Objects that belong to the same directory are
grouped together in each vproc. A Multimedia Object
Manager directory is composed of its corresponding
constituent directories in the vprocs. The data dictionary
stores the directory organization information.

As illustrated in Figure 3, Directory 1 and Directory 2 have
different distribution strategies.

5.1.5 Data Partitioning Strategies

Objects in the Multimedia Object Storage Engine are
grouped into directories. Each directory specifies a physical
set of vprocs to contain the objects in that directory. Objects
in a directory share a Placement Policy, which specifies a
function to map any object onto one vproc. In particular,
each object is mapped first into an Object Key, then the
Object Key is used to calculate a Placement Key, and finally
a Placement Key is used to identify a vproc.

Users may specify their own functions for computing Object
Keys. The type of Placement Policy used for a set of objects
in a directory is specified by the creator of the table that uses
those objects. Several Placement Policies are supported:

• Random. An object is placed on a randomly-selected
vproc within the directory. No ObjectKey is required.

• Hashing. An ObjectKey is computed for the object. The
ObjectKey is hashed using a system or user-defined
hashing function to calculate a vproc.

• Value Partitioning. An ObjectKey is computed for the
object. The space of ObjectKeys is partitioned into
disjoint subsets. All ObjectKeys in a partition map to the
same PlacementKey, which may be further mapped to
one or a set of vprocs.

Not all requests are best served by the same placement
strategy. Both Random and Hashing placement policies
result in roughly uniform distributions of objects across
vprocs. Both are advantageous for queries that access sets of
objects. For example, a UDF to compare a target fingerprint
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against a set of fingerprints might benefit from random
placement of the fingerprint set across all vprocs, to
maximize parallelism.

Value Partitioning is useful for UDFs with non-uniform
object accesses. In this case, remote object references can be
avoided by ensuring that subsets of objects used together are
co-located in the same vproc. Value Partitioning is well
suited for range queries, where many parallel subqueries
operate on subsets of the directory over different sub-ranges.
These sub-ranges span a portion of the directory and can
contain similar (or dissimilar) objects grouped near each
other. Value Partitioning is also good for multi-dimensional
spatial objects (also referred to as Spatial Partitioning), in
which feature extracts are used as ObjectKeys. Similar
objects, i.e., those that are “close” to one another in 1-D, 2-
D, or in general N-dimensional space, can be physically
placed in storage according to their physical spatial
representations.

Both the directory identifier and the object’s Placement Key
are part of the logical OID. The directory number and the
Placement Key are logical, not physical. The system
computes vprocs from Placement Keys dynamically, which
handles the case of reconfiguration of vprocs. The remainder
of the logical OID is used by the node’s object storage
manager to locate the object within the vproc. This scheme
allows objects to be relocated. When a system scales, the
system migrates objects physically to keep the load balanced
without affecting existing OIDs.

5.2 Object Storage Manager

BeSS is the Multimedia Object Manager’s storage manager.
Each node’s storage manager operates in a peer-to-peer
server relationship, while client processes (with respect to
the storage manager) operate in a client-server mode [14][8].

Each storage manager manages data access for a single
node; each node contains numerous vprocs. Each vproc on a
node manages a single BeSS database, consisting of one or
more storage areas. Each storage area is partitioned into
fixed-sized extents. Allocation from an extent is based on the
binary buddy system [15]. All control information (storage
manager’s metadata, such as control segments) is kept in a
root (primary) area, while data segments can be dispersed
throughout all areas in the database. Since control and data
information have been separated, data segments can be
moved freely within the database for balancing the load
between the raw disk partitions. As a result of this
organization, movement of data segments does not affect
current object references and/or OIDs.

Figure 4 illustrates the logical storage representation on one
vproc. Objects are shown distributed over multiple storage

areas. Any one object may be striped over all or a subset of
them. There is no software limit on the number of storage
areas, just on the number of physical disks and the
partitioning done on them.

Figure 4   Logical Vproc Storage Representation

5.3 Object Access Methods

The Multimedia Object Manager is extensible. The
Multimedia Object Manager software and trusted UDF code
is linked directly to the BeSS process on each node, which
allows the Multimedia Object Manager to access and
manipulate regular objects, indices, and control structures
directly on the segments for which they reside in the cache,
without incurring in-memory copying costs. In addition,
internal pointers within regular objects are swizzled when
brought into the cache after page faults.

The Multimedia Object Manager allows two modes of
persistent memory access:

• Shared memory access (direct access into the cache)

• Copy on access

In shared memory mode, processes have memory-speed
access into cache segments based on memory mapping
techniques; processes access and manipulate objects directly
in the cache frames. The system prevents database
corruption from bad pointers by separating data and control
segments/structures. All control structures are protected by
ordinary mechanisms provided by the virtual memory
management hardware [8][16].

Since users may load their own UDFs, the system must treat
these loadable software executables as untrusted software
components, mainly due to data security and malicious
corruption reasons. In this case, processes operate in copy on
access mode. Only data (non-control) portions of objects are
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passed into a process’s virtual address space. Object
boundaries, not the data segment page boundaries, are
copied to prevent malicious access to inappropriate data. In
this mode, processes operate on objects in their own private
buffer pool.

5.3.1 Transactional Semantics

The system provides the traditional ACID transaction
properties (Atomicity, Concurrency, Isolation, and
Durability). Concurrency control is provided through two-
phase locking (2PL), while recovery is provided through
logging [10]. Since moving computation (versus data) is not
always possible, each storage manager supports remote
object access. Thus, in the case of both locally and remotely
accessed data, all pages and locks accessed by processes
remain cached on the node where the transaction is
executing. Cache consistency is guaranteed by using the
callback algorithm [8][16]. The two-phase commit (2PC)
protocol is employed for distributed commits, and time-outs
are used for distributed deadlock detection.

5.4 Large Object Management

Stringent requirements are placed on the storage manager to
effectively handle large multimedia objects [15][17]. First,
objects are unlimited in size, limited by physical storage
only. Second, large objects must support operations that deal
with specific byte ranges within the object: for example, read
or replace a random byte range within the object, insert or
delete arbitrary byte ranges, and append bytes to the end of
the object. The last three operations may cause the object to
grow or shrink. Finally, objects must be protected from
transaction and system failures.

Byte range operations require good random access (to locate
arbitrary byte ranges) as well as good sequential access
performance. Random access performance requires that the
cost of locating byte ranges be independent of the object’s
size. Sequential access performance requires that reading/
writing large chunks of objects must be close to the transfer
rate [15].

The Multimedia Object Manager makes effective use of
asynchronous I/O parallelism, data striping, and disk
allocation for high-performance storage and retrieval [8].
Large objects spanning multiple pages can be accessed and
updated as if they were a stream of bytes, even though
internally they may not be contiguous and may possibly be
striped over many disks. Efficient byte-range operations,
such as insert, append, and truncate are provided, among
others.

In addition, since the Multimedia Object Manager is
managing all its disk allocation, the storage manager must

store objects so that utilization of large objects is close to
100%. This requires that objects be stored with minimal
internal fragmentation [15].

Each large object is stored in a set of variable-sized
segments, each consisting of adjacent disk pages. As
insertions, deletions, and appends are done, the segments
may be grown or broken up. New segments may be added as
the object grows. Each set of large object segments may
contain segments that vary drastically in size. A B-Tree-like
structure ties the segments together. Only the root index may
not be relocated. The remaining index pages and leaf nodes
may be moved among local storage areas to balance storage
media. Finally, leaf nodes are striped across multiple storage
areas on the node to increase parallelization due to
asynchronous pre-fetching.

6     User-Defined Function Library

In the Multimedia Object Manager, applications can load,
store, and execute UDFs. This allows developers to build a
library of UDF building blocks for their use. Security
permissions are given to each UDF to specify its
accessibility. The permissions allow UDFs to be shared
between all, a subset, or only one application. Permissions
also allow sharing to be denied in the case of proprietary
code.

The Multimedia Object Manager supplies a standard UDF
library for basic algorithmic building blocks, such as
compression/decompression and text manipulation.
Additionally, a mechanism is provided for application clients
to load their own UDF object code onto the Multimedia
Object Manager.

7     Feature Extraction UDFs

If object attributes are defined on ADTs, then it is desirable
to pre-generate feature extractions (through feature-
extracting UDFs). A feature extract is a feature vector that
represents an attribute of a the raw object, possibly in a
spatial representation. Such vectors can be searched to locate
similar objects. Sample feature extraction algorithms are
face recognition, fingerprint matching, signature verification,
and time-series analysis.

Comparison of two feature extracts requires a distance-
computing UDF on feature vectors. A typical distance
function is Euclidean distance.

To accomplish fast querying, objects are preprocessed
(through UDFs). This step generates additional metadata on
the objects, which must be updated when the raw objects are
modified.

The Multimedia Object Manager will evolve to provide a



76

generic framework for spatial indexing on feature vector
keys [13]. This framework allows faster access to objects
based on their attributes. Each ADT feature attribute may
require its own index structure.

When an agent is accessing objects, it first checks to see if
the attribute of interest in the ADT is indexed. If so, it
accesses the index. Otherwise, the agent is cloned over the
appropriate vprocs and each scans all feature extract objects.

8     Performance Evaluation

One of the main goals of the Multimedia Object Manager is
the storage/retrieval of large multimedia objects in parallel
with transactional semantics. To measure the overhead of the
agent and storage management subsystems, the following
performance experiment was performed using the
Multimedia Object Manager executing on one vproc
(Sparc10).5 This experiment evaluates the Object Manager’s
ability to create, insert, and append to large objects when
accessed by agents. These numbers represent a cold cache,
no parts of any object’s B-Tree-like index were initially in
the cache.

The first graph (Figure 5) illustrates object creation times.
Pieces of a large object are inserted sequentially to create a
10-Mbyte large object (versus inserting the whole object at
once). Each piece is called a chunk. The second graph
(Figure 6) illustrates the reading of a 10-Mbyte object in
chunks.

Figure 5   10-Mbyte Object Build Time

Since large objects can be striped over many disks, the
performance numbers are taken using both one and two raw
disks. The system can control the maximum and minimum
sizes of the striped segments. In this example, the minimum/

5. A distributed SPARC SunOS environment is being
used as a UDF development platform.

maximum sizes are made equal where the striped segments
were 128K, 256K, and 512K, respectively. Typically, the
striped segment size is a multiple of the disk drive block
size.

The two raw disks are Seagate/Barracuda drives with
external transfer rates of 10 Mbytes per second. Figure 5
illustrates build times. For one disk (no striping), appending
chunks greater than 128K produces almost the same results
as 128K chunks (approx. 3 seconds), with larger segment
values producing slightly better results. For two disks
(minimum striping), and appends greater than 256K, build
time is approximately 2 seconds. These results are not
conclusive; larger segments may slow down build time. The
key issue is to build an object so read time is faster, not build
time.

Figure 6   10-Mbyte Object Read Time

When reading objects, response times are fairly constant,
with a significant drop when the read chunk is twice the
storage chunk when striping over two disks. This is due to a
fully balanced parallel read of two disks.

9     Terabyte Database Experience

NCR has years of experience in the retail, communications,
and financial markets. Teradata customers are requesting
multimedia extensions to their existing systems. Examples
include fraud prevention (face/fingerprint/voice matching),
market trend analysis (time series), and geographic
information systems (maps). These examples go beyond the
traditional support for the storage/retrieval of binary large-
objects (BLOBs), and require the ability to support non-
traditional content analysis of user-defined abstract data
types.

Most commercial database vendors are augmenting their
systems with object-oriented extensions that allow semantics
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to be defined on blobs [19][20][21][22][23]. These extended
relational systems are potentially capable of complex queries
that analyze the content of objects, such as an image or audio
stream. Additional database servers are also being
introduced that specialize in selected ADTs, such as image
matching [22] and geographic information systems [25].

NCR’s experience in configuring and managing the largest
commercial decision support database system, which has
over eleven terabytes of on-line relational data, has given us
insight into the need of high end applications with
multimedia capabilities. As the MPP architecture scales, the
notion of a logical vproc becomes increasingly important for
load balancing and availability reasons.

The BYNET interconnect on the NCR System 5100M MPP
machine supports data merging/sorting in hardware. In
addition, the interconnect supports dynamic communication
groups allowing efficient multicasts on the network.

Efficient step-execution plans over many MPP vprocs
manage the parallelization of database queries. We are using
the scatter/gather capabilities of the cloning agents to
manage the steps. The flexibility of agent technology also
allows agents to migrate across vprocs.

As Teradata customers migrate their systems over time to
handle multimedia objects, we expect the following three
data management scenarios:

• Large amounts of relational data, small amount of
multimedia data

• Small amounts of relational data, large amounts of
multimedia data

• Even distribution of relational and multimedia data.

The architecture handles these cases by providing flexible
options for coded data and multimedia data placement across
nodes of the system.

10     Conclusions

The Multimedia Object Manager system provides an
extensible platform for users to define and manipulate UDFs
on persistent multimedia objects in a general-purpose
massively parallel environment. Users who understand the
semantics of the data can load into the system the UDF
modules for their selected applications, such as fingerprint
matching, signature verification, face recognition, and
speech recognition/translation. The Multimedia Object
Manager is designed to meet the processing challenges of the
emerging generation of multimedia content-based
applications.
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