
SaveMe: A system for Archiving Electronic Documents
Using Messaging Groupware

Stefan Berchtold, Alexandros Biliris, Euthimios Panagos

AT&T Labs Research
Florham Park, NJ 07932

berchtol@ieee.org, {biliris, thimios}@research.att.com

ABSTRACT
Today, organizations deal with an ever-increasing number
of documents that have to be archived because they are
either related to their core business (e.g., product designs)
or needed to meet corporate or legal retention requirements
(e.g., vouchers). In this paper, we present the architecture
and prototype implementation of SaveMe, a document
archival system that is based on network-centric groupware
such as Internet standards-based messaging systems. In
SaveMe, the actions of archiving, retrieving, and
classifying documents are similar to the actions of sending,
retrieving, and classifying email into folders. SaveMe
leverages existing messaging infrastructures - the one
common denominator sitting on every computer is email -
and, thus, it does not require individual users and IT
personnel to learn a new technology. The resulting
environment is not intrusive, easier to administer, and a lot
easier to deploy.

Keywords
Archiving, messaging, groupware, Internet.

1 INTRODUCTION
Most of the organizations today keep information about
their core business in an ever-increasing volume of
electronic documents. Examples of such documents include
product designs and documentation, corporate policies,
expense reports, purchase orders, presentations, electronic
messages, and data related to electronic commerce. Once
these documents are approved, they can not be modified
and they have to be stored for extended periods of time i.e.,
they have to be archived. The ability to manage, share, and
control archived documents among collaborative
workgroups, workflows, business partners, and across
global networks is crucial in gaining advantage in today’s
competitive business environment.

In addition, organizations have substantial investments in
electronic messaging technologies, which provide one of

the most effective methods for communication,
collaboration, and coordination among workers within
decentralized organizations and across different companies.
Messaging has evolved from a simple communications
tool, which allows users to communicate with each other,
to a powerful business communication infrastructure that
supports collaborative computing, business process
automation, electronic commerce, and distributed work
environments. Messaging could even be used as the
middleware for accessing and controlling shared resources.
For example, printing a document could be achieved by
emailing the document to a printer server that prints the
document at the appropriate printer based on the available
printers, the document type, and the sender’s identity.

In this paper, we present the architecture and prototype
implementation of SaveMe1, a document archival system
based on network-centric groupware such as Internet
standards-based messaging. In particular, SaveMe uses a
messaging server that supports SMTP (Simple Message
Transfer Protocol [9]) and IMAP (Internet Message Access
Protocol [5]). In SaveMe, archiving, retrieving, and
classifying documents into meaningful collections is
similar to sending email to recipients, retrieving messages
from folders, and classifying messages into folder
hierarchies. In the simplest scenario, if saveme.com is
the archiving server’s name, sending an email to
abc@saveme.com causes the content of the email
message to be archived in the abc mailbox. Archived
documents are stored in jukeboxes of non-tamperable
media such as Write Once Read Multiple (WORM)
Compact Disks (CD), which provide high storage capacity,
low cost compared to magnetic disks, random data access,
and long-term stability.

SaveMe leverages existing messaging infrastructures and,
thus, it does not require installation of new software on
every desktop. In addition, individual users and IT
personnel do not have to learn a new technology, resulting
in substantial saving for an organization in terms of training
and administration. The resulting environment is not
intrusive, easier to administer, and a lot easier to deploy.

1 SaveMe: A System for Archiving Electronic Documents

Using Messaging Groupware.

LEAVE BLANK THE LAST 2.5 cm (1“) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

Archiving based on electronic messaging has advantages
that are beyond the ease of use by individuals; certain
application components would be able to exchange and
archive messages in a seamless way. For example,
enterprise resource planning systems track transactions and
generate reports. In the past, most of these packages relied
on the post office and fax machines to distribute reports. To
speed the reporting process and streamline distribution cost,
modern systems increasingly use Intranet and messaging
infrastructures. A desired feature from such systems is the
seamless archiving of the reports that are generated or
transmitted. In our messaging-based archiving system, this
can be achieved by simply CC-ing the documents to the
archival email server.

In the remainder of the paper, we start by discussing
archiving requirements and messaging standards. We then
present the SaveMe naming scheme and the choices we
were faced with in building SaveMe on top of a messaging
infrastructure. Next, we discuss the database problems we
had to address in order to provide high performance
indexing for the archived documents and the way SaveMe
manages physical storage and CDs. We then present the
prototype implementation of SaveMe, we offer a
comparison with related systems and, finally, we conclude
our presentation.

2 ARCHIVING DOCUMENTS
An archiving system must provide economical storage for
large volumes of non-modifiable documents for extended
time periods as well as quick, easy and controlled access to
documents, both navigationally and declaratively (by words
and phrases, or by attributes like author and project).

2.1 Document Classification
Given the vast amount of stored documents in an archiving
system, document classification based on hierarchically
organized collections is important for two reasons: First, it
provides an easy and intuitive way to classify documents
into collections and sub-collections - this helps focus the
search into smaller domains. Secondly, it facilitates easy
navigation through the collection of documents, especially
when the criteria used to classify the documents in the first
place (i.e., the schema of the hierarchy) are not known.

There are many ways to organize documents into
hierarchies. An example of such a hierarchy might be the
organizational hierarchy of the corporation: business units,
centers, and departments followed by the various document
types. Another might be a first classification based on the
year the document was archived, followed by document
types, business units, centers, and departments. Note that a
hierarchy may change over time - think of departments
being renamed or split (new levels may have to be
introduced in the hierarchy) and centers being merged
(levels in the hierarchy may have to be merged). Also,
hierarchies need not necessarily be stored (materialized).
They could be computed views over the set of documents.

Navigational access is certainly a convenient way to search
for a document within small collections. However, for large
collections the capability for attribute-based and full-text
searches is needed. Attribute-based searching locates

documents based on values of attributes associated with
documents. Full-text searching finds documents based on
their content. Both kinds of searches can be performed on
the entire hierarchy of folders or on some particular sub-
tree.

2.2 Access Control
Archived documents need to be protected against
unauthorized usage. User authentication prevents
unauthorized usage of a system and its resources, and it can
be implemented using a user-name/password scheme. Once
a user has been successfully authenticated, the archival
system has to enforce access control restrictions on the
documents and the collections it manages.

Since hierarchies are used for document classification, it is
appealing to directly use them for enforcing access
restrictions in a way similar to the one employed by
operating systems on directories and files. This
organization also simplifies the assignment of default
access rights since each newly created object can inherit its
parent’s permissions; also, changes in the permissions at
some level in the hierarchy can selectively be propagated
down the hierarchy.

Another alternative is a role-based access control. Roles
are sets of permissions on objects. A user might have many
roles. Role-based access control separates the assignment
of access rights and permissions to roles from the
assignment of users to roles. Therefore, the security
structure can be kept essentially static, even though users
may change frequently over time.

3 INTERNET-BASED MESSAGING PROTOCOLS
The design of the SMTP protocol, used for transferring
messages, is based on the following model of
communication. In response to a user mail request, the
sender-SMTP establishes a two-way transmission channel
to a receiver-SMTP, which may be either the ultimate
destination or an intermediate. SMTP commands are
generated by the sender-SMTP and sent to the receiver-
SMTP, which generates replies in response to the
commands. The sender-SMTP negotiates with the receiver-
SMTP the recipient list of the message, one recipient at a
time. If the receiver-SMTP can accept mail for a recipient it
responds with an OK reply; if not, it rejects the recipient
(but not the whole mail transaction). When the recipients
have been negotiated, the sender-SMTP sends the mail
data.

According to the SMTP specification [9], email is sent to
mailboxes. The standard mailbox naming convention is
user@domain, a string that consist of the user to whom
mail is to be sent and a host specification. Although the
user specification part of an address is allowed to contain
several components (separated by dots, slashes, or other
characters), existing implementations do not map these
components to folders in some folder hierarchy.
Consequently, if there are subfolders under a user's
mailbox, these folders cannot be explicitly addressed using
SMTP.

The IMAP protocol is a method for accessing folders and
mail messages stored with an email server. In particular,

the protocol includes operations for creating, renaming and
deleting mailboxes, checking for new messages,
permanently removing messages, setting various flags
associated with messages, selectively fetching portions of
messages and searching existing messages. In IMAP, the
interpretation of mailbox names is implementation specific.
However, the case-insensitive mailbox name Inbox is used
to mean the primary mailbox of a user on a particular
server. IMAP supports hierarchies of mailbox names. Such
hierarchies must be left to right, using the same hierarchy
separator at all levels.

While existing IMAP implementations provide user
authentication, they provide limited or no access control
primitives at all. Once a user is authenticated and her
mailbox is selected, no access checks are performed on the
messages and folders under her mailbox. Extensions to the
original IMAP standard to include access control lists are
currently under consideration by the Internet community.
Under the IMAP ACL extension proposal [11], access
rights may be associated with folders. These access rights
specify the particular IMAP operations a given user can
issue with respect to a particular mailbox. The proposed
access rights allow users to: (1) see mailboxes but not
operate on them; (2) operate on the messages stored in a
mailbox, including searching and copying messages to the
end of the mailbox; (3) append data as messages to the end
of a mailbox; (4) create sub-mailboxes, and (5) obtain
administrative privileges.

Finally, the Lightweight Directory Access Protocol
(LDAP) [7] is used to provide efficient access to an X.500
directory. LDAP is used during SMTP and IMAP sessions.
In the former case, an LDAP directory is used for locating
the recipient(s) or messages and their mailboxes. In the
latter case, an LDAP directory is used for authenticating the
users logging onto the messaging system and for locating
the mailboxes of these users. In existing messaging
systems, new messages are delivered to the Inbox of a
recipient, and the particular folder hierarchy under the
Inbox is not represented in the LDAP hierarchy; rather, the
messaging server maintains it.

4 THE SaveMe ARCHITECTURE
SaveMe is built on top of a messaging server that supports
SMTP and IMAP. In SaveMe, archiving, retrieving, and
classifying documents into meaningful collections is
similar to sending email to recipients, retrieving messages
from folders, and classifying messages into folder
hierarchies. We first present the naming scheme used in
SaveMe and then discuss alternatives for implementing this
scheme using a messaging server.

4.1 Naming
SaveMe employs a hierarchical naming scheme that is used
for both identifying collections of archived documents and
providing access paths to them. Documents are archived by
storing them into folder hierarchies belonging to email
recipients. For example, a document sent to the address
A/B/C@saveme.com, where saveme.com is a SaveMe
server, will be archived in folder C, which is under folder
B, in the hierarchy rooted at A. The hierarchy structure is
maintained in a directory.

In a distributed system, multiple SaveMe servers can
manage the folder hierarchy. Servers can be added,
removed and reconfigured to accommodate load conditions
and business considerations, without breaking existing
applications and user habits. This is achieved by allowing
the naming components of a folder hierarchy to be resolved
by different servers, supporting local autonomy. In
particular, a name is logically split into a left part (prefix)
and a right part (remainder). A directory service maintains
information that maps a prefix to a SaveMe server
responsible for managing the remainder. We should note
that the two name parts may not consist of a fixed number
of components neither do they have to stay the same over
time. Given a name, its prefix is identified by the directory
service at the time the lookup is performed. A subsequent
resolution for the same name may return a different prefix
if the SaveMe servers have been reconfigured.

A1

B1 B3

C3

B2

D2 D3 D4 D5 D6D1 D7 D8 D9

C1 C4 C5C2

B4 B5

B1

C3

D2 D3 D4 D5D1

C1 C2

D6 D7

C4

ba

c

Figure 1. Two SaveMe servers manage the hierarchies
shown in a and b. These hierarchies are then conceptually
merged with a third hierarchy to form the global hierarchy
shown in c

Figure 1a shows a document hierarchy managed by a
SaveMe server on behalf of an organization. This hierarchy
is rooted at B1, and the levels below the root could
represent sub-units of B1 such as centers, departments,
employees or projects that have been undertaken in B1 at
some point in time. Figure 1b shows a hierarchy for another
organization rooted at C4 and managed by a second
SaveMe server. Assuming that at some point in time an
organization higher up than both B1 and C4 decides to
employ the archiving service for its own needs and for
some additional sub-units. The resulting configuration is
shown in Figure 1c. The first two servers still operate in an
autonomous fashion for the hierarchies they manage.
However, each one of them is able to resolve names that
correspond to the entire hierarchy. The three paths A1,
A1/B1 and A1/B5/C4 are the possible prefixes that will be
used for name resolution. Given a name, the longest prefix
from these three that matches a portion of the left part of

the name is the prefix of that name. For example, the prefix
of A1/B5/C5 is A1 while the prefix of A1/B5/C4/D7 is
A1/B5/C4.

The global name resolution can be implemented as follows.
The mapping between prefixes and SaveMe servers is kept
in a global directory that is updated every time servers are
added to or removed from the system. Changes to the
internal structure of each server do not need to propagate to
the global directory as long as the path of their root to the
root of the global hierarchy remains the same. Figure 2a
shows the global directory for the example shown in Figure
1c. Every node in the hierarchy may denote a prefix (i.e.,
the server that maintains the hierarchy rooted at that node).
However, some nodes, such as B5 in Figure 2a, are simply
intermediate paths to prefixes.

A1

B1

C3

D2 D3 D4 D5D1

C1 C4C2

B5

A1

B1

C4

B5

a

A1

B1 B3B2

D8 D9

C4 C5

B4 B5

A1

B1

D6 D7

C4

B5

b

S1 S2 S3

S3

S2

S1

Figure 2. Alternative name resolution implementations

An alternative implementation would require that each
server kept track of the prefixes for all other servers.
Figure 2b shows the directories S1, S2, and S3 where each
one includes replicated information for the roots of the
other two directories. This scheme avoids a lookup to a,
possibly remote, directory service in order to find the prefix
of a name. As with the global directory scheme, changes to
the internal structure of each directory need not propagate
to the other directories as long as the path of their root to
the root of the global hierarchy remains the same. The
replicated scheme is better than the one that utilizes a
global directory because the expected number of archiving
servers that participate in a global archiving system is small
(typically in the range of tens or even hundreds of servers
for big organizations).

4.2 Interface Architecture Alternatives
While electronic messaging systems provide numerous
facilities for sending, organizing and retrieving messages,
some of the implementations have shortcomings when it
comes to supporting two features that are of paramount
importance for electronic archiving: (a) addressable folders

anywhere in a folder hierarchy and (b) enforcing access
restrictions on individual folders. In particular, IMAP does
not provide sufficient access control mechanisms, and most
existing SMTP implementations do not support folder
addressability (see Section 3 for details). In this section, we
discuss four design alternatives based on the functionality
provided by the messaging system to overcome these
restrictions. The first three alternatives assume that the
messaging system does not support folder addressability
and access restrictions.

4.2.1 The Adjunct Approach
Here, users interact directly with the messaging system.
SaveMe manages the hierarchical relationships between
folders and enforces access control restrictions explicitly.

Since the messaging system does not support folder
addressability, the following alternatives can be used for
archiving documents into hierarchical folders:

• Every folder in the hierarchy corresponds to a (virtual)
user. For example, we could define a user mailbox
named a/b/c to store the folder a/b/c, another mailbox to
store a/b/d, etc. ;

• All documents are sent to a single predefined mailbox,
and the user specifies the actual folder path in the
subject or in a user-defined header attribute, e.g., X-
folder.

In both cases, SaveMe monitors the appropriate mailboxes,
extracts the folder path from the message/folder name and
forwards the message, if needed, to the server responsible
for managing this path.

Regarding IMAP-based navigation, email clients navigate
the folder hierarchies that are dynamically constructed by
SaveMe in response to user queries. Here, users send
queries to SaveMe (using a Web browser), and SaveMe
creates folder hierarchies2 for these users to store the
documents that satisfy the specified selection criteria and
any access restrictions that may apply.

4.2.2 The Proxy-with-Mail-Server Approach
Here, a proxy is placed between the users and the
messaging server, as shown Figure 3. During document
archiving, an email message containing the document is
sent to an address denoting a folder hierarchy. During the
recipient negotiation part of SMTP, the proxy looks up the
hierarchy specified in the address of the message in a
directory to determine its validity and locate the SaveMe
server responsible for this hierarchy. If the server is not the
local one, an SMTP session is established with the
appropriate remote proxy. Otherwise, the proxy executes
the following steps. First, it communicates with SaveMe to
get an appropriately formatted URL to use as the message
body, which will be stored with the messaging server. Next,
it accepts the body of the message and stores it in the cache
used for the CD jukebox. Finally, it establishes an IMAP
session with the IMAP component of the messaging server

2 Regarding the folders that are created, there are several
policies that may be used, e.g., provide each user with a
mailbox and store the answer set in the mailbox.

and stores the modified message in the appropriate folder
hierarchy.

Messaging Server

IMAP SMTP

Proxy

IMAP SMTP

Figure 3. The SMTP and IMAP proxy architecture
alternative

For accessing archived document, email clients establish an
IMAP session with the local SaveMe proxy. The proxy is
responsible for enforcing any role-based access control
restrictions that may apply to both documents and folders.
In addition, the proxy may access folder hierarchies stored
with remote servers, providing a unified view of the entire
document archival space. The proxy relays the IMAP
commands it receives from an email client to the IMAP
component of the messaging system. The IMAP proxy
enforces access control when the messaging server’s IMAP
server returns folder names and messages as responses to
commands issued by the email client. The IMAP proxy
removes from the list of returned documents the documents
that are not accessible by the given user.

4.2.3 The Proxy-with-no-Mail-Server Approach
As in the previous scheme, the proxy implements the
SMTP and IMAP protocols. However, in this approach the
messaging system is bypassed - SaveMe communicates
directly with email clients and their commands are
processed internally by SaveMe.

4.2.4 The Shared-Folders Approach
The last alternative, which we employ in our prototype
implementation described in Section 6, is based on the
assumption that the underlying messaging server supports
folder addressability and enforcement of access rights
through public (a.k.a. shared) folders. Several messaging
and groupware products, including Microsoft Exchange,
Eudora WorldMail and HP OpenMail support public
folders. Usually, the implementation of public folders
offers a full-fledged access control mechanism on a per
folder basis. Therefore, SaveMe can utilize the public
folder mechanism of the underlying messaging system for
implementing its naming scheme and enforcing access
restrictions. We should note, however, that shared folders
do not correspond to any internet standard and,
consequently, the messaging component of SaveMe may
have to be chosen from a small list of existing systems that
offer this functionality.

5 DATABASE PROBLEMS AND SOLUTIONS
In a typical archiving system used by an enterprise, we
have to deal with huge amounts of data. If one for instance
assumes that each employee of AT&T creates and archives
only a single document per working day, this leads to about
30 Million documents per year. To handle such an amount
of data we need database technology.

When a user archives a document, she may also provide
additional information to SaveMe including, for example, a
classification of the document to a node in the document
hierarchy, who authored the document, what project is the
document assigned to, or when will the document expire.
This information can be either mandatory or optional. The
detailed mechanism how a user provides this information
will be described in Section 6. In general, each document
has a specific document type. For instance, we might have
vouchers, purchase-orders and time-reports as document
types. Documents of a certain document type can occur at
arbitrary locations in the hierarchy. For example, a voucher
or time-report might be classified to an arbitrary project,
department, or person. Thus, classification and document
types are orthogonal. From a database perspective, this
means that for each document type, we can identify a set of
attributes that a user has to provide in order to archive
documents of this type. In case of a purchase-order this
may be “po_number”, “po_date”, and “po_amount”. We
can assume that the majority of the attributes of different
document types are disjoint. However, there are attributes
shared by all document types. Examples include
“person_who_archived”, “archive_date”, or “department”.

Thus, we have to address the following database problem:
we are given a large set of documents with attached
attributes, and each document should be classified in a
hierarchy. We need to organize the documents, both
logically and physically, so that operations such as retrieval
and deletions of documents are supported efficiently. We
do not consider updates because update operations are not
allowed in the legal domain of archiving. Since the most
frequently performed and time-critical operation in an
archiving system is query processing, we use database
technology for query processing, namely, schemas and
indexes. However, since the number of archived documents
is assumed to be very large, indexes require a significant
space and maintenance overhead. Therefore, we have to
choose our database schema with care.

Typically, users retrieve documents by either interactively
navigating the document hierarchy or by declaratively
specifying document selection criteria. The user interfaces
and the according processes are described in the next
chapter. We regard the following queries as typical queries
in an archiving context:

Q1: “Give me all documents that have been archived by
“Alexandros Biliris”, “Thimios Panagos”, or “Stefan
Berchtold” some time in “April, 98”.

Q2: “Give me all documents that contain the phrase
“Indexing in SaveMe”.

Q3: “Give me all documents which have been classified
“ATT/Research/Databases”.

Q3: “Give me all documents that have been archived in
“April, 1998” and classified “ATT/Research” of which the
project number is “SaveMe1” that contain the phrase “ha,
ha, hi”.

In this section, we address the following issues. First, we
show how the problem maps to a relational database design
and what additional functionality one has to provide.
Second, we address the problem of indexing a hierarchy of
objects and how relational technology can be tuned to
support this. Finally, we discuss problems and solutions
related to the physical organization of documents. The
main problem is that for legal reasons, documents have to
be stored on durable media such as optical disks or CDs
rather than magnetic disks. There are several technical
challenges one faces when dealing with devices of this type
such as large seek times, write-once-read-multiple
(WORM), or the fact that disks can only be written
efficiently in one single pass.

5.1 Efficient Declarative Retrieval of Documents
We use a relational database system to manage the
attributes associated with the archived documents,
including a pointer to their physical location. The actual
documents are organized in a file system on the CDs,
independently from the database system. The reason for
this is that the design of commercial database systems is
tightly bound to the properties of magnetic disks and, thus,
CDs or even WORMs are not supported appropriately. In
addition, SaveMe has to have control over the transfer of
documents to CDs and their clustering.

Also, we assume to have available a full-text search engine
such as Verity [12]. These search engines take a set of
documents, extract the text out of each document and build
appropriate indexes. Then, one can ask queries such as:
“Give me all documents that contain the word SaveMe”. As
a result, the engine returns a set of pointers to actual
documents. We do not go into further details of information
retrieval in this paper. Rather, we assume to have such a
search engine and treat it as a black box.

5.1.1 Database design
In SaveMe, a document type is a collection of attributes
that describe some information about a group of
documents. Obviously, given this definition, there is a
strong relationship between a database schema and the
document types. However, there are some technical
challenges. First, attributes can be either mandatory or
optional. Therefore, some of the attribute values may be
unknown to the system. Second, the semantics of a
particular attribute is unknown to the system. Furthermore,
for practical reasons, we cannot even enforce that attributes
are named uniquely. Thus, an attribute “x” might appear in
document type “1” and in document type “2” having a
different meaning. Third, the number of document types
might be in the order of thousands whereas the total
number of attributes might be in the order of tens of
thousands for a large system.

To avoid problems with the semantics of a query specified
by the user, we have two mechanisms. First, we provide a
user interface (see next chapter) that restricts the user to
meaningful queries. Second, if we get a query that contains

attributes “x” and “y”, we only return documents that are of
a type that includes attributes “x” and “y”. Third, when an
attribute value “x” appears in a query and “x” is not present
in a given document, although “x” is in the schema of the
this document type, the document is not included in the
result. This can occur when “x” is an optional attribute.

In SaveMe, a document is uniquely identified with a
document ID, which is attached to a document when the
document arrives in the system. This is the primary key of
the document. For simplification, we only allow a relatively
small number of document types (e.g. up to 1000), which
all are pre-defined by the system administrator. He is
responsible for maintaining the set of document types and
for assuring that all information relevant for searching is
present in the system. He is also responsible for keeping the
number of document types reasonably small.

Because we assume a large number of document attributes,
it is not feasible to use a single table for all document types.
This would lead to a very sparse table since most of the
attributes are unknown for most document types.
Therefore, we assign each document type to a single table
that includes the document type specific attributes.
Additionally, we keep a global table that contains the
attributes shared by all documents. Each table includes the
document ID as a primary key. Indexes may be placed on
any attribute according to the query mix and the size of the
table. If a new document type is introduced into the system,
the system administrator must create a corresponding table
in the relational database. As the number of document types
is proportional to the number of tables, this number should
be reasonably small. Figure 4 shows an example for the
SaveMe database design.

V o u c h e r
ID n o a m o u n t W h o w h a t
1 2 3 1 2 1 2 1 ,0 0 0 S b P c
… … … … …
… … … .. …

P u rchase_ o rder
ID K ey N et G ross H R id
12 4241 4 291 a1 2 ,24 0 2 ,400 12 32
… … … … …
… … … .. …

S hared_a ttr ibu tes
ID C lassif ied E m ail A rr ived D ep .
46 121 a /b /c B @ ab .cd 1 .1 .98 617 7
… … … …
… … … …

D ocum en t_ lo cation
ID C D /C ache C D no O ffse t n am e
46 121 C D 123 127 abc
34 713 C ache n /a n /a a /b /c
… … … … …

Index

Figure 4. SaveMe relational database design

5.1.2 Query Processing
Queries are generally issued via the interactive query
interface. The query interface performs some sanity checks
such as formats of numbers or if a string represents a
correct date. The query is transferred to the system as a set

of attributes together with query ranges. Additionally, the
query processor gets the information to what part of the
hierarchy the query is restricted and any search-strings that
must be contained in the resulting documents. In order to
process a query that arrives in the query processor, we have
to consider all three parts of the query specification:
selection of attributes, selection based on the classification
in the hierarchy, and full-text search. Thus, we split the
query into the three parts and handle them separately.
Finally, we merge the results.

We first perform the full-text search portion of the query.
As a result, we get a set of document IDs that point to
documents satisfying the query condition (with respect to
the full-text search). The selection based on the hierarchy is
more sophisticated. As described in the next section, we
map each node of the hierarchy to a string such that all
nodes in a sub-tree share a common prefix. Thus, the query
specification on a hierarchy can be transformed in a range
query on that string. Therefore, we simply include the
string as an additional attribute “Classified” in the table of
the shared attributes. For query processing, we now are
able to treat queries based on the hierarchy as range queries
(prefix queries on strings can be seen as range queries) on
the attribute ”Classified”.

As a next step, we determine the set of attributes that are
involved in the query. If the query specification includes
the hierarchy, we add the attribute “Classified” to this set.
Then, we remove all attributes from the set that are
contained in the Shared_attributes table. Finally, we
determine all tables that include all attributes remaining in
the set and generate a single SQL statement querying all
affected tables. As a result of such query, we again get a set
of document IDs. In the last step, we merge this set of
document IDs with the set resulting from the full-text
search and deliver the final result of the query back to the
user. This merge step is equivalent to the intersection of
two sets of document IDs. This can be done efficiently by
sorting or hashing. The user has the ability to either look-up
all the actual documents or to look-up only single
documents. To locate a document given a document ID, we
use the information stored in the Document_location table.

Note that an appropriate generation of indexes in the
relational database system is required as in any database
application. The creation of the optimal set of indexes for
the given query mix and database population is task of the
system administrator as mentioned above.

5.1.3 Efficient Searching in Hierarchies
Several ways to index objects that are organized in a
hierarchy have been discussed in the literature [8,10]. Most
of these proposals focus on a small and static hierarchy
where a user asks hierarchically restricted attribute queries.
The most common technique is to map the position of an
object in the hierarchy into a number such that all nodes in
a sub-tree are assigned a number from a known disjoint
interval. Then, search on a hierarchy is reduced to a range
query on this number. However, none of these proposals
works on a dynamic hierarchy. Thus, we propose the
following simple mapping to strings instead of numbers.

 Suppose that each node in the hierarchy is assigned a label
such that sibling nodes have different labels. If we want to
denote the position of a node N in the hierarchy, we simply
concatenate the labels on the path from the root node to N
adding a “/” to each label. Thus, we get a string of the form
“a/b/…/x”. If one wants to select all documents in a certain
sub-tree (rooted in a node S having a label “s”), one simply
has to query the database for all documents that have
assigned a position “a/b/…/s/*”. This translates to a range
[“a/b/…/s”, “a/b/…/t”). If a document arrives in the system,
the user will classify it. This means, it is assigned to a node
in the hierarchy. If we insert the document’s information in
the database, we compute the according string defining the
position of the document in the hierarchy as described
above and insert this attribute (“Classified”) with the other
attributes into the according tables. In order to process a
query based on the hierarchy, we first have to determine the
sub-tree to which the query is restricted. Then, we
determine the string defining the position of the root node
of this sub-tree in the hierarchy and query the database with
a range query as described above.

Note that the strings that identify a position in the hierarchy
may become very long. This however is not a particular
problem because modern relational database systems can
handle large strings easily and even the implemented index
technology (usually prefix B+-trees) is not severely
affected.

As an extension of our technique one might want to use
multidimensional index technology in order to answer
combined queries more efficiently. This however
corresponds to the problem of having a multidimensional
index structure storing both string and numerical attributes.
So far no such index structure has been proposed and we
think that this is a non-trivial task, which exceeds the focus
of the work presented in this paper.

5.2 Physical Storage
Magnetic disks are not an economical option for storing a
large number of documents over a long period of time.
SaveMe uses a CD jukebox as the underlying physical
storage device. A good physical organization of the data on
the optical storage system is essential for an efficient
document retrieval (search time and throughput), CD
storage utilization, and bulk-drop of expired documents.

Usually, optical devices contain between 100 and 1000
media (e.g. CDs), each storing about 650 Mbytes, keeping
a total amount between 50 Gbytes and a few TerraBytes. A
typical CD Jukebox has four reading and one writing
device and a single robot arm loading and unloading the
devices. In contrast to magnetic disks, the time to access a
new CD, which is not currently mounted in one of the
drives, might be very long (in the order of a minute). Thus,
each single retrieval process of documents should be
restricted to as few CDs as possible.

For the SaveMe prototype system, we have the following
storage hardware available: main memory in the order of 1
Gbyte, secondary storage on magnetic disks in the order of
10 Gbytes and optical storage (CD Worm) in the order of
100 Gbytes. We use the secondary storage to store the
database including all indexes and as a cache for the optical

disks. As CDs must be written in a single pass, we have to
cache 650 Mbytes on magnetic disc before burning a CD.
Thus, the available cache restricts the number of CDs that
can be written simultaneously. (Given the above amounts
of storage, this number is in the order of 15 disks.) Note
that, although most CD writers technically allow for more
than one write-process on a single CD, each additional
write costs a large space overhead. Furthermore, CDs
written in one step tend to be more stable over time.
Therefore, it is advisable not to make use of this feature.

In order to define a good strategy to assign documents to
CDs, one has to consider the following points:

1. Documents expire after an arbitrary period of time
such as 1 year, 5 years, 10 years, or never. Sometimes
expiration must force document deletion. For example,
financial organizations need to hold credit card data for
seven years, but legally they are not allowed to retain it
after that time.

2. We cannot assume that archiving of all documents
expiring in a certain year can be done in a short period
of time. Rather, documents expiring in 2007 will
probably be archived during 1997, 1998 and 1999.

3. In order to avoid the system to be filled with expired
documents and to maintain high storage utilization, we
have to provide a mechanism that allows us to discard
entire CDs if all the documents stored on the CDs have
expired. We call this deletion of a large set of expired
documents “bulk-drop”.

If one looks at all these technical restrictions, there are two
different criteria to optimize. On the one hand, we intend to
cluster documents on CDs according to their expiration
date and, on the other hand, we want to cluster documents
that are frequently retrieved simultaneously. Furthermore,
the query mix is unknown in advance and will definitely
change over the years such that it is unknown a priori
which documents will be requested together. Therefore, we
use the following solution. The cache is primarily
organized as a set of documents. Each document Di in the
cache is assigned a value vi that can be used to cluster the
document to disk. This value typically is the expiration date
of the document. However, it could also be a value such as
project number or even a combination of both. The
documents in the cache are sorted3 according to these
values. If the cache overflows, we have to select a subset of
the documents in the cache of size 650 Mbytes and write a
CD. The following algorithm selects the shortest subset
(with respect to the values vi) containing no more than 650
Mbytes by only making a single pass through the
documents stored in the cache.

ShortestSubset (documents D, values V, int N) {
current_size = 0; start = 0; end = 0;

while (current_size <= 650) // Find initial candidate
current_size += size(Dend);
end++;

3 In our implementation, we use a heap to maintain the sorted

set.

shortest_start = start;
shortest_end = end - 1;

while (end < N) // Find shorter subsets
current_size -= size(Dstart);
start++;
while (current_size <= 650)

current_size += size(Dend);
end++;

if ((Vend - 1 - Vstart) < (Vshortest_end - Vshortest_start))
shortest_start = start;
shortest_end = end - 1;

return (shortest_start, shortest_end);
}
For clarity of the presentation, we omitted some necessary
checks for array boundaries in the algorithm shown above.
The algorithm is a greedy algorithm and does not
necessarily lead to a globally optimal solution. However,
given the various technical restrictions, an optimal solution
is far from being feasible. Thus, the algorithm gives us a
sufficiently good solution. Furthermore, at any point in
time, we are able to reorganize a subset of documents by
collecting the appropriate documents from CDs and writing
new CDs. For this process of reorganizing n CDs, only a
single 650 Mbyte cache is required.

6 IMPLEMENTATION EXPERIENCE
In terms of implementation, our efforts have been focused
on prototyping SaveMe on top of two messaging systems:
Hermod, a messaging system being developed at AT&T
Labs [2], and Microsoft Exchange Version 5.5 [6]. Here,
we describe our implementation on top of Exchange.
Briefly, Exchange is an IMAP compliant server and, thus, it
is accessible from any IMAP compliant mail client. It
supports addressable public folders on which a rich set of
access permissions can be defined. In addition, the product
includes LDAP support and server-side scripting. The latter
allows running programs (written in JavaScript, VBScript,
C++, etc.) on the server as a reaction to events occurring in
public folders. The supported events include timer events
and actions like posting, editing, or deleting a message.

6.1 Archiving of Documents in SaveMe
As we discussed in the previous chapter, there are several
attributes associated with archived documents. SaveMe
derives some of these attributes automatically, such as the
date and time the document was archived, who archived it,
or the size of the document. To archive a document that
does not require attributes other than those that can be
derived automatically, one simply has to send the document
as an attachment to an email addressed to the public folder
that should contain the document. This can be done by
specifying the folder name in the any of the To:, CC:, or
BCC: fields of the e-mail.

For other types of documents, users need to specify values
for some pre-determined attributes. For example, an
expense report must specify the employee submitting the
report, a dollar amount, a manager to authorize the expense,
etc. This is accomplished with the use of electronic forms –
pages containing the fields that must be filled out for each
document type before the document submission. There is
one such page for each document type. These forms are

usually stored as regular email messages in the SaveMe
server. Therefore, in order to archive a document of a
particular type, the user replies to the appropriate message.
She fills out the form and attaches the document she wants
to archive to the message. Then, she sends the message to
the desired public folder.

All folders in the SaveMe server are being monitored by
the event service. The deposit of a message in a folder
triggers the Folder::OnMessageCreated event. As a
result of the triggered event, a server-side script associated
with this event is invoked and is passed the folder
identification and the identifier of the newly posted
message. The script first collects the properties of the
message (date, sender, etc.) that can be automatically
derived and then assigns a unique id to the document. Then,
it parses the body of the message and, if the body of the
message contains a form, it extracts all information
contained in the form and, finally, it populates the
appropriate database tables for this document. In addition,
the script also checks the completeness and correctness of
the submitted form by evaluating the information contained
in the form and verifying that all the required ones are
present. If any are missing or some constraints are violated,
it returns the message to the sender and removes the
message from the mail server.

Next, the script removes the message body, including the
attached document, from the email server. The document
itself is stored on a separate disk cache waiting to be
written out to a CD. Another body containing some
information about the document, together with a URL
pointing to a CGI script that is capable of loading the actual
document, replace the original body. Information about the
exact physical location of the document (on disk or CD) is
maintained in the Document_location table in the SQL
database used in SaveMe. A user can click on the URL and
retrieve the document at any point in time regardless of the
physical location of the document. As a next step, the script
checks if the cache is overflowing. If this is case, it invokes
the algorithm described in the previous chapter to write a
subset of the cache to a CD.

6.2 Retrieving of Documents in SaveMe
To retrieve a document or a set of documents that has been
archived in SaveMe, a user has two choices: she can either
navigate through the document hierarchy and manually
select individual documents, or she can declaratively
specify a set of documents. In the latter case, SaveMe
automatically retrieves the desired documents and delivers
the documents to either a folder in the mail server or
directly to the Web browser when the Web interface is
used.

In order to navigate through the document hierarchy, the
user only has to connect to the SaveMe server and browse
through the public folders with an IMAP compliant mail
client (such as the ones offered by Netscape and
Microsoft). After having found the right documents, the
user can retrieve a document by clicking on the URL
viewed in the message body. When the URL is de-
referenced, a CGI scrip looks up the Document_location

table to determine the physical location of the message and
the message is then returned to the user.

For declarative specification of the desired document(s), a
dynamic web interface is used. The search process is
divided into two steps: First, the right document type to be
retrieved is chosen4. Second, SaveMe creates an HTML
page that offers an appropriate query interface for this
particular type. The user then fills out the fields for the
attributes that have been defined for this document type.
Also, an option for full text search is offered. When the
user clicks on the submit button, the appropriate CGI script
is invoked. The entered values are checked for correct types
and other constrains. Then, the query is processed as
described in the previous chapter. As a result of query
processing, an HTML page containing the URLs of the
actual documents meeting the query conditions is created.
In order to transfer the documents to the client computer,
the user has to click these URLs.

6.3 Administration
There are four major administrative tasks that have to be
performed in order to maintain a SaveMe server: adding
and maintaining document types, maintaining the document
hierarchy, managing access rights, and database
administration. In order to add a new document type, the
system administrator has to store the form for this type with
the email server. She then has to add the appropriate tables
in the database and implement appropriate scripts to parse
the form and to make a sanity check on the information
delivered by the user. The maintenance of the document
hierarchy and management of access rights can be done
through the tools that Exchange provides to manage the
email server. The main task with respect to database
administration is to add and delete appropriate indexes to
the database.

7 RELATED WORK
This section summarizes some of the available document
management and electronic archiving systems that are
related to SaveMe.

Aegis StarView [1] is a document archiving system based
on proprietary storage and search architectures. In
StarView, documents can be archived using email and up to
seven user-defined attributes can be attached to a
document. StarView offers a restricted declarative search
capability for retrieving documents, using the storage date
as the primary retrieval category. Search queries can be
sent via email, and the matched documents can be delivered
to the user’s mailbox. StarView does not expose the
document structure to the users and, thus, it does not
support navigation. It is a client-server system that requires
the installation of client software on each user’s computer.

DocuLive [12], a Siemens Nixdorf document management
system, supports document classification in a folder
hierarchy, access control, searching, and distribution.
Access rights can be assigned to documents and folders
during creation, and they are based on organizational

4 One choice here is “all document types” to allow for

document type independent queries.

structure and roles as well as ad-hoc target groups. Search
queries can use either specific templates for the various
document attributes or the Verity full-text search engine. In
addition, users can customize the document attributes and
the order in which the answer set is going to be displayed.
Search results can be stored in mailboxes. However, unlike
SaveMe, the messaging system used in DocuLive is a
separate entity. Consequently, documents are copied from
DocuLive to the messaging system before sent and, on the
other hand, incoming documents have to be dragged from
the email client and dropped in the DocuLive desktop.

The Domino.Doc [4] document management system offers
a common set of tools across a comprehensive range of
content. Documents are stored in file cabinets and binders
(binders are contained in cabinets). File cabinets are built as
database files and they can be personal or shared. Each file
cabinet has an ACL associated with it. Members of an ACL
can be individual users, groups of users, and even
organizational roles. Unlike SaveMe, Domino.Doc does not
provide e-mail client interface to document retrieval.
Besides the Web browser, Lotus browser plug-ins and the
Lotus desktop client can be used for retrieving documents.
Similar to SaveMe, searching can be done by either
traversing the file cabinet/binder hierarchies or, by issuing
attribute-based or full-text search queries. Finally,
archiving is supported in Domino.Doc via user-specified
migration rules. Documents are moved to tapes or optical
jukeboxes and placeholders are left behind in the database.

Documentum [3] provides services for storing, accessing
and managing documents and business rules that apply to
them. It offers library services that profile, organize, and
store documents in cabinets and folders. It employs ACLs
(seven hierarchical permission levels are supported) for
users and user groups. Documents are stored in either
databases or file systems and are indexed by a full-text
retrieval engine. Document attributes are stored and
indexed in a RDBMS. The search language, an SQL
extension, supports full-text and attribute searches across
multiple documents.

All these systems use proprietary technology, specialized
desktop applications, and are mostly concerned with the
lifetime of documents. They are difficult to administer
because software has to be installed on possibly thousands
of computers. Using a document management system for
the pure purpose of archiving is overkill in terms of both
money and complexity of the system. In contrast, SaveMe
leverages existing messaging infrastructures and thus, it
does not require installation of new software on every
user’s desktop. In addition, individual users and IT
personnel do not have to learn a new technology, resulting
in substantial saving for an organization in terms of training
and administration.

8 CONCLUSION
Electronic archiving of documents is an increasingly
important task for most large enterprises. In addition, most
large organizations have already deployed an efficient
infrastructure for communication and collaboration by

using Internet technology. The idea of the SaveMe
architecture is to make use of this existing infrastructure for
archiving documents. As we have shown in the paper,
many tasks that have to be done in order to do archiving are
already implemented in the messaging infrastructure.
Therefore, we developed the SaveMe architecture based on
Internet standards and implemented a prototype of SaveMe
on top of a commercially available mail server. In this
paper we also addressed several technical issues. In
particular, we proposed a database design that is tuned to
handle large amounts of documents. We also proposed a
physical storage mechanism to manage a large collection of
documents on optical media such as CDs or DVDs.
Furthermore, we described the user interface and the
difficulties we had to overcome in the prototype
implementation of SaveMe.

REFERENCES
1. Aegis Star Corporation. The Aegis StarView System.

http://www.aegisstar.com/

2. A. Biliris, R. Gruber, G. Hjalmtysson, H. V. Jagadish,
M. A. Jones, M. F. McGroary, E. Panagos, M.
Rabinovich, A. W. Robinson, S. Spear, D. Srivastava,
D. Vista. Hermod: A Distributed Infrastructure for
Electronic Messaging. Submitted for publication.

3. Documentum. Technology and Architecture of the
Documentum Enterprise Document Management
System. http://www.documentum.com/

4. Domino.Doc: Document Management for the
Distributed Enterprise.
http://www.lotus.com/products/dominodoc.nsf.

5. M. Crispin. Internet Message Access Protocol –
Version 4rev1. University of Michigan, December
1996. RFC 2060. Available at
http://www.imap.org/docs/rfc2060.html.

6. B. Gerber. Mastering Microsoft Exchange Server 5.5.
Sybex, 1998.

7. T. Howes and M. Smith. LDAP: Programming
Directory-Enabled Applications with Lightweight
Directory Access Protocol. MacMillan Technical
Publishing, Indianapolis, Indiana, 1997.

8. T. A. Mück and M. L. Polaschek. A Configurable
Type Hierarchy Index for OODB. VLDB Journal 6(4),
312-332, 1997.

9. J.B. Postel. Simple Mail Transfer Protocol. Request for
Comments 821, August 1982. Available at
ftp://ds.internic.net/rfc/rfc821.txt.

10. S. Ramaswamy and P. Kanellakis. OODB Indexing by
Class-Division. SIGMOD Conference 1995, 139-150.

11. RFC 2086. http://www.imap.org/docs/rfc2086.html

12. Siemens Nixdorf. DocuLive Document Management
System. http://www.sni.com/

13. Verity. http://www.verity.com/products/whtpaper.htm

