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Abstract

Enabling Structured Navigation of Longform Spoken Dialog with Automatic Summarization

Daniel Li

Longform spoken dialog is a rich source of information that is present in all facets of every-

day life, taking the form of podcasts, debates, and interviews; these mediums contain important

topics ranging from healthcare and diversity to current events, economics and politics. Individuals

need to digest informative content to know how to vote, decide how to stay safe from COVID-19,

and how to increase diversity in the workplace.

Unfortunately compared to text, spoken dialog can be challenging to consume as it is slower

than reading and difficult to skim or navigate. Although an individual may be interested in a

given topic, they may be unwilling to commit the required time necessary to consume long form

auditory media given the uncertainty as to whether such content will live up to their expectations.

Clearly, there exists a need to provide access to the information spoken dialog provides in a manner

through which individuals can quickly and intuitively access areas of interest without investing

large amounts of time.

From Human Computer Interaction, we apply the idea of information foraging, which theorizes

how people browse and navigate to satisfy an information need, to the longform spoken dialog

domain. Information foraging states that people do not browse linearly. Rather people “forage” for

information similar to how animals sniff around for food, scanning from area to area, constantly

deciding whether to keep investigating their current area or to move on to greener pastures. This

is an instance of the classic breadth vs. depth dilemma. People rely on perceived structure and



information cues to make these decisions. Unfortunately speech, either spoken or transcribed, is

unstructured and lacks information cues, making it difficult for users to browse and navigate.

We create a longform spoken dialog browsing system that utilizes automatic summarization

and speech modeling to structure longform dialog to present information in a manner that is both

intuitive and flexible towards different user browsing needs. Leveraging summarization models

to automatically and hierarchically structure spoken dialog, the system is able to distill informa-

tion into increasingly salient and abstract summaries, allowing for a tiered representation that, if

interested, users can progressively explore. Additionally, we address spoken dialog’s own set of

technical challenges to speech modeling that are not present in written text, such as disfluencies,

improper punctuation, lack of annotated speech data, and inherent lack of structure.

We create a longform spoken dialog browsing system that utilizes automatic summarization

and speech modeling to structure longform dialog to present information in a manner that is both

intuitive and flexible towards different user browsing needs. Leveraging summarization models

to automatically and hierarchically structure spoken dialog, the system is able to distill informa-

tion into increasingly salient and abstract summaries, allowing for a tiered representation that, if

interested, users can progressively explore. Additionally, we address spoken dialog’s own set of

technical challenges to speech modeling that are not present in written text, such as disfluencies,

improper punctuation, lack of annotated speech data, and inherent lack of structure. Since summa-

rization is a lossy compression of information, the system provides users with information cues to

signal how much additional information is contained on a topic.

This thesis makes the following contributions:

1. We applied the HCI concept of information foraging to longform speech, enabling people to

browse and navigate information in podcasts, interviews, panels, and meetings.

2. We created a system that structures longform dialog into hierarchical summaries which help

users to 1) skim (browse) audio and 2) navigate and drill down into interesting sections to

read full details.



3. We created a human annotated hierarchical dataset to quantitatively evaluate the effective-

ness of our system’s hierarchical text generation performance.

4. Lastly, we developed a suite of dialog oriented processing optimizations to improve the

user experience of summaries: enhanced readability and fluency of short summaries through

better topic chunking and pronoun imputation, and reliable indication of semantic coverage

within short summaries to help direct navigation towards interesting information.

We discuss future research in extending the browsing and navigating system to more challeng-

ing domains such as lectures, which contain many external references, or workplace conversations,

which contain uncontextualized background information and are far less structured than podcasts

and interviews.
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Chapter 1: Introduction

Spoken dialog is a rich source of information that is present in all facets of our everyday lives.

Speech is a medium that is native and relatable - we communicate and share ideas, debate topics,

and express ourselves through speech. Take for example a televised political debate where two

opponents engage in heated discussion over policy regarding immigration, or in a different set-

ting where a company is discussing its quarterly earnings and its future direction through a panel

call; they both contain rich information with varying degrees of individualized relevance towards

different listeners. Similar speech also extends to many spoken settings ranging from city coun-

cil meetings, project discussions, doctor’s appointments, seminar based commentary, and dictated

instructions. Undoubtedly, conversation and dialog is content rich and diverse. Creating such lan-

guage applications for navigating and modeling speech for more efficient understanding has many

direct and immediate user benefits.

One of the largest challenges with longform audio is the difficulty in navigating and exploring

the medium [1, 2, 3]. Speech is intrinsically disorganized and lacks traditional structure such as

paragraphs, topic sentences, and proper punctuation that is present in traditional prose and written

text. Such information cues that normally can be used to assist users to more quickly identify

relevant information are non-existent. Furthermore, speech can often be non-informative as is in

the case of greetings and banter, resulting in unnecessary details that are not necessary or pertinent

towards understanding the underlying content.

To demonstrate the problem with navigation in a real world setting, consider an example where

you’re in a teaching position at a learning institution. A colleague emails you a 30 minute YouTube

video containing a recent interview on diversity and inclusion. This is an area that you’re not an

expert on, but as an educator, is something you’re interested in. This is something that you might

find interesting, but not to the extent that you’d be willing to invest 25 minutes into. What’s more

1



is that there is no easy way to skim through and navigate through the interview’s content to find

parts that you find interesting. Some strategies that you might be left with include:

1. Randomly skipping throughout the video.

2. Listening for a few seconds periodically and making an educated guess on what you think

each segment discusses.

3. The obvious method of simply listening through the entire interview (potentially in a sped

up manner).

4. Obtaining a transcript (presented without any punctuation, capitalization, or paragraph for-

matting) and reading through.

For options 1 and 2, this could lead to frustration due to missed information and the lack of

user awareness in navigating the interview content - consider the user’s navigation choice in option

3, this somewhat guarantees no missed content and provides an indicator as to how far the user has

progressed into the interview’s content. The tradeoff in option 3, however, is too much of a time

investment from the user and a cognitive overload if listened to on a sped up timeframe.1 Lastly,

in option 4 there is no structure nor punctuation as to how information is presented, which in turn

does not offer a clear navigation procedure. Clearly, there exists a need to provide a tool or system

that helps users more easily skim audio content within an audio file and quickly identify parts that

they are interested in.

From the brief example, it becomes immediately apparent what criteria must be met to have a

successful speech content navigation system:

1. Importance and Relevance: Content needs to be succinctly presented in a manner that

preserves the most important and salient information. Irrelevant information (such as filler

sentences in speech) should be summarized out.

1For the purposes of this work we do not consider this option, we use automatic speech recognition to distill audio
into a text transcript and then operate on said transcript for the entirety of this dissertation. References to speech,
longform spoken dialog, audio, and etc. are to their transcribed (transcript) form.
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2. User Tailored: Information that is interesting to one user may not necessarily be interesting

to another user. The proposed system should enable present information in a manner that

supports user browsing freedom.

3. User Needs: Different users have different browsing objectives, ranging from a quick look-

through to an in depth structured exploration. The proposed system should be able to support

different styles of browsing.

With these criteria in mind, this thesis addresses the application need by developing a system2

that utilizes automatic summarization and speech modeling to structure longform dialog to present

information in a manner that is both intuitive and flexible towards different user browsing needs.

Leveraging summarization models to automatically and hierarchically structure spoken dialog, the

system is able to distill information into increasingly salient and abstract summaries (which can be

intuitively thought of as a long summary, medium summary, and short summary), allowing for a

tiered representation that, if interested, users can progressively explore.

Additionally, when designing such a system, we need to contemplate how users intuitively

browse and search for information to satisfy an information need by examining different patches

of information. This is described by a concept in human computer interaction known as informa-

tion foraging [4], which we use to guide our system design. Consequently, our system’s summaries

of longform spoken dialog mimic semantically cohesive "patches" of information that can be indi-

vidually browsed. With separate patches, the system is now able to impose a hierarchical structure

on the underlying longform speech content.

The hierarchically presented nature of the summaries affords flexibility by allowing users to

be in control of what information they read at a high level and what information they choose to

consume in greater detail. We aim to structure and format spoken dialogue in a way that allows

users to fit the cognitive tasks of information foraging with the following concepts:

1. The system begins with providing an overview of the different topics discussed in a long-

2For reader clarity, any time this dissertation mentions something along the lines of "(our) system", it is referring
to the overall longform speech browsing system that we developed.
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form audio file. By reducing the total amount of information and abstracting it into distinct

concepts, users can quickly scan for pertinent high level information.

2. When a user finds interesting information and wishes to learn more, the system needs to

support user freedom by allowing the user to drill down into the identified topic for a

deeper dive into the corresponding finer details.

3. However, if at any point, if the desired information is not found in the user’s particular

navigational path, the system also needs to support the user in popping back up. Users must

be able to reorient themselves to find the relevant information that satisfies their information

need.

4. Creating information cues through information estimation heuristics to provide users with

means to inform and guide content browsing.

By supporting these actions, we are able to present longform dialog content to users in a man-

ner that not only enables navigation, but also reflects tailored user information goals. Simultane-

ously, we address technical speech domain characteristics (such as disfluencies, incorrect sentence

boundaries, and word recognition errors) and the unique challenges they pose towards speech and

language processing.

1.1 Thesis and Dissertation Contributions

Concisely stated, this dissertation proposes using HCI principles of information foraging to

design a system that leverages automatic summarization to structure longform audio transcripts

and create information cues to enable navigating and browsing of longform spoken dialog. This

contributions of this dissertation are as follows:

First, we apply the HCI concept of information foraging to longform speech, enabling people

to browse and navigate information in podcasts, interviews, panels, and meetings. Before even de-

signing a system for navigating and browsing of longform audio, it is important to understand how
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people browse for information. People do not browse linearly, rather they “forage” for information

similar to animals sniffing around for food, scanning from area to area. The underlying hypothesis

is that users have some innate foraging mechanisms that guide them in a rational and goal-driven

manner through different levels of specificity [5]. When searching for relevant information, users

rely on the concept of “information scent” which they use to estimate how much useful information

is contained on any given path, and how to adjust and reorient themselves as necessary to retrieve

relevant information. A successful system that allows users to effectively browse longform speech

content must consider and incorporate user browsing habits.

Second, we accordingly introduce an approach that recursively applies automatic summariza-

tion to create hierarchical summaries, thereby condensing longform dialog to help users to 1) skim

(browse) audio and 2) navigate and drill down into interesting sections to read full details. The

system employs abstractive summarization language models to recursively process and structure

longform dialog into summaries containing multiple levels of detail, with the most high level sum-

mary (or short summary) containing only the most important key concepts and the most detailed

level summary (or long summary) containing additional information, such as supporting facts to a

central point. The system’s user interface presents users the summaries in a hierarchical fashion,

leading the user’s attention to the shortest summaries, presented in a column. These can then used

quickly skim all the high level pieces of information discussed. Because the short summary retains

the segment’s most salient information, it gives the best indication to the user on whether or not

this segment contains the information that the user wants; if the user decides the information is in-

teresting, they can proceed to read subsequent levels of detail until their "information need" [4] (in

other words, how content is the user with their current understanding of the presented content) is

met. The user interface also provides additional information cues [6], such as visual indicators es-

timating the amount of content contained and captured in summaries to better assist user browsing

and navigation decisions.

Third, we created the first human annotated hierarchical summarization dataset, providing

gold standard intermediate text level summary annotations. This is then used to quantitatively eval-
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uate the effectiveness of our system’s performance against these human written gold summaries. To

the best of our knowledge, no abstractive summarization datasets exist for longform speech, much

less annotated with multiple levels of summarization detail. To provide additional levels of an-

notations, we create a hierarchical abstractive summarization dataset and protocol (complete with

an live open-sourced user interface annotation tool3), where longform text is recursively summa-

rized to create progressively broader summaries in a bottom up manner. In addition to user studies

and qualitative evaluation, this heirarchically annotated dataset4 facilitates quantitative evaluation

our system’s summary quality performance for various summary detail levels with conventional

metrics such as ROUGE [7].

Fourth and lastly, we introduce a suite of dialog oriented processing optimizations to improve

the user experience of summaries: enhanced readability and fluency of short summaries through

better topic chunking and pronoun imputation, and reliable indication of semantic coverage within

short summaries to help direct navigation towards interesting information. Unlike written text,

transcribed speech is far more noisy and difficult to process and model; speech contains informal

language and disfluencies such as hesitation and vocal fillers, and discussions frequently jump

from topic to topic. These speech specific attributes makes it challenging for summarization lan-

guage models to semantically comprehend and generate high quality summaries, leading to user

frustration when extra time and energy is spent trying to comprehend the AI generated summary.

By specifically modeling speech noise effects and correcting input transcript text before summa-

rization, the system is able to minimize detrimental speech effects.

1.2 Dissertation Overview

This section presents an outline of the dissertation by chapters.

3https://resubstrate.github.io/lex-client/index.html#/login
4The full scope of this dataset can be of wide interest to the overall NLP community and not immediately relevant

to this thesis. We plan on additional development for a this dataset.

6

https://resubstrate.github.io/lex-client/index.html#/login


1.2.1 Related Work

The Related Work (Chapter 2) is used to properly contextualize and situate this dissertation and

its contributions in the cross section of Human Computer Interaction (HCI) and Natural Language

Processing (NLP). Specifically, we examine principles from user browsing habits (information

foraging) and how to apply them when designing a system to help users browse and navigate

longform dialog.

1.2.2 Hierarchical Summarization for Longform Spoken Dialog

Chapter 3 presents the first proof of concept longform audio browsing system, herein referred

to as "System 1"5 and proposes the foundational framework of using automatic summarization to

decompose and presenting longform spoken audio in a hierarchical nature. Specifically, Chapter

3 discusses initial speech and language modeling challenges in developing the proof of concept

audio browsing application.

1.2.3 Creating a Hierarchical Summarization Dataset for Longform Spoken Dialog

Chapter 4 discusses the development of a summary annotation tool and annotation protocol for

the creation of a hierarchically annotated abstractive summarization dataset; this is required for

the quantitative evaluation in Chapter 4. Chronologically, this data was obtained after work and

development in Chapter 3 had finished, meaning longform hierarchical summaries were not yet

available for use at the time.

1.2.4 Improving and Evaluating the User Browsing Experience in Summarization Systems

Chapter 5 covers an iterated and improved longform audio browsing system, herein referred

to as "System 2", addressing and improving upon technical shortcomings in System 1 (Chapter

3) that affect usability. System 2 also introduces additional features to improve information cues

5System 1 exclusively refers to Chapter 3’s instance of longform audio browsing system, while "system" refers to
the overall concept of a longform audio browsing system.
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and better assist user browsing. In particular, Chapter 5 emphasizes evaluation: quantitatively

evaluating System 2’s technical improvements on generated summary quality and qualitatively

studying user interactions on browsing and skimming efficiency with System 2’s.

1.2.5 Conclusion and Future Work

Chapter 6 summarizes this dissertation’s contributions, discusses limitations of the longform

audio browsing system, and suggests future work directions.
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Chapter 2: Related Work

This section discusses the relevant subsets of Human Computer Interaction (HCI) and Natural

Language Processing (NLP) fields this dissertation builds on top of through the lens of the spoken

dialog (speech) domain. We begin by providing the necessary background theory on information

foraging and related work describing how individuals browse for information. We then cover

current works on media browsing systems and how automatic summarization is currently used in

HCI applications.

On the NLP portion, we provide a brief overview on automatic speech recognition (ASR)

systems and provide a discussion on their downstream effects towards language modeling. Next,

we provide background on existing abstractive summarization architectures (with an emphasis on

hierarchical and recursive abstractive summarization), summarization datasets, and summarization

quality evaluation.

The vast majority of existing work in NLP summarization field is focused on developing and

improving summarization language model quality and performance, neglecting research in down-

stream user applications and additional language model use cases beyond condensing text. How-

ever, by applying information foraging principles from HCI to longform speech, we gain valuable

insights as to how automatic summarization can be leveraged to create a novel longform speech

content browsing system.

It is important to note that our longform audio browsing system simply uses an abstractive

summarization LM as its backbone in the overall system. Technical LM performance improve-

ments (i.e. through new architectures or training regimens) are not the primary focus of this work

and outside the scope of this dissertation, though improved LM performance directly translates to

a better longform audio browsing experience to the user due to improved summarization quality.
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2.1 Notation and Terminology

Throughout the technical portions of the dissertation we will symbolically refer to text at dif-

ferent levels (sentences, words, etc.) and use this section to set the standard notation and define

terminology used throughout this dissertation.

• Transcript: Using ASR speech-to-text to transcribe an audio file (i.e. a .mp3 or .flac) outputs

a text transcript that can then be then used as in input to downstream applications (such as

summarization).

• Gold Standard and Gold Label: A reference to a summary that is human authored and as-

sumed to be the perfect benchmark. Colloquially this can also be referred to as the reference

summary. In the case of ASR transcripts, a gold standard or reference transcript is free of

word transcription errors.

• Language Model: Though a language model (abbreviated LM or sometimes referred to as

just "model" given sufficient context) typically refers to a probability distribution over words,

we refer to them as exclusively large scale transformer architectures [8] that have been pre-

trained on a large corpus and can be further used for additional NLP tasks. For the scope

of this dissertation, we typically use language models in the context of summarization; for

example a summarization language model is a LM that has been adapted for summarization

use. Language modeling refers broadly to any sort of NLP task (i.e. machine translation,

summarization, classification, entailment, etc.).

• Indexing: given example variable 𝑠, indexing will be usually expressed using subscript 𝑠𝑖

to denote an element in a set. If another index is required, superscript 𝑠𝑘 will be used.

Superscripts 𝑠𝑘 can also be used to signify membership to particular class or group (e.g. 𝑠𝑘

belongs to class 𝐾 and 𝑠𝑜 belongs to class 𝑂). Variable 𝑛 will be used to denote the last

element in a set, such as (𝑠1, 𝑠2, ..., 𝑠𝑖, ..., 𝑠𝑛). Indexing will be used when specific references

are needed, otherwise 𝑠 ∈ 𝑆 is used.
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• Word 𝑤 is a singular token and is treated as the lowest level unit for the scope of text process-

ing in this thesis. For simplicity, though words can be split into multiple tokens depending

on their tokenization schema [9], we always assume one word is exactly one token.

• Sentence 𝑠 is a sequence of words, where 𝑤 ∈ 𝑠.

• Capital variables (e.g. 𝑆) refer to a list of sentences 𝑠, where 𝑠 ∈ 𝑆. The grouped sentences

are considered a structure. There are several ways 𝑆 can be interpreted and referred to, all of

which are a list of sentences:

1. Source text: this is the set of input sentences that is passed into a summarization model.

When referring to training and test data, all the inputs can be referred to as "source"

and will usually be denoted with an 𝑆. In addition to source text, the input (to be

summarized) can also be referred to as a "document" and input sequence.

2. Target text: this is the set of text sentences generally on the output side. Reference text,

text that usually consist of gold standard human authored summaries, is an example of

a target sequence. This is colloquially referred to as the "targets" in text generation and

will usually be denoted with a 𝑇 . Output text (below) is also an instance of target text.

3. Output text: also known as the hypothesis, this is the set of sentences outputted by a

text generation model. In other words, this is the summarization model produced text

summary, usually denoted with a 𝐻.

• Bold faced capital variables (e.g. T indicating a collection of a list of segmented (defined

further down) sentences, such as a segmented audio transcript) indicate the the highest rank

of items unless otherwise specified. This will refers to all segments 𝑆, where 𝑆 ∈ T.

• Ordinals and hierarchy: 𝑤 ∈ 𝑠 ∈ 𝑆 ∈ T shows the complete progression of a word in a

sentence in a segment in a transcript. Note that we can omit levels when referring to this

hierarchy. For example, 𝑤 ∈ T refers to all words in the transcript, 𝑠 ∈ T refers to all

sentence in the transcript, and 𝑤 ∈ 𝑆 refers to all words in the segment (list of sentences).
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• Text Segmentation: where a text is broken into semantically topical segments (or other infor-

mation units), typically preserving and using existing sentence boundaries (.!?). The follow-

ing example uses a toy illustration and to cover notation used in a combined setting.

Consider a list of 5 sentences 𝑆 = (𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5), where each sentence has a word count of

30 words ( |𝑤𝑠𝑖 | = 30 ∀𝑠𝑖 ∈ 𝑆) with the goal of segmenting 𝑆 into segments, each containing

no more than a total 65 words. Concretely stated, 𝑆 now becomes S = SEGMENT(𝑆)1 as 𝑆

now becomes a collection of segments (each is a list of sentences) and |𝑤𝑆𝑖 | ≤ 65 ∀𝑆𝑖 ∈ S.

1. Topic segmentation [10]. Sentences are typically grouped according to their semantic

similarity and can be thought of as a clustering problem [11]; a segment can also be re-

ferred to as a cluster. If 𝑠1, 𝑠2 discussed dogs, 𝑠3 discussed pet food, and 𝑠4, 𝑠5 discussed

pet care, a resulting topic segmentation of these sentences would be: 𝑆1 = (𝑠1, 𝑠2),

𝑆2 = (𝑠3), 𝑆3 = (𝑠4, 𝑠5) and S = (𝑆1, 𝑆2, 𝑆3).

2. Preserving sentence boundaries. When creating a segment of sentences, we do not split

sentences apart (unless otherwise noted). If 𝑠3 had also discussed dogs and is now

semantically related to 𝑠1, 𝑠2 would result in 𝑆1 = (𝑠1, 𝑠2, 𝑠3) and would not a valid

segment (|𝑤𝑆1 | = 90). Thus 𝑠3 can either (i) be added to 𝑆1, removing either 𝑠1 or 𝑠2 and

placing either in a different valid segment 𝑆𝑖 : 𝑖 ≠ 1, preserving sentence boundaries or

(ii) split between sentence boundaries and be grouped where the first 5 words are now

contained in 𝑆1 = (𝑤𝑠11 , ...𝑤
𝑠1
15, 𝑤

𝑠2
1 , ..., 𝑤

𝑠2
15, 𝑤

𝑠3
1 , ..., 𝑤

𝑠3
5 ), partially truncating 𝑠3.

2.2 Human Computer Interaction

2.2.1 Information Foraging Background

Information foraging theory [4] is a concept from HCI that describes how users navigate and

browse a large dataset to satisfy an information need. When browsing for information, people do

1Functions on variables in equations will be abstracted away when possible and referred to just as an operation.
For example calling SEGMENT(𝑆) means segmenting the set of sentences 𝑆.
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Figure 2.1: The typical restaurant menu best demonstrates information foraging and infor-
mation browsing. Menus are a good example of how information can be optimized for browsing.
When a patron is at a restaurant, they typically do not already know what to order, but have a rough
sense of what they like. This puts the patron in a browsing mindset, where information cues and
structure such as subheadings are immensely helpful. They can quickly indicate what the different
categories of menu items are, without requiring the reader to sift through unnecessary and irrele-
vant details.

not search linearly. Instead, people "forage" for information, similar to how animals sniff around

for food, scanning from area to area (where each area is a possible source of information in the

aforementioned hypothetical dataset for this analogy). Clearly, it does not make sense for an animal

to stay and explore an area without an obvious indication that it contains food; the animal should

move on to greener pastures.

Similarly, when browsing, people mentally consider the trade-off between how much infor-

mation can be gained from a particular source of information versus the cost (i.e. time spent) of

exploring and extracting information from said source. When considering the time cost of brows-

ing [12], they generally fall into two categories:

1. Between-patch: where the user spends time determining what information sources are rel-
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evant. For example, when researching a subject you may compile a list of all the websites

that may be relevant.

2. Within-patch2: where the user spends time investigating each of the patches of information

to extract information from them.

People tend to investigate information sources (areas) that minimize both of these time costs and

maximize the information gain as a trade off. In other words, people try to obtain as much relevant

information in as little time as possible.

An example that demonstrates users in an information foraging context is when one visits a

restaurant and is handed a menu (Fig 2.1). Typically, the customer does not know precisely what

to order, but has a general idea of what kind of food they like. To explore the restaurant’s offerings,

customers scan (forage) areas and portions of the menu. When the customer finds a particular

section that plausibly contains an item that satisfies what they want (information need), they can

dive deeper to find a specific menu item to order.

To help the reader navigate, the menu has large header sections that signify different item

categories, followed by subheading titles and smaller details of each item. Each of these section

headings provides clear indicators to a customer on the finer details of the menu’s content. Based

on these information cues, a customer is able to estimate how relevant the food items in a particular

section is towards what they may want to order. This concept is known as information scent,

[13] which describes what people use to imperfectly estimate how much relevant information is

contained on their current exploration path, and how to adjust and reorient themselves as necessary

to retrieve relevant information.

There are two aspects of information scent that are especially important to understanding user

browsing behavior:

1. SNIF-ACT [5] keenly observes how information scent is incorporated into a person’s thought

process. Users would leave their current exploration path if the information scent diminishes
2For the scope of this dissertation, our speech browsing and navigation system primarily focuses on the second

category of within-patches where the focus is to help users browse and navigate audio within a particular information
source (such as a podcast or interview) as opposed to finding different podcasts and interviews to listen to.
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below a certain threshold. This generally categorizes how people browse for information,

as individuals browse a source for information and they realize that the information is now

no longer relevant to their browsing interests, they typically proceed onto the next source or

patch of information.

2. Next, Pirolli [13] theorizes that if information scent cues are perfect then the user will make

no navigation errors and will proceed directly to the desired information. In other words,

when browsing, if each navigational decision is made on perfect information, that is to say

each information cue or indicator perfectly aligns with the individual’s interpretation of what

the subsequent information is and provides, the user will have no difficulty in finding the

information they desire.

In most cases, people do not know in advance how much information a particular source of

information has and how much time it would take to extract said information. However, people

are able to draw upon any information cues the current source of information emits to make their

browsing decision. How people make sense of the information cues that are present is known as the

concept of sensemaking. Sensemaking [14] describes the process of searching and forming useful

representations from data. When users give meaning and rationalize information, they draw upon

their own collective experiences. As a result, the final understanding an individual arrives at may

vary from a different individual’s and is relative. It is also important to point out that the concept

of information scent is relative to an information need [15]; the same source of information can

give off different information scents for different information needs. For example, if a customer

is in the mood for sweets and desserts, then the main course section would have a non-existent

information scent to this particular customer, as it is very likely that sweets and desserts are not

served as main courses. Conversely, the main course section will emit a large information scent to

a customer looking to order a filling meal. It follows that different users have different user needs,

demonstrating how information scent is also relative to users.
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2.2.2 Information Foraging Implications Towards Longform Spoken Dialog

Principles in information foraging describing how users browse information are universal and

provide valuable insights that can be applied towards designing a system to help users navigate and

browse speech.

Information Patches and Structure. First and foremost, speech content should be structured

in a manner that is conducive towards browsing, motivating the system’s hierarchical presentation

of information and segmenting content into topically distinct segments, or "information patches",

which are then presented in a linear sequential fashion. By breaking up and structuring audio and

longform dialog transcripts into manageable information patches, users are able to individually

assess, patch by patch, what is relevant to their current information need and whether or not to

adjust their navigational path.

The system’s hierarchical presentation allows users to investigate progressively in more and

more detail, giving the user multiple stages to opt out of their current navigational path and to

stop browsing when their information need is satisfied. This can be interpreted as an optimization

for reducing user’s within-patch information extraction time. Encouragingly, foundational work

in information foraging [16] supports the notion that structuring information (from a document)

into hierarchical clusters is an effective user interface representation that is conducive towards user

browsing and navigating. In a different study discussing the effects off text structure on navigation

performance [17], researchers found that subjects tend to perform better navigating text that is

presented in a linear manner (as opposed to non-linear) whereas a hierarchically structured text

experiment fell in between the two. This study emphasizes the importance of maintaining an

aspect of linearity to when presenting browsing content.

Information Scent. Next, the system needs to provide a reliable and accurate way for users to

estimate an information source’s content (information scent), articulating the requirement for in-

formation to be represented in a manner that is both concise and indicative of its actual information

content [12]. Now, it becomes apparent how automatic summarization can be leveraged.

By extracting salient and representative information of different portions of speech transcripts,
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the summaries now fit the additional function of being representative indicators of a portions of

a speech transcript’s underlying content. In other words, summaries can be used as waypoints

to help users navigate longform audio. This can be interpreted as an optimization for a user’s

between-patch browsing time. It is important to also observe the opposite situation; when sum-

maries are used as a navigational vehicle and provide no information cues (i.e. the summary is

unintelligible and/or confusing), it will cause the user’s browsing strategy to devolve into random

choices; highlighting the importance of coherent and accurate summary text generation.

2.3 Applications (HCI)

2.3.1 Systems for Navigating and Browsing Media Content

Various tools already exist to assist users with navigating and browsing different forms of

media, primarily concerned with videos and the audiovisual domain. In this section we break

down prior research in audio (text transcripts) and visual media (video) domains.

Audio and Text Navigation. To the best of our knowledge systems designed to navigate and

browse strictly spoken dialog (and text transcripts) have primarily been explored in older work

(pre-2000s). Many of the language processing techniques common today were not yet available

(primarily due to advances in transformer architectures [8]) which limited automatic processing

and modeling capabilities.

SpeechSkimmer [18] is an early tool that lays the foundation in addressing the challenges and

difficulties of navigating and browsing speech, expressing how "there is no natural way for hu-

mans to skim speech information because of the transient nature of audio—the ear cannot skim in

the temporal domain the way the eyes can browse in the spatial domain"3. SpeechSkimmer devel-

oped a system that enables users to quickly skim through an audio file by listening to compressed

segments and choose to continue to listen to compressed segments in more detail, demonstrating

the effectiveness of hierarchically structuring audio. Notably, the system is paired with a hard-

3Taken from Section 1. Introduction of SpeechSkimmer: A System for Interactively Skimming Recorded Speech
[18].
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ware touchpad with begin, skim, no pause, normal controls to allow users to listen

and navigate audio in forward and backwards temporal directions. To initially find skimmable

sound bites, SpeechSkimmer leverages natural dialog structures such speakers pauses and pitches

as a basis for segmentation and compresses the audio in a manner that retains intelligibility and

voice quality. It is important to note that SpeechSkimmer operates entirely on the audio domain,

without any text, and is a system that assists with within-patch navigation.

Another example of an early work focused on helping users navigate speech is SCAN [19], a

prototype speech retrieval and browsing system that aims to help users navigate poor automatic

transcriptions and retrieve multiple speech transcripts. Unlike SpeechSkimmer, SCAN operates

on the text level with automatic speech transcription and assists with between-patch navigation.

Critically, there is a difference between systems such as SpeechSkimmer and SCAN where the

former is focused on enriching within-patch navigation and the latter addresses between-patch

navigation. Other between-patch systems (i.e. a recommender system) help a user browse and

decide between multiple audio files (podcasts) to listen to [20, 21, 22] based on their preferences.

The idea of between-patch browsing and exploration is also applied to other domains, such as news

[23]. In News Rover [23], the system structures and links multiple news sources in a unified user

interface.

Navigation systems [24, 25] also attempt to visually represent audio content and investigate

another angle of helping users navigate audio, particularly meetings, by presenting concepts dis-

cussed as timelines and concept maps that encapsulate the the underlying speech content. By

identifying salient elements of the meeting content and presenting them through an augmented

storyline visualization, MeetingVis [24] helps users better recall and reflect on portions of the

meeting quickly. This approach is also extended beyond communicative and expository audio;

MusCat [26] is a system that helps users browse through music (non-informative content) audio

through abstract visual image representations. The system reduces music files into features and

hierarchically clustering them to generate abstract pictures, MusCat helps users associate music

features to images, enabling users to browse audio visually.
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Visual Media Browsing and Navigation. Videos can be defined as a "document" containing

a succession of images over time, usually with additional modalities such as audio and text. For

similar reasons to audio, browsing and navigating video is also challenging for users. However,

unlike audio, visually browsing content is possible (ranging from browsing videos such as single

and multiple thumbnails, playable video segments, to video collages [27]), prompting a different

set of strategies with respect to how a user can navigate and browse audio. Accordingly, a host of

different systems and methodologies have been developed to easily navigate through videos and

movies by navigating to the video clip and allowing users to interpret content [28, 29, 30].

Video summarization [31] [32] as means for skimming and browsing for information [33] is a

popular domain and active area of research. Early work [34] on video summarization automatically

generated concise video summaries as a way for fast skimming and browsing. CueVideo [35] pro-

poses a system where sequences with low motion (with the assumption of low information content)

are played with fewer frames, allowing the viewer to gloss over scenes with less information.

SceneSkim [36] is an example of sensemaking that made lengthy multimodal data, video from

movies and text from movie scripts, indexable, enabling users to efficiently search movies for spe-

cific segments. In the user interface, SceneSkim presented multiple modes of search, over captions,

summaries, movie script, and movie clip, synchronized by timestamp. VidSceneDetect [37] sim-

ilarly identified scenes within video and longform multimodal content by creating a hierarchical

representation that covered various degrees of granularity for a recursive approach to video sum-

marization. More recent work has also adapted the use of hierarchical information to provide users

with multiple levels of summarization and information [38] for instructional videos.

Other work on video browsing and navigation investigate methods to enrich existing user

browsing behaviors; Swift [39] and Swifter [40] tackle the challenge of real-time seeking in video

scrubbing (where a user drops and drags a the playhead on a video timeline). When a user moves

the playhead on a video timeline player, Swifter presents surrounding local video frames in a tiled

manner, giving the user an idea of what video content is locally contained at this particular timeline

location. Relating back to the concept of information cues, this provides the user with more in-
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formation cues to more accurately infer what the content is in the underlying video content at this

particular time. The similarities of successful content navigation systems are evident; providing

users sufficient information cues that fit user browsing habits is paramount.

2.3.2 Summarization in User Applications

Summarization is employed in a variety of user applications across different domains, such as

summarizing doctor notes [41]. In addition to the principal function of summarization to condense

information, these applications have found additional innovative uses applying summarization to

collaborative editing:

1. Wikum+ [42] is a system that presents groups with a way to interleave and summarize dis-

cussion on an online forum into summaries. A key contribution of their system was the

interleave and summarize method in a recursive manner, creating a summary tree, which

allowed ideas to flow back and forth into an iteratively refined summary between multiple

editors. This work demonstrates the effectiveness of refining and summarizing information

in a hierarchical and recursive nature, albeit with human editors. Moreover, by presenting the

hierarchical summarization structure in a user interface, experiments demonstrate Wikum is

able to help users better identify and explore main topics.

2. Arkose [43] presents a different approach towards incremental summarization to distill in-

formation from online discussion boards. The system proposes a method of collaborative

summarization that involved merging at multiple hierarchical levels under the name of "in-

cremental diagenesis" as a way to structure and process unorganized online large-scale com-

munity discussions. By deconstructing summarization into a (recursive) incremental pro-

cess, writers are able to improve the quality of final summaries. Interestingly, this mirrors

(and predates) automatic procedures in later automatic summarization models [44] that find

content selection in summarization is better for content selection4.
4Given an input text, the system (summarization language model) must determine what information should be

retained in the final output [45]
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Other systems join automatic summarization language models with multi-modal content [46],

applying them to new domains such as summarizing UIs [47], medical videos [48], and generating

pictures, textual summaries and structure of complex text [49].

2.4 Automatic Speech Recognition (ASR)

2.4.1 Speech-to-Text

Automatic Speech Recognition systems (ASR) [50, 51] are used to transcribe audio (using

word recognition) into a source language transcript [52]. Concretely, in speech-to-text ASR sys-

tems, an audio file, such as a .mp3 file, is converted a text transcript. Such systems have re-

cently made relatively significant strides in terms of practical performance. and have seen recent

widespread adoption in various practical language applications.

State of the art (SOTA) ASR [53] is no longer constrained by vocabulary and remains relatively

robust, encouragingly extending word recognition to topical domains and noisy audio. SOTA sys-

tems [53] also offer a wide suite of useful services such as automatic punctuation insertion [54,

55, 56], where raw transcribed text has punctuation such as capitalization and sentence endpoint-

ers (periods, exclamation marks, and question marks) are automatically inserted using another

language model. Advances in audio source separation can be used to identify speakers (speaker

diarization) [57] and enhance difficult-to-hear dialog while suppressing background noise. Cleaner

transcriptions enable better downstream processing opportunities, such as dialog summarization,

spoken machine translation, and dialog classification systems. Figure 2.2 demonstrates how ASR

can convert speech into transcripts and the subsequent multiplicity of use cases of downstream use.

Note that speaker diarization classifies all words 𝑤 with a speaker label in a given transcript

𝑆. This can induce a segmentation and create speaker turns that are chunks of sentences where

the breaks that create segments are the breaks from alternating speaker dialog turns. Formally this

gives S = (𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑛). Many systems and works [18, 19, 58] use the concept of speaker

turns as part of their speech processing.

ASR systems have already re-invented how we interact with audio. SCANMail [59], an early
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work, lays such foundations of user interactions with ASR. Combining an intersection of HCI, ASR

and information retrieval (IR), SCANMail allows users to browse and search voicemail messages

according to content. Such parallels can be seen today in everyday Google Home and Alexa

speaker interactions of voice information retrieval [60]. State-of-the-art speech recognition models

have also been deployed to automatically caption subtitles for videos [61] to improve accessibility

for deaf users and have demonstrated that automatic speech recognition can be applied towards

use cases in various settings such as classrooms [62], home environments, and meetings. The

system [62] utilizes ASR techniques in classrooms to automatically analyze classroom discourse

and collect feedback for teachers.

Figure 2.2: Automatic Speech Recognition and Language Model Framework. ASR systems
are typically used as a starting point from where audio is transcribed into text for further applica-
tions. This figure demonstrates the possibilities of downstream language modeling.

For the scope of this thesis, we make the distinction that the vast field of ASR is not the focus

of our research5. We treat ASR systems as a separate black box and the starting point for our work

and subsequently employ summarization language models for our applications.

5All references to ASR in this thesis are towards Google’s Speech-to-Text service which is widely considered state
of the art.
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2.4.2 ASR and Speech Challenges towards Language Modeling

While transcribing audio, ASR systems may introduce problematic errors, word recognition

and context fragmentation, that propagate and affect downstream language modeling (Fig 2.2 blue

and yellow segments).

1. Word Recognition. The first immediate challenge for ASR is word recognition; transcribing

words that are phonetically similar by different meanings remains a challenging task for

ASR (e.g. “weather” vs “whether”). This problem has been explored extensively in

ASR models [63, 64] and typically addressed through domain and context specificity [65].

Though rarely an issue, we find that word recognition errors are occasionally present in audio

files where speakers with accents or large amounts of background noise are present. We

defer correctness to Google Speech-to-Text API. It is evidently apparent how an incorrectly

transcribed word can ruin a downstream language model’s text comprehension and lead to

poor performance. Consider the perfectly transcribed sentence "There will be day

of reckoning" compared to one containing a word transcription error "There will

be a loud rectangle opening". It is inconceivable that a downstream language

model (such as Alexa) will be able to sufficiently recover the correct semantic meaning.

2. Segmentation and Context Fragmentation. Generally, longform input text has to be ap-

propriately split (segmented) because of the limited input size of language models and used

as separate independent inputs during encoding. This is typically referred to as the task of

text segmentation where a text is broken into semantically topical segments (or other infor-

mation units), typically preserving and using existing sentence boundaries (.!?) [66].

Unfortunately, segmentation leads to problems such as context fragmentation where the input

has information that is predicated on context that is no longer part of the input, leaving

inadequate information for a language model to process. Ensuring text inputs that are not

only free of context fragmentation but also semantically cohesive is instrumental towards

downstream LM performance.
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When a large input text requires segmentation, two dimensions of the underlying text must

be considered: fine syntactic segmentation where words in a complete sentence are grouped

together and not divided, and coarse semantic segmentation where semantically similar sen-

tences are grouped together. While this can usually be done by segmenting along pre-existing

syntactic boundaries (periods, commas, question marks) for written text, ASR transcripts

obtained through word recognition speech models either do not contain punctuation or have

punctuation that is predicted by separate models and is often imperfect, creating sentence

fragments and incorrectly compounding sentences.

Furthermore, due to the stylistic nature of spoken language and intrinsic lack of structure,

unlike that of a written article, topics are not presented in a cohesively segmented manner:

(a) There are no topic sentences to rely on.

(b) Speakers can stop mid sentence and backtrack their thought or never complete it.

(c) Maintaining coherency is challenging when multiple speakers are making different

points simultaneously.

These speech domain unique attributes of spoken language make proper segmentation into

topical chunks particularly difficult and is a wide field of active research. We can easily ob-

serve how poor syntactic segmentation’s impact on model inference is immediately apparent

- context in a sentence could be missing because of an incorrect split or incorrect information

could be added due to an erroneous sentence join. Poor topic semantic segmentation behaves

similarly, but on a larger scale. Particularly, joining sentences containing distinctly differ-

ent information can confuse a model and output a nonsensical and grammatically incorrect

summary. Conversely, splitting sentences too aggressively would defeat the purpose of sum-

marization. Accordingly, finding a careful balance on semantic grouping presents itself as a

unique challenge in speech segmentation.

These errors can be addressed at the ASR system level or at subsequent downstream processing

stages (done in our system). Some examples of downstream system [2] post processing of ASR
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include: running a parts of speech tagger (POS) to identify and remove disfluencies, repetition

removal, and sentence boundary (.!?) correction of improperly joined sentences. In the follow-

ing enumerated examples, we go over some technical challenges posed by speech data and their

ramifications specifically towards speech summarization.

1. Lack of Spoken Language Summarization Training Data. The most apparent (and generally

machine learning) concern is the general lack of annotated training data for longform speech

and dialogue summarization (see Section 2.7 for existing datasets), leading to the issues of

domain adaptation and model robustness towards spoken language specific noises. In do-

main adaptation, existing pretrained models are dataset oriented, trained on domains such as

news [67] or social media [68]. As a result, these models incur specific memorized behaviors

[69]. For example, a news based model may insert a preamble of "According to the

Huffington Post" before an output, regardless of the subsequent text’s origins. In

model robustness, speech and conversation contain spoken user disfluencies such as "like

you know like the actual underlying prices" that do not convey mean-

ingful information. Without speech and dialogue specific annotations, standard training data

does not contain sufficient diversity of training pairs leading to summarization models strug-

gling to filter out unimportant phrases.

2. Propagated ASR Errors. As noted previously, ASR errors such as improper segmentation

and word recognition errors are propagated downstream and given as the language model’s

input. The impact of these errors are immediately apparent as the lack of context (or addi-

tion of unnecessary / confusing context) from poor segmentation and erroneous transcribed

words would lead to a decrease in semantic understanding for the language model, thereby

producing poor summarizations. More specifically, abstract summarization already requires

a high degree of semantic comprehension [70] of the underlying transcript meaning in or-

der to generate a cohesive summary; multiple contrasting topics introduced as a single input

could easily confuse the model. Due to the tendency of run-on sentences in speech and the
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limited input size of language models, accurate coarse structuring of topics and fine segmen-

tation of sentences are paramount towards proper conceptual LM understanding.

2.5 Text Summarization Overview and Challenges

Language Modeling and Text Generation. With recent deep learning advances, most no-

tably in the form of powerful transformer architectures [8], language models now have far greater

contextual modeling and understanding capabilities. Using the attention mechanism design as a

base, subsequent modifications towards modifying transformer complexity [71, 72] and refram-

ing of novel semi-supervised pre-training objectives [73, 74], broadly benefit many language tasks

ranging from text generation (content understanding) tasks such as abstractive summarization [75]

and Machine Translation (MT) to classification tasks like Named Entity Recognition (NER) [76]

and coreference resolution [77].

By reducing the complexity of the transformer’s attention mechanism from quadratic to pseudo-

linear [78], newer models are able to handle larger text input sizes. Through providing a larger

direct input size, language models are able to process a greater amount of contextual informa-

tion and potential semantic dependencies, improving semantic understanding for any particular

language task. This allows for such architectures to be extended towards other domains such as

conversations (spoken language) that traditionally could not be processed due to text length con-

straints. Furthermore, newer word tokenization schemas [9] are specifically optimized for neural

text processing and allow for specific data instance based training of subword segmentation, al-

lowing for more flexible and independent end-to-end language modeling.

Text generation is the task of automatically producing text subject to certain contexts and con-

straints [79, 80], that typically consists of an encoder and decoder language model [81] where,

given an input passage or source text 𝑆 = (𝑠1, ..., 𝑠𝑛), the objective is to output a sequence of

tokens (the hypothesis 𝐻 = (𝑠1, ..., 𝑠𝑛)) that fit the task. In the example of summarization, the

output sequence of tokens would be a summary that best compresses information from 𝑆. The

encoder first encodes the passage into a fixed hidden representation [81] containing some repre-
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sentation of the input passage; intuitively, one can consider this vector representation as containing

the most salient information in the passage. Afterwards, a decoder language model interprets the

hidden representation into a sequence of words that best summarizes the input [75]. This proce-

dure broadly generalizes to all text (token) generation tasks, such as neural machine translation

[82], controllable generation [83], summarization [75], and even music composition [84].

Extractive and Abstractive Summarization. In text summarization, a subset of the text gen-

eration natural language task, the goal is to generate a concise and accurate summary of a larger

input text and attend towards key sections. Text summarization techniques can be classified into

two categories: abstractive [75] and extractive [85]. Abstractive summarization generates (token

by token using the previously described seq2seq text generation framework) a new unique sum-

mary of text given a context whereas the extractive summarization “quotes”, selecting relevant

portions of the input text (usually formulated as a binary classification problem [86]), and concate-

nates relevant portions to compose into a summary. Because of spoken language noise effects in

ASR transcripts, extracting transcript segments verbatim often leads to poor summaries. There-

fore, we opt for abstractive summarization in our system. However, abstractive summaries are

more difficult to generate but more closely mirror human written summaries as they may contain

key words and phrases that may are not present in the original text but better describe the source

text [87]. Conversely, for abstractive summarization language models [88], as with most large scale

LMs on text generation tasks [89], learning to output syntactically correct and fluent summaries is

not challenging and is less of a concern.

Challenges and Considerations in Abstractive Summarization. Purely generating a sum-

mary requires a high degree of semantic understanding, as opposed to the “cut and paste” approach

of extractive summarization, to produce a cohesive and fluent summary. When a language model

is unable to properly understand a given input, it is prone to hallucinations [69, 90], phrases or

entities that appear to be semi relevant but are not actually present in the underlying text. Typically

issues in model comprehension are attributed to insufficient context, training data challenges of

domain shift, or model complexity limitations.
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Another important consideration in abstractive summarization is the factual accuracy of a gen-

erated summary with respect to the input text. Differently stated, is the summary’s meaning con-

sistent6 and faithful with the original source text? The possible ramifications of giving a user

inaccurate summaries can lead to arbitrarily detrimental results. Ensuring faithful and accurate is

vital to real-world applications of abstractive summarization.

Several different approaches exist to tackle the issue of faithfulness and can be broadly catego-

rized as follows:

1. Improving models to become more robust and generate more consistent summaries at the

model level through architectural and training regimen modifications [91, 92, 69, 93, 94].

2. Evaluating generated summaries for factual inconsistencies with external language models

(such as Question Answering that automatically ask questions about a summary and deter-

mining if the answers are consistent with the source) [94, 95, 96, 97]

3. Correcting and rewriting factual errors in generated summaries [98, 99].

Of course, while having factually consistent summaries is paramount towards our longform

dialog browsing system, this research area is not a primary technical focus of this dissertation.

2.6 Summarization Models and Summarization Methodologies

This section, with an emphasis on speech and dialog, gives a brief background on abstractive

summarization models and current challenges and strategies of summarizing longform text. While

there are many summarization models and work [100, 101, 102] that address speech induced spe-

cific technical challenges [103, 104, 105, 106] (Chapter 2.4.2) as well as new and interesting mod-

eling approaches (i.e. an iterative processing model that allow for longform podcast summarization

[107]), we specifically focus on the input size challenge that longform speech poses.

6Faithful, consistent, and factually accurate are dimensions to describe how well the text generated summary’s
content compares to the source text. See Section 2.8 for a complete list of definitions for summarization evaluation
dimensions.
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Popular Abstractive Summarization Models. In the most popular7 abstractive summariza-

tion models, the language model’s core architecture remains unchanged from the original trans-

former block [8]. Instead, work has largely centered on modifying on modifying the language

model’s objective function (training criteria).

1. BART [108] is a denoising autoencoder that modifies the pretraining of a standard trans-

former based neural machine translation (text generation) architecture. Additional opera-

tions such as token masking, token deletion, text infilling, sentence permutation, and doc-

ument rotation extend the existing word masking and next sentence prediction objectives

in BERT [73]. Specifically, for text generation (summarization) tasks, the BART instance

comprises of an encoder and autoregressive decoder.

2. PEGASUS [109] is another popular summarization model. By innovatively changing the

pre-training process from standard word level masked language modeling (where models

learn language conventions and syntax by predicting individually removed words within sen-

tences), to sentence level masked language modeling (where entire sentences are removed

and then recovered), the language model is tasked with a substantially more challenging

task. Not only does this new pre-training objective encourage the model to learn more gen-

eralized knowledge (through posing a difficult inference problem), it also closely mirrors

summarization as a downstream task.

2.6.1 Hierarchical and Recursive Summarization

Encoding longform text for summarization (typically referred to as longform summarization)

poses technical obstacles due to language model size and memory constraints; sometimes text

inputs are still too lengthy to be processed in one forward pass of an encoder. Length constraints

occur when the input size of a summarization model exceeds the typical allotted 1024 tokens,

though some language models may have larger maximum inputs. This is particularly problematic

7A quick way of determining this is by looking at HuggingFace’s most downloaded summarization language mod-
els.
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in the spoken dialog domain where meetings, conversations, and interviews can span hours, for

reference a 20 minute speech audio file may contain anywhere from 4,000 to 6,000 words8, far

exceeding a typical transformer based language model token input limit. The inability to jointly

encode text is problematic as important information and context that is critical to producing a

summary may not be available to the LM during decoding and is similar to the segmentation

context fragmentation challenges discussed in Chapter 2.4.2.

As a result, two prominent strategies9 for processing extremely long form input sequences such

as multiple documents [111] or long conversation transcripts are used: modifying input sequences

to become more tractable with existing LMs (i.e. reducing the input length) or designing new

hierarchical deep learning architectures to accommodate greater context.

Text Level Hierarchical and Recursive Summarization. In the first approach, techniques are

concerned with breaking up the input source text 𝑆 = (𝑠1, ..., 𝑠𝑛) into a more manageable form. At a

high level, this typically is done by breaking 𝑆 into smaller segments: S = [(𝑠1, ..., 𝑠𝑖), ..., (𝑠 𝑗 , ..., 𝑠𝑘 ),

..., (𝑠𝑙 , ..., 𝑠𝑛)] where 1 < 𝑖 < 𝑗 < 𝑘 < 𝑙 < 𝑛. Observe how 𝑆 now becomes S as it is a collection

of segments of sentences, such as 𝑆𝑖 = (𝑠 𝑗 , ..., 𝑠𝑘 ), which is now an individual input to a summa-

rization model. For each 𝑆𝑖 ∈ S the summarization model generates an output 𝐻𝑖 (meaning now

there are 𝑖 summaries). The outputs 𝐻𝑖 ∈ H are all then concatenated to form the final concatenated

summary 𝐻𝑐. The superscript 𝑐 indicates this is the concatenation of all individual 𝐻𝑖 ∈ H10. From

here, the process is typically repeated where the output 𝐻𝑐 now recursively becomes the new input

source text.

To train a language model to that can handle and summarize a longform document that is

broken up segments, Divide-ANd-ConquER (DANCER) [112] introduces (as its name suggests),

a divide and conquer strategy to generate training data examples from any existing dataset. Given

a dataset containing source text and summary pairs (𝑆𝑖, 𝑇𝑖) ∈ (S,T), every single (𝑆𝑖, 𝑇𝑖) training

pair is broken into multiple shorter training pairs. This is done by iteratively taking a sentence

8Accounting for SPM (sentence piece word tokenization) and subwords there is likely a 1.3 multiplier on words to
number of tokens. For example, running can be broken down into run + ning depending on training.

9We do not go into detail on retrieve-then-summarize pipeline models [110].
10Another way to imagine this is flattening the list of lists H by one level.
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𝑠𝑇𝑖 ∈ 𝑇𝑖 in the summary and using ROUGE [7] as a metric, match it to all similar sentences

𝑠𝑆𝑖 ∈ 𝑆𝑖 in the source text. Intuitively, the matching attempts to find all the information (sentences

𝑠𝑆𝑖 ∈ 𝑆𝑖) that may be relevant to generate the individual sentence 𝑠𝑇𝑖 ∈ 𝑇𝑖 in the summary. Now,

there are far more training pairs, with each new target summary being substantially shorter than

the original dataset’s summary. 𝑆𝑈𝑀𝑀𝑁 [113] expands upon the Divide-ANd-ConquER process

by repeating the process recursively generate target summaries. Here a generated output summary

𝐻𝑐, 𝑗 , which has already been concatenated from all the individual components, at hierarchical level

𝑗 (containing a total of 𝐽 recursive levels), would become the input 𝑆 𝑗+1 to another summarization

model11. This is repeatedly done until a short summary of a longform document remains. Note

that this creates 𝐽 separately trained summarization language models. By processing longform text

is this manner, 𝑆𝑈𝑀𝑀𝑁 improves upon context fragmentation and can handle even longer inputs.

OpenAI [114] successfully applied recursive task decomposition to abstractive summarization.

The authors first observe that large pretrained LMs do not produce good quality summaries and

train a reward model to learn what summaries are preferred by humans. From here, the authors

fine tune an instance of GPT-3 [115] according to the previous reward model. This process is

repeated recursively until a short summary is achieved. Impressively, this model is able to ingest

and summarize entire books with the aid of intermittent human summarization annotations and

feedback.

In our work [116], we similarly hierarchical processing approach to break down longform

spoken dialog into distinct and concise summaries. However, we repurpose existing summarization

models and approach the problem from a non-training stance. Specifically, Chapter 3 address

segmentation and concatenation in between recursive hierarchical levels and Chapter 5 discusses

non-training speech specific optimizations that improve longform dialog summarization.

Hierarchical Architectures in Summarization Models. The second approach towards sum-

marizing longform text (and most commonly longform speech an dialog) is to develop new hier-

archical attention [117, 118] transformer architectures12 to increase long range modeling capacity.

11𝑆 𝑗+1 would need to be segmented again into S 𝑗+1 before being used as 𝑗 + 1 level’s input.
12These are in addition to the improved transformer models discussed in Chapter 2.5.
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While hierarchical architectures are adept at modeling longer range input sequences, they do not

fit our need of producing hierarchical summaries in various levels of detail. Thus, it is important

to understand the difference and make a distinction between a text level hierarchical processing

methodology and model level hierarchical architectural modification. Note that work in neural net-

work architecture, namely imposing structure such as memory [119], and attention mechanisms

[120] is a a popular and active area of research and go far beyond the scope of this related work

portion.

In order to include more global context and better model long range dependencies13, current

works have proposed:

1. Adding recurrent hierarchical modules within a transformer block to propagate document

level information at the token level [121].

2. Assuming a hierarchical latent top level structure to capture information at a coarser granu-

larity to share with a bottom token level representation which captures finer details [122].

3. Encoding multiple documents in a hierarchical manner via a shared attention mechanism to

learn latent inter-document relations [123].

4. A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents

[124] which uses a hierarchical attention encoder (RNN structure) to explicitly attend to

important points in an input document.

In particular, to model long range dependencies in the meeting setting, HMNet (Hierarchical

Meeting summarization Network) [125] creates a two-level hierarchical structure with a speaker

turn level transformer and word level transformer. Though the authors encounter the same data

scarcity challenge of insufficient spoken dialog summarization training data, they adapt news do-

main data and simulate a multi-person turn based meeting conversation.

13Long range dependencies refers to a concept in the source text that requires a reference to information contained
in another section of the source text (typically temporally far away) or even different document to obtain a full context
and properly comprehend.
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2.7 Summarization Datasets

In this section we provide an overview and short description of select popular datasets used

to train and evaluate summarization models. While the popularity of abstractive summarization

datasets continues to grow, especially in the speech domain, it is still difficult and prohibitively

expensive to collect. Unfortunately, for longform dialog, existing datasets (i.e. AMI [126] & ICSI

[127]) are primarily focused on meetings and do not cover the variety of topics that are discussed

in interviews and podcasts. In the following datasets, articles refer to the source text 𝑆𝑖.

1. CNN / DailyNews [128] consists articles and summaries from CNN (93k) and the Daily

Mail (220k).

2. XSum [129] consists of BBC articles (227k) with single summary-sentences.

3. Newsroom [130]: consists of 1.3M human written articles and summaries from 38 sources

between 1998 to 2017.

4. arXiv and PubMed [131] consists of longform papers from arXiv (113k) and PubMed (215k)

where the paper’s content is the source text and the provided abstract is the summary.

5. ENTSUM [132] is an entity focused dataset where human written summaries were a se-

quence of annotation instructions were given to write a summary prioritizing a particular

entity.

6. GovReport [133] is a longform document summarization dataset from U.S. Government

Accountability Office on national policy issues.

Spoken Dialog Domain Datasets

1. AMI [126] & ICSI [127] consist of longform meeting transcripts and summaries. The meet-

ing transcripts contain an ASR word error rate of 36% and 37% respectively.
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2. QMSum [134] consists of a query-based meeting summaries. Because content selection

difficulty directly scales with source text length (i.e. it is clearly more difficult to summarize

longer passages), authors try to guide annotators with targeted queries to keep summaries

focused.

3. MediaSum [135] & SummScreen [136] are conversation summarization datasets where the

source texts are speech transcripts and the summaries are mined from recaps and overviews.

4. SamSum [137] consists of short exchanges of text messages and summaries (16k), is one

common dataset used to train and benchmark conversational summarization. Each text mes-

sage source is very short, containing on average 94 tokens per conversation.

5. DialogSum [138] is a conversation summarization dataset (13.5k) that attempts to increase

diversity compared to SamSum [137] and contains an average of 39.8% longer dialog for

source text.

6. ForumSum [139] is a conversation summarization dataset (4k) containing human annotated

summaries collected from internet forums.

7. Spotify Podcast Dataset [140] contains ASR transcriptions of over 100k podcasts. Authors

hand annotate a small subset (303 summaries) to determine a quality threshold for using

content creator (podcast author) provided descriptions. It is important to note that a content

creator is not incentivized to write a high quality summary as much as writing an attention

grabbing advertisement for a description.

Because no dataset with intermediate text level summaries exists, we are unable to compare

the longform dialog browsing system’s hierarchical summaries to human annotated gold standard

summaries. Though, interestingly, summaries that were collaboratively written (albeit not for spo-

ken dialog) using systems such as Wikum+ [42] should retain intermediate text representations that

can be used as hierarchical summaries. In Chapter 5, we discuss how we harvest our hierarchical
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longform spoken dialog dataset’s summaries while addressing challenges in the summarization

such as subjectivity and content selection.

2.8 Text Evaluation for Automatic Summarization

Evaluating the a language model’s text generation is essential towards understanding the model’s

performance and suitability for usage [141]. For this section, we give a background and overview

of text evaluation methods concerning summarization; though it should be noted that many of au-

tomatic metrics used here are nearly identical in evaluating text generation in other tasks such as

machine translation.

Human evaluation of text generation is generally considered to be the best metric and gold

standard method for assessing generated text quality [142]. For the most part, humans are able

to successfully coarsely estimate a text’s quality based on innate heuristics; however, on a finer

scale and for more nuanced tasks, there may be issues of human annotator bias annotator disagree-

ment [143, 144]. Because of the time intensive nature of human evaluation, automatic evaluation

procedures were developed to quickly and inexpensively assess a generated summary’s quality.

Work in human evaluation has proposed assessing summary quality through a "Pyramid" perspec-

tive with "Summarization Content Units" (a departure from previously the used DUC, Document

Understanding Conference, evaluation procedure) to address the fact that no single summary itself

is the best [145] when comparing multiple summaries. The procedure that [145] had outlined is

also beneficial in showing not only the semantic content overlap between summaries, but also what

content is missing across summaries. Subsequent work in Pyramid Evaluation [146] demonstrated

its effectiveness and human correlation.

In an automatic text evaluation setting, there are three components: the source text (such as

transcript) 𝑆 = (𝑠1, ..., 𝑠𝑛) which is encoded by the language model, the generated hypothesis

(output summary) 𝐻 = (𝑠1, ..., 𝑠𝑛), and the reference summary text 𝑇 = (𝑠1, ..., 𝑠𝑛). Typically

the hypothesis 𝐻 is compared to the reference summary 𝑇 , known as reference-based evaluation.

Depending on data availability however, 𝑇 may not always be provided and 𝐻’s quality must be
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estimated leveraging other information such as 𝑆 and external language models; this is known as

reference-free evaluation.

For both of our systems, Chapter 3 and Chapter 5, we perform qualitative human assessments

of summary quality. Due to the lack of references at the time of development, the automatic

evaluation is in Chapter 3.3 is still limited and cursory; however, with gold summaries harvested

in Chapter 4, we are able to more rigorously analyze the Chapter 5’s system performance.

Human (Manual) Summary Evaluation For human evaluation, human annotators are tasked

with assessing the quality of machine generated summaries, scoring along some predefined di-

mensions [90, 147]. This is known as intrinsic evaluation14. Different authors may use different

terms for previously listed dimensions, though they typically encapsulate similar meanings. Some

examples of these dimensions are:

1. Fluency or Readability: evaluates grammaticality, spelling, and syntax (such as capitaliza-

tion and formatting). This is done without consulting the source text as it is content indepen-

dent [148].

2. Coherence or cohesion: measures how well sentences are in relation to each other (do they

form a coherent block of information?) [144].

3. Accuracy or Factuality or Consistency: evaluates the factual agreement between the source

text and target summary, in other words, are claims made in the summary supported by the

source text [149, 150].

4. Informativeness: how well does the summary capture the important ideas found in the source

text, or colloquially, is the generated text useful as a summary [130].

5. Completeness or Focus [144]: how many of the "main ideas" in the source text are captured

by the generated summary.

14Extrinsic concerns evaluating a model’s performance at a specific task and is outside the scope of this section.
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6. Adequacy: how much of the meaning in the original source text is also conveyed in the

hypothesis [151]. This dimension was originally introduced in machine translation15.

7. Semantic Coverage: How much semantic content units (meaning) in the reference summary

is captured by the generated summary [145, 146].

8. Relevance: this is a term where conflicting definitions were provided and remains vaguely

defined.

• Evaluates how consistent the summary is with the source text. This can be rephrased

as "Are the details provided by the summary consistent (and appropriate) with details

in the article?" [130].

• Assesses the content selection of the generated summary, does it contain only the im-

portant information [150]. This shares characteristics with informativeness and com-

pleteness.

Out of these dimensions, adequacy appears to be quite similar to semantic coverage. The key

difference here is that the adequacy is comparing the the generated summary 𝐻 to the information

content contained in the entirety of input source text 𝑆, while semantic coverage is comparing

the summary 𝐻 to strictly less information contained in the gold standard reference summary 𝑅.

It is also interesting to point out that the information summarized by the reference summary 𝑅

is not always perfect: summarization is inherently subjective [152]. Thus, additional information

contained in 𝐻 could cause this particular summary to score well in adequacy while scoring poorly

on semantic coverage given how semantic coverage is defined.

Completeness and focus also appear to be similar in adequacy, with the salient difference being

an emphasis on "main ideas", which again is inherently subjective to readers. They (completeness

and focus) also share characteristics with informativeness; the difference here can be found in

that informativeness describes how well a generated summary expresses the important ideas in the

source text whereas completeness and focus are concerned with how many (different) main ideas
15https://catalog.ldc.upenn.edu/docs/LDC2003T17/TransAssess02.pdf
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are captured. Clearly many dimensions can be left up to human interpretation and lead to difficulty

in obtaining consistent and unbiased assessments of generated summaries.

Reference Based Evaluation. Untrained automatic metrics measure some form of string over-

lap, content overlap, string distance, or lexical diversity [144] between the generated summary 𝐻

and the reference summary 𝑅. The core idea behind these metrics is that the closer the predicted

summary sequence is to the reference, the better of summary sequence. Some of the most common

reference based evaluation metrics are:

1. BLEU [153] which aims to capture the adequacy and fluency of translations, but has been

adapted for use in other text generation, such as summarization. This is calculated with a

geometric mean of the precision of the hypothesis 𝑛-grams present in the reference 𝑛-grams.

In other words, how many 𝑛-grams in the generated summary 𝐻 are present in the reference

summaries 𝑅.

2. ROUGE-𝑛 [7] (where 𝑛 indicates the number 𝑛-grams used) which aims to assess semantic

coverage and was developed for summarization. Unlike BLEU, ROUGE is a recall based

metric that count how much reference summary 𝑅 𝑛-grams appear in the generated summary

𝐻.

3. METEOR [154] which improves upon BLEU by adding additional features such as stem-

ming and synonym matching.

Furthermore, it is important for automatic metrics to correlate closely with human evaluation

of summaries. In SummEval [150], authors comprehensively ranked 14 automatic metrics against

human judgments along 4 dimensions (coherence, consistency, fluency, and relevance). In Table 2

[150], authors found that different ROUGE variants tend to correlate well with human judgment

across the 4 dimensions.

More recent evaluation works propose different ways of leveraging pretrained language models

for semantic evaluation of text such as BERTScore [155], which uses pre-trained contextual BERT

embeddings to match a generated summary with a reference summary at the token level with cosine
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similarity. In a different vein, BARTScore [156] utilizes BART’s pre-trained word probability

distribution to score a generated sequence in 4 different categories. BLEURT [142] proposes

several changes to training using synthetic data pairs where target labels are human ratings and

automatic metrics in order to adapt a BERT model text evaluation.

Reference Free Evaluation. Recent research has also explored the far more difficult challenge

of automatic evaluation instances where a reference summary 𝑅 is unavailable. SUPERT [157] cir-

cumvents the lack of references by generating pseudo references and calculates the word mover’s

distance16 between the generated summary and pseudo references. Wu et al. 2020 [158] train an

evaluator with contrastive learning on augmented negative (poor artificial summary) examples to

subsequently predict summary quality. In the machine translation domain, RUSE [159] employs

learned sentence embeddings from three different models, paired with a multi-layer perceptron to

predict translation quality. [160] finds that modifications to a multilingual model can match BLEU

performance, demonstrating further promise in reference-free evaluation.

Annotator and Qualitative Evaluation Considerations. Unlike evaluating other more "con-

strained" instances of language modeling such as machine translation where the totality of correct

translations is limited (i.e. even accounting for stylistic and vernacular considerations, there are

only so many correct ways to translate a given sentence into another language), evaluating sum-

marization may is inherently subjective and under constrained [152]. As a result, it is importantly

to clearly define evaluation dimensions and properly scale annotators to close standards.

16This is similar to Earth Mover’s distance but uses word embeddings to create a space where sentences with no
shared words can still be semantically compared.
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Chapter 3: Hierarchical Summarization for Longform Spoken Dialog

Chapter 3 lays the foundational framework and proof of concept system (again referred to as

System 1) of decomposing longform spoken audio in a hierarchical nature and presenting it to

the user in a user interface, enabling users to browse and navigate content to find things that are

interesting to them.

We begin with the motivation in designing a system to browse longform dialog content (Sec-

tion 3.1), along with selected related work (Section 3.2). We then conduct a formative study and

investigate the impact of longform dialog on existing summarization language models and their

implications for immediate practical usability (Section 3.3). From these findings, we develop a

user interface and the necessary language modeling components (Figure 3.1, Section 3.4) to create

a proof of concept longform audio browsing system (System 1). This is accompanied with a walk-

through demonstration of how a user might use the system (Section 3.5). Lastly, we conduct user

studies and evaluate (Section 3.7) the system.

3.1 Overview and Motivation

An ideal solution would be to automatically summarize the content and distill it to its most in-

teresting points, but this is problematic for three reasons. First, despite many advances in machine

learning, Automatic Speech Recognition (ASR) and summarization are not yet mature enough to

accomplish this. Second, there is a question as to whether the ASR transcripts and summaries

can be trusted to be accurate, especially in the presence of informal language, minimal structure,

and speech disfluencies. Third, what each user wants from a summary will differ based on their

previous knowledge and expertise on the subject matter – summaries are not one-size-fits all. This

makes it difficult to provide training data for summaries that would be acceptable to a wide range of
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users, even if machine learning algorithms were perfectly accurate. We want to explore solutions

that can leverage the strengths of machine learning, while overcoming many of its weaknesses.

Figure 3.1: System User Interface. Example of the system’s summarization display for each
unique audio file. The left part of the interface contains several short summaries which, when
clicked, displays the medium and long summaries along with the corresponding original transcripts
and audio clips. The top part of the interface shows what part of the transcript each summary
encapsulates information about. When the top part is clicked, users can navigate to any part of the
summaries or transcripts.

We present a system that produces hierarchical summaries of spoken dialog that allow a user to

browse and navigate the content to find things that are interesting to them. Hierarchical summariza-

tion allows users to first see a high level summary of the content and then drill into progressively

longer and more detailed summaries - or listen to the raw audio itself. This approach addresses

two key issues:

1. It allows users to be in control of what information they read at a high level and what infor-

mation they consume in greater detail.

2. When machine learning (ML) models makes mistakes in ASR and summarization, users can

quickly recover the ground truth.
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Although the typical approach to creating automated summarization systems requires training

data that is difficult to obtain, our approach allows us to employ previously trained ML models re-

cursively to generate shorter and shorter summaries. However, reusing models that were trained on

different data requires careful model selection as well as novel algorithms to semantically segment

the input text and thus output coherent summaries.

This system makes the following contributions:

1. An end-to-end system that automatically generates hierarchical summaries of longform spo-

ken dialog.

2. A novel semantic segmentation algorithm that allows the reuse of existing machine summa-

rization models rather than training a new one.

3. A user study demonstrating:

(a) the system is 72% accurate in producing condensed Short Summaries.

(b) system hierarchical features enable users to recover their understanding of 98% of sum-

maries despite ASR and ML summarization model errors.

(c) the average time that users spent to reach an understanding of an audio recording was

27% of the original audio length.

4. Qualitative findings about how people use Short Summaries as navigational tools to help

them "skim" audio and find the content most interesting to them.

3.2 Related Work

We discuss the primary areas in natural language that our work builds upon1. Specifically, we

leverage several of the techniques used in both the user studies and the summarization works to

create our system.

Using NLP to Generate Multimodal Interactions
1Please refer Chapter 2 for the complete background related works.
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Researchers have developed models and systems to easily navigate through videos and movies

by navigating to the video clip and allowing users to interpret content [28, 29, 30]. However, these

videos require users to search visual information in a video they may know little about and is inap-

plicable to pure audio files. To solve these issues, some researchers have employed summarizing

key content in text as a means of helping users easily digest long-form content [161], [162]. More

recent work has adapted the use of hierarchical information to provide users with multiple levels

of summarization and information [38]. We build on top these systems targeting multi-party audio

transcripts which pose novel challenges because these transcripts necessitate proper semantic seg-

mentation to preserve meaning across speakers while simultaneously leveraging the usefulness of

hierarchical information.

Still other work utilizes NLP to generate multimodal interactions such as images for video edit-

ing or even adding visuals to existing audio files [163, 164]. However, they rely on human-created

transcripts, hurting the ability for the system to scale without automatic processes. Furthermore,

visual representations only represent higher level abstract topics not the summarizations needed to

represent the speaker.

Summarization of Multi-Party Audio

Creating meaningful summarizations from multi-party audio has been a difficult problem for

researchers, often requiring hierarchical transformers and speaker segmentations to effectively re-

tain information. Many of these papers, however, require full end-to-end training on transformers

and even custom datasets [125, 165, 166, 167, 168]. Still others also employ graph-based summa-

rization and coreferences to better summarize discourse [169]. Meanwhile, current unsupervised

abstractive summarizations do not utilize deep learning summarization modules and require the use

of word graphs and ranking algorithms [170]. These systems and models focus on learning end-to-

end summarization which is not practical across multiple domains. Instead, we focus on utilizing

these summarization systems as part of a larger unsupervised abstractive system to generalize and

reduce the overhead needed to deploy and scale such a solution.

Recursive and Hierarchical Summarization Summarization of long complex material into
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recursively shorter and more tractable artifacts has been previously explored and found to pro-

vide an effective avenue for gaining useful comprehension of content [171]. Notably, this work

showcased an interface displaying multiple summaries with varying levels of detail resulting in

users having superior substantive recall and enabling non-linear exploration of the source material.

However, this prior work employed crowd-sourced techniques to generate summaries and targeted

solely threaded discussions typically found in forums. We build off these findings by developing

a novel system employing automatic summarization and speech recognition techniques to spo-

ken dialogue in order to generate a similar hierarchical exploration of content without requiring

human-in-the-loop summary generation.

The utility of hierarchical summarization has also been shown for multimodel instructional

videos that use audio and video to demonstrate each instructional step [38]. By using computer vi-

sion, ASR, and domain-specific heuristics they automatically group fine-level actions into coarse-

level events (with summary text) that users can navigate at their own pace. We build on these ideas

by using machine summarization to provide multiple levels of summarization detail and allow

users not only better navigation but also time savings in consuming media.

3.3 Formative Study and Preliminary Investigation

There has been much progress on machine learning models for natural language processing,

including ASR and summarization. If possible, we want to use existing pretrained models as a

component of our system to avoid the costly process of collecting longform summarized speech

training data, as none exist or are readily available. This is particularly difficult for summarization

because every user may want a slightly different summary.

Because of spoken language noise effects in ASR transcripts, extracting transcript segments

verbatim often leads to poor summaries. Therefore, we opt for the current state of the art abstractive

summarization model, PEGASUS [109], which is able to achieve much higher human-quality

summaries. Though promising, like most language models, it is important to note that PEGASUS

is tailored towards specific benchmark datasets such as news or social media and that performance
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does not translate across different data domains, especially when applied to speech specific noise

and disfluencies.

Moreover, there are two key problems:

1. ASR and summarization models are far from perfect and have inherent pre-existing chal-

lenges.

2. Summarization models are almost always trained on text rather than speech data. If a text

trained summarization model is deployed on speech data, there would be a data domain

mismatch, leading to considerably degraded model performance.

To evaluate the practical performance of existing ASR and summarization models and deter-

mine which models to use as the basis of our system, we investigate the following criteria:

1. Coherency, are the final output summaries coherent? If this constraint is not met, the model

is not usable. Aside from re-training and adapting a model towards speech data, we have no

tractable strategies for compelling model coherence.

2. Information retention, because output summaries are shorter and lossy, we check if they

still retain salient information from the original passage. If a shortened summary does not

contain useful or relevant information, it has no value.

In the formative study, we identified three models that had various summarization properties

and tested each model’s reusability. Each model was applied to seven different recordings and an

automatic evaluation score was computed to determine the quality of the summarization. To further

substantiate each model’s summarization, we check each model’s performance with qualitative

analysis.

3.3.1 Evaluation Data

We evaluate on a test set of seven recordings of longform spoken dialog that span different

topics, domains, and speech styles (Table 3.1). Important note: this is the beginning of our cu-
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Transcript Name Length Word Count Source Edited?

NPR: M. Night Shyamalan 48 minutes 9184 words How I Built This podcast Yes
NPR: Chipotle 48 minutes 7847 words How I Built This podcast Yes
NPR: Health 29 minutes 5102 words How I Built This podcast Yes
NPR: Teach for America 22 minutes 3909 words How I Built This podcast Yes
Diversity and Inclusion 23 minutes 4201 words Recorded Ted Talk Interview No
Bill Ackman on Economy 29 minutes 5140 word Recorded Bloomberg TV Interview No
Ray Dalio on Economy 29 minutes 3971 words Recorded Bloomberg TV Interview No

Table 3.1: Dataset metadata used in formative study and final evaluation

rated dataset from Section 4. Section 4 builds off of this dataset and harvests further gold human

annotated summaries that do not yet exist for this work.

The average length of each of the recordings is 32.5 minutes and the average word count output

from ASR is 5622. Of these seven recordings, four are edited interviews from the NPR podcast

"How I Built This", and 3 are unedited recordings from live events. Two are Bloomberg interviews

regarding finance and one is a conversation about "How to foster true diversity and inclusion at

work (and in your community)." These recordings were selected based on being content rich and

of reasonable length. Information rich dialogue serves as a useful medium for this experiment by

providing a sufficient density of information to showcase summarization. Additionally, choosing

sources from the same producer reduces variance and provides a consistent structure for experi-

ments. Finally, our experiment included both edited and unedited recordings of dialog to expose

our system to both more coherent and structured conversations as well as free form dialogue.

3.3.2 Automatic Speech Recognition Model

For word recognition, we use a state of the art ASR model, publicly available with the Google

Speech-to-Text API. This system is already robust to a variety of domains and speech noise, while

providing features such as diarization (speaker detection) and punctuation prediction. While we

suspect the ASR component will not be a large contributing factor to poor summarization, we

conduct a brief investigation on word recognition errors (word errors, i.e. homonyms such as

weather compared to whether) as they could non-trivially impact downstream summarization
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Model Domain / Fine-Tune Data Max Words Output Size

M1 XSUM News / BBC News 64 words 1 sentence
M2 News / CNN, DailyMail 128 words 3-5 sentences
M3 Paraphrase / Quora, PAWS 60 words 1 sentence

Table 3.2: Model nomenclature where M𝑖 indicates Model 𝑖, training data descriptions, and model
maximum input and typical output sizes.

performance.

3.3.3 Summarization Models

For summarization, we investigate the current abstractive state of the art language model PE-

GASUS [109]. While PEGASUS is noticeably improved over other summarization methods in

terms of producing human level quality summaries, it requires fine-tuning onto domain specific

summarization data. It is also important to note that a pre-trained only instance of PEGASUS is

not normally used without modification; the pre-training procedure is different from summarizing

and the authors focus solely on fine-tuned downstream summarization datasets. Appropriately, we

select fine-tuned instances from huggingface.co [172] that generate complete and grammat-

ically correct passages (i.e. not a few keywords) and are still in considerably general domains

(i.e. not a medical field model instance) to assess PEGASUS coherence and information retention.

Model details are given in Table 3.2.

We begin by processing audio files to obtain raw ASR transcripts. We use three instances

of a PEGASUS model (M1, M2, M3) that are fine-tuned according to Table 3.2; all models

have the same architectures. However, because of the nature of longform dialog, the number

of words per transcript greatly exceeds the maximum input length that M1, M2, M3 can accept.

Transcripts must be processed and split into manageable lengths. We naively segment the transcript

in fixed 60 word length segments set to M3’s maximum input length2. For example, if an input

transcript segment had a total of 154 words, it would be broken into a list of 3 individual segments,

2We also experimented with increasing the input size to 128 for M2, but still observed poor results (in fact, noise
artifacts and incorrect model behaviors were more exaggerated than using 60 word length segments)
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each containing [60, 60, 34] words. To maintain evaluation consistency across all models, any

evaluation involving naive fixed segmentation is set to 60 words. These are then summarized by

M1, M2, and M3, which are set to output summaries containing at most half of the original passage’s

words.

3.3.4 Heuristic Score

We evaluate a summarization model’s coherency and information retention using a heuristic

score consisting of state of the art automated metrics in natural language processing. It is important

to note that we do not yet possess gold human annotated summaries for our dataset (Section 2.7)

that are later collected in Section 4).

For coherence evaluation, we use a BERTScore [155] between a reference ASR segment and

a model generated summary (candidate input). This method correlates well with human evaluation

and uses word level contextualized embeddings to capture dependencies and word ordering. For

retained information, we use the cosine similarity between Sentence Transformer [173]

embeddings of a reference ASR segment and a model generated output summary. A higher cosine

similarity between the reference ASR segment and output summary suggests the summary captures

the reference ASR segment’s semantic content. The final heuristic is the simple average of the two

and has a range of [−1, 1]. In practice, cosine distance based metrics used to determine similarities

between word embeddings are positive, with a general range of 0 − 0.5 for a weak correlation,

0.5− 0.8 for a moderate correlation, 0.8− 1 for a strong correlation, and 1 for a perfect correlation

[174]. As a sanity check, we observe a correlation of 1.0 when we set the reference and candidate

text inputs to be the same. Intuitively, as M1, M2, and M3 outputs are still summaries, they will

contain at least some semantic similarity to the reference ASR segment; therefore we expect to

observe a somewhat moderate correlation (0.5 − 0.6) with our heuristic. After determining which

model can be feasibly re-purposed, we use the heuristic score again to evaluate our method’s impact

towards improving summarization.
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3.3.5 Heuristic Score Limitations

In evaluation, a longer reference text (an ASR segment) and a model’s generated summary

are passed in as inputs to an evaluation model that computes a numerical score describing the

summary’s accuracy. Usually a text generation’s quality estimation focuses on adequacy (content

faithfulness) and fluency (coherence). Unlike typical evaluation, our dialog’s evaluation setting is

unsupervised which poses an extra set of challenges.

Our heuristic adopts two individually unsupervised components, BERTScore and Sentence

Transformer to measure adequacy (information retention, or semantic content) and to a lesser

degree fluency (coherence or grammaticality). Evaluating a generated summary’s fluency with-

out a reference is notably challenging (discussed below) but is, to some extent captured, within

BERTScore’s token embedding matching.

Unsupervised systematic and automatic evaluation of a summarization model’s text generation

is particularly difficult as it requires comparing generated sentences to non-existent annotated ref-

erences. The benefit of the unsupervised reference-free evaluation setting of the heuristic score

fundamentally incurs similar trade-offs to that of the underlying automatic evaluation methods

BERTScore, Sentence Transformer.

Because of the lack of human authored summaries in both training and evaluation data, we

are unable to use standard summarization evaluation standards such as ROUGE (Recall-Oriented

Understudy for Gisting Evaluation) [7]. Moreover, existing 𝑛-gram evaluation metrics cannot be

effectively used on summaries as they tend to fail at robustly capturing performance; shortened

paraphrases containing semantically critical changes in word positions may be unfairly penalized

due to a mismatch with the reference text.

One subsequent trade-off is the possibility of achieving adequacy at the cost of low fluency.

Recall that semantic content is compared to an entire (unsummarized) dialog segment as a refer-

ence; thus a model can theoretically fool the metric by outputting many shorter and less relevant

segments in an incoherent manner instead of a single relevant segment to achieve a better score, as

is the case with M2’s marginally better score over M3’s.
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ASR Transcript Segment Summary Description

opportunity is inclusion
because you know, I have
heard this stories so many
times about there’s you
know, no Black Talent out
there. No Latin next talent
for these particular roles. The
talent is out there. I will tell
you that is underdeveloped
because I think we have spent
more time trying to reach
numbers. Then we have
changing our [60 words]

M1: In our series of letters from
African-American journalists, jour-
nalist and columnist Richard Law-
son looks at the importance of inclu-
sion in the workplace.

Hallucinations, M1 pro-
duces words and concepts
(italicized red) in the sum-
mary are not present in the
given input.

M2: opportunity is inclusion be-
cause you know i have heard the sto-
ries so many times about theres no
black talent out there no latin next
talent. i think we have spent more
time trying to

Speech noise sensitivity,
M2 loses abstractive sum-
marization ability and out-
puts unimportant sections.

M3: I think we have spent more
time trying to reach numbers than
we should because there is no black
or latin talent out there.

Semantic Inaccuracy, M3
combines two different
sentences into a semanti-
cally incorrect output.

Table 3.3: Example summary generations on the "Diversity and Inclusion" dialog showing an
instance of the ASR transcript for one speaker turn and errors frequently made by the three sum-
marization models. Text is color coded to indicate shared regions between the input and output.

3.3.6 Formative Study Findings

We discuss Table 3.3 throughout this section. It contains an example of the ASR transcript seg-

ment of one speaker in the "Diversity and Inclusion" recording and the corresponding summaries

generated by the three models. Text is color coded to indicate shared regions between the ASR

transcript and the summary.

3.3.7 Google Speech-to-Text Automatic Speech Recognition Quality

We quickly and quantitatively evaluate the word error rate (WER) of the ASR system. Because

Table 3.3 only consists of audio data and perfect transcripts (human transcribed) are non-existent,

we benchmark ASR performance on a random subset of Ted Talks as they are somewhat similar

in terms of speech and data structure to Table 3.3 and thus would likely be indicative of ASR

performance. We find an average WER of 10%3, slightly above the reported 6.7% WER [175],

3This number should be treated as an upper bound as the human transcribed transcripts contain artifacts such as
"(Applause)" or "(Laughter)".
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and far below a usability constraint of 30% [176].

As seen in the provided ASR Transcript example in Table 3.3, the ASR Speech-to-Text makes

very few errors. However, rare words, unfamiliar phrases, or new words not yet encountered still

degrade performance. For example, in the NPR: Chipotle dialog, "mise-en-place" was mistakenly

transcribed as "knees in place". In the "Diversity and Inclusion" dialog, "rectangle. Opening"

was mistakenly transcribed from "reckoning". Additionally, performance can fluctuate due to a

variety of noising factors such as speech disfluencies, foreign accents, and audio recording quality.

Although ASR makes few errors, they will propagate to downstream tasks and create challenges

for generating a practical audio summarization system.

Model Name Segmentation Strategy Heuristic Score

M1 Naive Fixed Length 0.61
M2 Naive Fixed Length 0.70
M3 Naive Fixed Length 0.68

Table 3.4: Automatic evaluation heuristic scores for various segmentation strategies.

Summarization Model Quantitative Analysis

Table 3.4 gives the automatic evaluation heuristic scores for M1, M2, and M3 ranging from

0.61− 0.70. Despite generating summaries on out of domain speech data, we can conclude that all

the baseline language models can still reasonably function and retain a moderate amount of infor-

mation with a summary containing at most half the words as the input ASR segment. Nonetheless,

the the tight spread of the heuristic score range indicates a moderate correlation and merits further

investigation into the re-usability of M1, M2, and M3 to fully understand model behaviors. While

the heuristic score is telling, it is not a replacement for human level evaluation; it provides only a

limited perspective into performance that is subject to intrinsic methodology constraints. To get a

sense of what types of errors the automatic summarization models are making and whether they

could potentially be addressed, we studied various segments by hand.
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Summarization Model Qualitative Analysis

This style of evaluation was not formal; the errors were pronounced, ubiquitous, and imme-

diately apparent. Such poor performance severely impeded practical usability and therefore did

not necessitate a formal evaluation. Unfortunately, we observe that all three summarization mod-

els make frequent and substantial errors; however, M3 stood out as containing problems that were

addressable.

M1 produced summaries that contain frequent hallucinations [69] – phrases or entities that

appear to be semi-relevant but are not actually present in the underlying text. This can be attributed

to its news based training data.

For example, in Table 3.3 M1’s summary contains the text “African-American journalists”

and “Richard Lawson.” Neither of these entities are mentioned in the input (or entire audio file).

However, these entities are in M1’s training data. This is a typical problem seen in language

models when deployed on new data that is not encountered in training. Only recently, an attempt at

fixing hallucinations has resulted in improved ROUGE precision and increased human preference

[177], but still requires additional dataset generation. These errors are in almost every summary

produced by M1. Thus, fixing M1’s hallucinations would be nontrivial and require a new training

dataset.

M2 does not contain hallucinations but unfortunately it introduces many grammatical errors

and performs especially poorly with regards to fluency: sentences trail off without finishing and

summaries consist of concatenated phrases that may be individually sensible but holistically in-

comprehensible. Moreover, it fails to produce an abstractive summary and defaults to an extractive

behavior; it mostly picked sections of the input rather than summarizing the entire input. This

is likely because M2 is trained to produce longer summaries than M1, and thus it is not forced to

produce abstractive summaries. Reiterating Section 2.4, it is essential for a speech summarization

model to be abstractive. These errors are frequently in summaries produced by M2.

M3 has more fluent text with no hallucinations. However, it makes an egregious error of mis-

representing the content. The transcript clearly states that ‘‘The [Black and Latin] talent is out
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there,” but the summary introduces a negation to say that the talent is not there. The root of this

problem is that M3 coerces two different segments into a semantically incorrect summary. These

errors occur when multiple non-sequitur or different topics are provided as a single input. Because

abstractive summarization generates words that are not necessarily present in the source input text,

they require a high degree of content understanding of the underlying semantic information in the

passage [70] to successfully generate a semantically faithful summary; a poorly segmented input

containing multiple different concepts would be exceedingly detrimental towards a model’s seman-

tic comprehension. Thus, M3’s resulting coherent and abstract summaries (albeit with contextual

misrepresentation errors) signal that:

1. A successful semantically accurate segmentation that can group similar topics and ideas

together, while splitting dissimilar sentences into a separate chunk can improve a model’s

semantic comprehension, and transitively improve summary generation accuracy.

2. The summary context’s input accuracy issue is now reframed as a processing challenge that

does not require changes to the model’s architecture, re-training, or additional annotated

training data.

3. M3 is able to maintain its abstractive nature, which is essential to summarizing dialog due to

speech disfluencies and other noise artifacts.

Formative Study Key Takeaways

Based on this exploration of the three models, we hypothesize that M3 is the best one to build

on top of and reduces the challenge of practical dialog summarization to a tractable problem. M1

and M2 errors are exceedingly difficult to correct without significant amounts of specialized speech

training data. M2’s marginally higher score over M3 is immaterial given M2’s disfluency and inco-

herence. Although incoherent topic grouping is rarely the case in written language where ideas are

well-formed and presented in a manner that is optimized for ease of understanding, it is usually

the norm in spoken language where topics shift over time as speakers react to the last thing that
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was said. Concretely, if we can segment transcripts into semantically cohesive segments, creating

easier inputs and facilitating improved summarization performance, M3 may be an effective sum-

marization tool. When errors do remain, there is the fallback of the user using the hierarchical

browsing features to investigate surprising or suspicious claims to see if the summary is consistent

with the text.

3.4 System

We present a system that produces hierarchical summaries of spoken dialog that allow the

user to browse and navigate the content to find things that are interesting to them. Hierarchical

summarizing allows users to first see a high level summary of the content and to then drill into

progressively longer and more detailed summaries - or listen to the raw audio itself.

As shown by our formative study, pre-existing technology performance drastically suffers when

applied to speech and is still considerably below the requirement for practical usage. Therefore,

in addition to the borrowed pre-existing ASR system (Google Speech-to-Text API) and language

summarization model (M3, paraphrasing adapted PEGASUS), we develop a method to identify

semantically related segments of text that can be input into the summarization model, then merged

back together to maximize coherent summaries. This process can be done recursively to get in-

creasingly shorter and more abstractive summaries.

The core technical novelty and contributions within our speech summarization framework are

as follows:

1. A novel segmentation algorithm that creates semantically similar input blocks from an input

ASR segment in order to maintain conceptual cohesiveness

2. A semantic hierarchical clustering algorithm that joins conceptually similar ideas for logical

subsequent (recurrent) abstract summarization

The inclusion of these procedures to the two-stage hierarchical framework enables not only im-

proved grammatical and semantic cohesiveness but also facilitates various levels of summarization

54



detail, which can be intuitively thought as the following:

1. Long Summary: Cleaned ASR Transcript. At this stage, a transcript’s disfluencies and noises

are cleaned and presented according to conversational order or speaker turns.

2. Medium Summary: Moderately Detailed Summarization. Similar Long Summaries are merged

and further paraphrased, providing key concepts along with essential details.

3. Short Summary: High level Summarization. Similar Medium Summaries are further merged

to provide the transcript’s salient ideas in more concise language.

3.4.1 Interface

The interface (Figure 3.1) consists of three main sections: high level summary column on the

left, the segment data view in the middle and the timeline of segments at the top of the interface.

Users explore the content by first browsing the Short Summary column to get a high level overview

of the content.

Users may click a Short Summary to see summaries of different length and additional levels

of abstraction (Medium and Long Summaries) as well as the ASR transcript, or elect to listen

to the corresponding audio. Yellow highlighting shows a key phrase in the short summary and

it’s corresponding phrase in the other summaries and the ASR transcript to help orient readers as

they move from reading the short summary to the other summaries of the same underlying text.

The timeline of segments shows how all the summaries are aligned. The user can see some Short

Summaries that cover longer portions of the original transcript than others. Clicking on the timeline

will take the user to the summaries of that section.

The interface was designed with two goals in mind:

Design Goal 1: Enable users to quickly identify useful information to them. Presenting high

level summaries to the reader allows them to quickly grasp a general idea of what is being said.

However, simply reading Short Summaries may not entirely satisfy the reader. By nature of being

summaries, they may omit details that may be of interest. Additionally, the automatic summariza-
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tion algorithms are imperfect and sometimes present summaries that are more vague than a user

would prefer. However, the purpose of the Short Summaries are not necessarily to fully summarize,

but to allow the user enough information scent [178] to decide if they want more detail. If they

want more detail, they can use the hierarchy of summaries to read Medium or Long Summaries,

read the ASR transcript, or listen to the underlying audio.

Design Goal 2: Support error recovery. As both automatic speech recognition and summa-

rization may produce errors at various stages of the system, the interface provides multiple tiered

layers of information for users to fall back on in order to recover comprehension of any given set

of summarization data in the event that either a portion of the transcribed audio or summaries has

erroneous text.

Listening to the raw audio will provide the full information a user should need to recover from

confusion or loss of comprehension due to an ASR or summarization error. However, listening to

audio takes longer for most people than reading text. If users wants near-full fidelity information in

a form they can read (or scan), they can refer to the ASR transcript. Many find transcripts of dialog

difficult to read because of the informal language and speech disfluencies. Thus, users may find

the Long Summaries easier to read - they retain almost all the information of the ASR transcript,

but the text is cleaned up to remove these artifacts of speech. Recall that M3 is an instance of

PEGASUS trained on a paraphrasing dataset, resulting in summaries that tend to be cleaned of

superfluous text, including speech artifacts. Users who want more actual summarization can refer

to the Medium Summary.

By presenting users with these options for recovering from ASR and model errors, users can

decide how much time and effort they want to put into recovering from the error. However, there

is a possibility that offering users multiple options could provide a negative experience by over-

whelming them with choices. Over time, we expect users will become familiar with the nature of

each level of detail and get a sense of which option to select. This is an issue we address in the

Section 3.7.
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3.5 System Interface Walkthrough

To give an idea of how the system can be used, consider the following Figures: 3.2, 3.3, 3.4 with

the given 29 minute podcast on financial markets hosted by David Rubenstein interviewing Bill

Ackman. These figures demonstrate an example thought process of a user browsing the podcast

content and how the hierarchical structuring of the system allows the user to further dive deeper

into content he or she finds interesting.

Figure 3.2: System View Part 1. Initially in this view, the user is presented with Short Summaries
that capture the most salient ideas in a podcast. The user can read these in a quick and linear
fashion.

3.6 Summarization Algorithm and Implementation

Figure 3.5 shows the steps through which an audio file is recurrently processed to obtain dif-

ferent levels of summarization (Short, Medium, Long). At a high level, the system segments an

ASR transcript and iteratively summarizes previously combined conceptually similar segments to

obtain increasingly abstract summaries while preserving semantic meaning. Note, the system is

inference only and is not trained.

Stage 1 (Fig. 3.5) of the system employs ASR to create a speaker diarized transcript of the input
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Figure 3.3: System View Part 2. Upon further inspection, the user decides that the 20th Short
Summary piques his/her particular interest. The user finds the summary "the healthcare system
is getting better and people are going to be more careful" particularly interesting as it is widely
known the United States healthcare system is not the greatest and decides to further investigate to
hear the podcast’s perspective on this issue.

Figure 3.4: System View Part 3. By clicking on the Short Summary 20, the user can see the
progression of detail from reading the Short Summary to the Medium Summary. The Medium
Summary provides the user with context that the speaker is referring to healthcare in the context of
recent months. Not the overall US healthcare system as a whole. Further investigating and reading
the Long Summary segments, the user finds that the healthcare system is in reference to getting
better at treating the coronavirus with ventilators.
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Figure 3.5: Summarization Generation Pipeline. Our system enables the conversion of audio
files to multiple tiers of summarization. In the first stage, we convert the audio file into a speaker-
segmented and punctuated transcript and process the transcript, split by speaker turns. In the
second stage, we take each speaker turn and cluster conceptually similar summaries via semantic
segmentation. Each cluster’s summaries are joined (concatenated) based off of semantic similarity.
We remove small summarizations and then repeat the summarization and merging process to obtain
the Medium and Short summaries.

audio file. These speaker turns are further processed by a semantic segmentation algorithm which

divides a given speaker turn into chunks of semantically related sentences. The now refined speaker

turns are iteratively given as inputs into stage 2 (Fig. 3.5) of the system where processing and

hierarchical automatic summarization occurs. After each speaker turn is individually summarized,

its summaries are embedded which are then used to cluster sentences of the summary. Clusters are

concatenated (merged) and shorter summaries, which generally contain little salient information,

are stemmed. The first resulting summary of this iteration through the pipeline represents a Long

Summary. This Long Summary is fed back into the the automatic summarization model and follows

the same embedding, hierarchical clustering, and stemming steps once more to generate a Medium
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Summary. One further cycle using the Medium Summary yields a Short Summary.

Details of each system component are as follows:

Automatic Speech Recognition. We begin by using the Speech-To-Text Google API to ob-

tain transcripts with speaker diarization and predicted punctuation for initial sentence boundaries.

Speaker turns are alternating blocks of text separated by changes in speaker; they provide a very

coarse starting point for transcript segmentation. Speaker turns frequently discuss multiple differ-

ent ideas and may result in a long monologue before another speaker interjects.

Coreferenced Semantic Segmentation. The procedure is given in Algorithm 1 and a visual-

ization is given in Figure 3.6. We directly refer to variables in the pseudocode, in the following

walk through and explanation of the algorithm.

To understand why we employ coreference resolution [179] and speaker shifts to semantically

link sentences together and correct poor segmentation, we must recognize two linguistic tenden-

cies:

1. Unlike written prose, conversation can be far more vague; nouns and objects, herein referred

to as entities, are usually initially mentioned and then sporadically referenced, while all other

mentions are pronouns (it, s/he, they, etc.). Generic topic modeling of dialogue performs

poorly due to the nature of conversations, since conversations have both local and global

topic structures that have weak signals in conversation [180]. Individuals can talk about a

topic using specific references, but a model not trained to recognize these topics could fail

to recognize the boundaries of the topic effectively. To eliminate a dependency on custom

training data, we instead choose to identify expressions that refer to the same entity using

coreference resolution. To employ this technique, our algorithm seeks to group sentences

spanned by an entity, which is defined as the sentences contained by the start and end of the

entity. This method of using coreferenced entities to model text has historically been shown

to be successful [181] [182] and is still used in current state of the art models [169]. We use

the publicly available Allen NLP API [183] for state of the art coreference resolution [184].

2. Speaker shifts may begin relatively different concepts [185] and repeated references to the
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Algorithm 1: Coreferenced Semantic Segmentation
Input: List T𝑖𝑛 of 𝑛 speaker turn segments {𝑆}𝑛

𝑖=0 where word 𝑤 ∈ sentence 𝑠 ∈ 𝑆,
hyperparameters 𝑚 = 100 for maximum coreference word span and 𝑝 = 3 for
minimum number of coreference mentions.

1 T𝑜𝑢𝑡 ← list() # all semantically segmented speaker turns;
2 Initialize 𝑒0, 𝑒 𝑓 # coreference span start and end pointers;
3 Initialize B← list("I", "me") # stop tokens;
4 for 𝑖 = 0, 1, ..., 𝑛 do
5 C← Coreference(𝑆𝑖) # Allen NLP API;
6 for coreference entity 𝑐 ∈ C do
7 if c.span > 𝑚 and |𝑐 | < 𝑝 then
8 delete 𝑐 from C;

9 if c ⊆ B then
10 delete 𝑐 from C;

11 S𝑛𝑒𝑤 ← list() # instantiate new speaker turn block;
12 P← list() # semantic topic cluster within speaker turn S𝑛𝑒𝑤;
13 𝑒0, 𝑒 𝑓 ← 𝑐𝑚𝑖𝑛 with 𝑚𝑖𝑛(𝑤0 ∈ 𝑐 ∈ C) # entity with earliest word index;
14 C𝑢𝑠𝑒𝑑 ← list(𝑐𝑚𝑖𝑛);
15 for 𝑠 ∈ 𝑆𝑖 do
16 𝑠0, 𝑠 𝑓 ← 𝑤0, 𝑤 𝑓 ∈ 𝑠 # start and end word indices of 𝑠;
17 for coreference entity 𝑐 ∈ C and 𝑐 ∉ C𝑢𝑠𝑒𝑑 do
18 𝑐0, 𝑐 𝑓 ← 𝑤0, 𝑤 𝑓 ∈ 𝑐 # start and end word indices entity 𝑐;
19 if 𝑠0 ≤ 𝑒0 and 𝑒 𝑓 > 𝑠 𝑓 then
20 P.append(s) # s within span, add to semantic block;
21 if 𝑐 𝑓 > 𝑒 𝑓 and 𝑠0 ≤ 𝑐0 ≤ 𝑠 𝑓 then
22 𝑒0, 𝑒 𝑓 ← 𝑐0, 𝑐 𝑓 # update maximal entity span;
23 C𝑢𝑠𝑒𝑑 .append(𝑐);

24 break;

25 else
26 S𝑛𝑒𝑤.append(P) # add topic cluster to speaker block;
27 P← list(s) # begin new topic cluster;
28 𝑒0, 𝑒 𝑓 ← 𝑐 with 𝑚𝑖𝑛(𝑤0 ∈ 𝑐 ∈ C) and 𝑐 ∉ C𝑢𝑠𝑒𝑑;
29 C𝑢𝑠𝑒𝑑 .append(𝑐);
30 break ;

31 T𝑜𝑢𝑡 .append(S𝑛𝑒𝑤) # add semantically segmented speaker;

32 return T𝑜𝑢𝑡 # all semantically segmented speaker turns
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Figure 3.6: Alg 1. Semantic Segmentation Example of one speaker turn input into our corefer-
ence resolution algorithm. On the left, the coreference tags generated from the AllenNLP [183]
coreference resolution [184] module are shown with six different references highlighted. Our algo-
rithm groups sentences with references into semantic chunks with a minimum limit of references
and words so that the semantic chunks are still meaningful. In Semantically Clustered Chunk #1
(blue), the first sentence includes three different references (1,2,3), of which two (2,3) are still
used in the second sentence, hence why it is included. The singleton contains no references and
is segmented out. In Semantically Clustered Chunk #2 (red), the first sentence contains two refer-
ences (4,5) of which one (4) is in the second sentence. Although there is a new reference (6), the
reference terminates within the second sentence so no further sentences are added.

same entity indicate the same concept is still being discussed. Sudden changes in speakers

can be correlated with topic boundaries [186] and this concept serves as a common segmen-

tation approach in NLP [125]. All iterative instances of the algorithm on each speaker turn

segment 𝑆𝑖 are therefore independent of each other.

Here we walk through a single speaker turn pass of Algorithm 1. Speaker turn 𝑆𝑖 contains

sentences 𝑠 that were previously divided by ASR predicted punctuation. For each sentence 𝑠, we

first obtain the coreferenced entity 𝑐𝑚𝑖𝑛 (line 13) that maximally spans the current sentence 𝑠

and future consecutive sentences 𝑠 ∈ 𝑆𝑖 (lines 4:10), subject to constraints. This denotes the

start and end pointers (𝑒0, 𝑒 𝑓 ) of the current semantically similar chunk, P (herein referred to as

cluster, line 13). Sentences contained by P’s span 𝑒0, 𝑒 𝑓 , are assigned to P (lines 19:20).

If sentence 𝑠 contains another entity that spans further than P’s current end pointer, 𝑒 𝑓 is updated

to the sequentially higher indexed sentence (lines 21:23). When P’s span is exhausted and

62



cannot be further extended, the algorithm begins a new cluster P. Sentences that contain no entities

are singleton clusters.

We restrict the entity span to at most 𝑚 = 100 words and require each valid span to contain at

least 𝑝 = 3 mentions (coreferences).4 We also do not consider “I” and “me” entity references

since these references do not indicate a semantic change. Figure 3.6 demonstrates an instance of

the sentence entity spans procedure.

Coreferenced Semantic Segmentation Effectiveness on Long Summaries

Model Segmentation Strategy Heuristic Score

M3 Coreferenced Semantic 0.83
M1 Naive Fixed Length 0.61
M2 Naive Fixed Length 0.70
M3 Naive Fixed Length 0.68

Table 3.5: Automatic evaluation heuristic scores for various segmentation strategies on Long Sum-
maries compared to M3 using Coreferenced Semantic Segmentation.

To determine if semantic segmentation is effectively grouping information for M3, we evaluate

the core coreferenced semantic segmentation algorithm, Alg. 1 on Long Summaries. Specifically,

we use our heuristic score to only evaluate Long Summaries, as subsequent (Short, Medium Sum-

maries) evaluation using a previous longer summary as input would induce a circular dependency

due to Sentence Transformer’s usage in Algorithm 2 and the heuristic itself. Because Short,

Medium Summaries use Sentence Transformer to determine which input passage segments

(that would ultimately become a circular reference transcript) to semantically include for summa-

rization, their outputs would likely score artificially high due to the heuristic’s intrinsic incorpora-

tion of Sentence Transformer.

We find that M3 with semantic segmentation obtains a heuristic score of 0.83, a 0.13 improve-

ment over the best naively segmented model, M2, suggesting Alg. 1 is effective and facilitates

increased summarization performance. The marked improvement is important as mediocre initial

summarization (Long Summaries) would lead to poor downstream hierarchical summaries (Short,

4We empirically observed that entities below these requirements had low relevance to the underlying concept.
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Medium Summaries).

Summarization Model. We opt to reuse the paraphrasing M3 instance of PEGASUS. The im-

plementation of M3 was taken from huggingface.co, using checkpoint Tuner/007. We also

make the key observation that multiple recurrent forward passes of M3 (independent of Short,

Medium, Long heirarchical summarizations) removes speaker disfluencies and other speech ar-

tifacts of low importance.

The tradeoff for increased robustness towards speech noise and artifacts is also inherently found

in M3’s paraphrasing nature; M3 struggles to reason out semantically different ideas and suffers

substantially from contextual errors (Table 3.3, M3). However, when ASR transcripts are prepro-

cessed with Algorithm 1, our framework is able to generate not only cohesive and semantically

logical summaries, but also achieve practical accuracy.

Hierarchical Concept Clustering and Merging. The next challenge is to determine which of

the previous level’s summaries to concatenate for further abstract summarization (Algorithm 2).

Recall that semantically similar summaries must be joined or the model output can be factually

incorrect (Table 3.3, M3) as abstractive summarization requires a high degree of semantic under-

standing of the underlying input passage. As a means to compare summary content similarity, we

first use Sentence Transformer [173] to individually embed summaries (still contained in

their own speaker turns S) 𝑠 ∈ 𝑆𝑛
𝑖=0, into vectors in a semantic space. By transforming the text

segments into vector representations, we can now quantitatively compare their similarities via co-

sine distance. Summaries within each speaker turn 𝑆𝑖 are then merged through usage of a pairwise

cosine distance matrix for hierarchical (agglomerative) clustering. Merges are done within speaker

turns to enforce a proximity constraint of only merging local summaries due to the long lengths of

ASR transcripts.

Next, identified summary clusters are sequentially concatenated and concatenated summaries

containing 5 or fewer words are stemmed. We observed that summaries which are not merged and

contain few words are very frequently speech artifacts that contribute no value.

Note that the final level of Medium to Short summaries contain far fewer summaries than ASR
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Transcript to Long Summary and Long Summary to Medium Summary due to previous merges.

We remove the proximity constraint from Medium to Short and allow agglomerative clustering is

across all summaries instead of within speaker turns.

Algorithm 2: Hierarchical Concept Clustering and Merging
Input: List of summaries (sentences) 𝑠 ∈ 𝑆𝑖 ∈ S in speaker turn 𝑆𝑖 for all speaker turns S,

Embedding Sentence Transformer Model 𝑀 , 𝑐𝑢𝑡_𝑜 𝑓 𝑓 = 5 determining
the smallest concatenated summary allowable

1 𝐿𝑜𝑢𝑡 ← list();
2 for 𝑆𝑖 ∈ S do
3 E← 𝑀.𝑒𝑚𝑏𝑒𝑑 (𝑠 ∈ 𝑆𝑖) # embed all summaries within current speaker turn;
4 D← create_pairwise_cosine_distance(E,E);
5 𝑙𝑎𝑏𝑒𝑙𝑠← agglomerative_clustering(D);
6 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← [𝑠 ∈ 𝑆𝑖] .𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑙𝑎𝑏𝑒𝑙𝑠);
7 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ← [𝑠 > cut_off ∈ 𝑆𝑖];
8 𝐿𝑜𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 ( [𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑]);
9 return 𝐿𝑜𝑢𝑡

3.7 Hierarchical Summarization System Evaluation

We performed user studies to evaluate the following:

1. Human assessment of the quality of Short Summaries.

2. The system’s ability to help users recover from errors in summaries.

3. The amount of time users saved by using our system when used in an unconstrained setting

with their own browsing styles and comprehension goals.

Additionally, we present qualitative findings on how and when people would use the system to

find interesting information in spoken dialog.

3.7.1 User Study Methodology

We recruited 10 recent university graduates from diverse professions (5 women, average age

= 26 ) for our study. Each study lasted 1.2 to 2 hours and averaged 1.5 hours; subjects were paid
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$20 per hour for their time. To begin, participants were provided with a scenario where a dialog

summarization tool would be potentially useful: imagine you get an email from a friend or col-

league about an exciting interview on YouTube about “Diversity and Inclusion in the Workplace.”

It’s 23 minutes long, you’re not sure if you want to commit to watching the whole thing, but you

want to know if there’s anything new or interesting in it. We’re trying to help people explore audio

clips to find key takeaways. They were also informed that the summaries were generated by an AI

and might be imperfect.

Participants were then given a link to the interface with the audio for "Diversity and Inclusion"

loaded in. During the warm-up, we explained the different UI components, Short, Medium, and

Long levels of summarization, the original transcript, and the media button to play and scan the

corresponding original audio section. Figure 3.1 is an example of what the user would see. To

familiarize users with the system, we instructed them to read the first Short Summary, its corre-

sponding Medium Summary, Long Summary, and ASR transcript segment, as well as to play the

audio segment.

After the warm-up, participants were asked to perform three tasks:

1. Short Summary Quality Assessment: assess Short Summary quality for two au-

dio files ("Diversity and Inclusion" and one of their choice). Here participants were asked to

think aloud so we could understand how participants built an intuition and what their inter-

pretation of the system was like. We asked participants to rate each Short Summary for two

things: 1) grammatical correctness and 2) semantic comprehensibility. Users answered "yes"

or "no" to each question. For semantic comprehensibility, we ask them whether they were

able to understand the Short Summary and if it matched the corresponding audio segment’s

content. Users were able to check for semantic meaning by comparing against Medium,

Long Summaries, original ASR transcripts, and audio.

2. Short Summary Error Recovery: if participants were confused on a Short Sum-

mary’s meaning, they were asked if 1) they could regain comprehension of the Short Sum-

mary’s meaning and 2) what system features they used to recover the meaning. Participants
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were allowed to spend as much time as they needed to rate all the Short Summaries for the

two audio files and were encouraged to think aloud as much as possible.

3. Practical Usage Assessment: use the system as they would in an every day situ-

ation. Participants were asked to choose the audio file that interested them most from the 5

remaining audio files in Table 3.1 and to use the system to find interesting information in that

dialog quickly. They used the system without any restrictions and without thinking aloud.

We timed participants’ usage and observed their browsing strategies.

We concluded the study with a semi-structured interview about their experience using the sys-

tem.

3.7.2 User System Evaluation

Short Summary Accuracy. During the study participants rated a total of 556 Short Summaries

from the test dataset (Table 3.1). The overall average accuracy across all users and recordings was

71.4% (see Table 3.6). The overall accuracy includes both grammatical correctness (84.9%) and

semantic comprehensibility (75.9%). Overall accuracy is a measure of how many Short Summaries

had any kind of error (either grammatical or semantic).

Criteria Accuracy

Grammatical Correctness 84.9 ± 5.1%
Semantic Comprehensibility 75.9 ± 4.8%
Overall Accuracy 71.4 ± 4.9%

Table 3.6: Average Short Summary accuracy and standard deviations.

An overall accuracy of 71.4% means that many Short Summaries can be read and understood

without any issues. The system’s grammatical correctness is reasonably high (84.9%), but the

system’s semantic comprehensibility is lower (75.9%). Generally, grammatical errors are not

detrimental to user experience because most grammatical errors do not distort the meaning of

the sentence. However, poor semantics often requires users to investigate further to comprehend
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the meaning [187]. In this study, to fully comprehend every Short Summary, users would need to

investigate semantic errors for 1 in 4 Short Summaries.

Because of the current state of machine summarization, we were not expecting the Short Sum-

maries to be perfect. However, with 71% accuracy, we are encouraged that a usable and valuable

system can be built in presence of errors. The subsequent evaluations are focused on whether the

the system can help users achieve their goals despite these errors.

Short Summary Error Recovery When a participant encounters a confusing Short Summary

during the Short Summary Quality Assessment task, we evaluate whether the user can

recover regain holistic text comprehension by using the interface. In total, there were 140 Short

Summaries with unclear meaning, and users recovered from 92.9% of them. This recovery rate is

high – the interface allows them to recover from all but 7.1% of them. This indicates that although

Short Summaries contain errors, the system can still allow users to have full comprehensions with

some extra effort – the post-recovery success rate is nearly perfect: 98.2%.

Required Hierarchical Traversal Level Fraction (%) Used

Medium Summary 11.5%
Long Summary 19.2%
ASR Transcript Segment 40.8%
Audio Segment 20.8%
Querying Neighboring Segments 6.9%

Table 3.7: Distribution of the hierarchical levels users explored in order to recover from an inac-
curate Short Summary.

The hierarchical summarization features of the interface were designed to help users recover

from errors quickly and easily. We wanted to know to what degree participants used these features

during recovery. We found that participants used all the hierarchical summarization features to

some degree. Participants had two main styles of using the summarization: either they traversed

down the hierarchy in order (from most summarized to least summarized forms of the semantic

chunk or skipped to their preferred source of information. Table 3.7 shows the breakdown of how

often each feature was used. Participants used Medium Summaries a small amount (in 11.5% of

recoveries) and used Long Summaries more (in nearly 20% of recoveries). However, participants
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used the ASR Transcript Segment the most (for 40.8% of recoveries.) This behavior is explained

by users noting how Medium, Long Summaries were either too similar or contained the same

semantic errors as Short Summaries. As a result, users defaulted to reading the ASR Transcript

Segment more often.

There are some instances where the transcript and summaries are insufficient for error recovery.

In 20.8% of recoveries, users chose to go back to the audio segment. Although audio takes more

time to listen to, the audio contains information that the transcript does not - it contains emphasis

and tone of voice (as well as avoiding any errors in the transcript). In a small number of cases

(6.9%) users chose to read neighboring segments to recover from an error. This is almost always

because users needed more context that lay outside of the current semantic chunk to recover full

comprehension.

Lastly, some participants noted that some of these errors may not be possible to recover from

because the underlying audio content was difficult to understand or incoherent.

Time Savings. In the Practical Usage Assessment, when participants used the sys-

tem at their own pace (without thinking aloud or rating tasks), we found that on average, the time

participants spent was 27.1% of the original audio time to reach a level of understanding that they

were satisfied with (Table 3.8). The fastest user spent only 6.9% of the original audio time, and

the slowest spent 75.9% of the original audio time, but most spent between 20% and 30% of the

original audio time. We believe the system presents a sizable time savings. Although users do have

strategies for processing audio faster (such as listening at 1.25x speed or skipping the first minute

of the audio), these strategies are unlikely to provide dramatic speed ups and often lack the control

and freedom that our system provides.

How much time users spent varied with what level of detail they wanted to understand. The

two users with the highest time percentage (75.9% and 45.5%) were looking for details. The other

users took much less time and wanted a cursory understanding of the material (Table 3.8) such as

getting a broad gist of the conversation, wanting a few key takeways, or wanting only a specific

piece of information.
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Participant Self-Declared Style Browsing % of Audio Time

𝑃1 Detailed 75.9%
𝑃2 Cursory 12.1%
𝑃3 Cursory 14.9%
𝑃4 Cursory 20.7%
𝑃5 Cursory 20.8%
𝑃6 Cursory 6.9%
𝑃7 Cursory 25.9%
𝑃8 Moderately Detailed 24.7%
𝑃9 Cursory 24.3%
𝑃10 Moderately Detailed 45.5%

𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 - 27.2%

Table 3.8: Individual participant times using the system as percentage of original audio length
alongside intended browsing style.

3.7.3 User Qualitative Evaluation

. During the semi-structured exit interview, participants were asked about their experience

using the system, use cases where they would or would not consider using it in their life, and

potential improvements to the system.

While browsing for interesting nuggets of information, users sometimes found the Short Sum-

mary sufficient, but often leveraged hierarchical summarization features to dig further. In the

podcast discussing Teach For America during Covid, 𝑃7 found this Short Summary to be inter-

esting on its own: “15 to 16 million children don’t have access to broadband internet.” Likewise,

in the podcast on Health, 𝑃8 found this Short Summary interesting without reading further: “You

can prevent systemic bias by hiring nurses who speak Spanish and are bilingual.” However, 𝑃2

selected Ray Dalio’s interview and found the first Short Summary intriguing (“There are three big

forces at work have have not existed before”) but had to read the transcript to discover what the

three forces were. Similarly, 𝑃9 selected Bill Ackman’s interview and was intrigued by the Short

Summary: “The uncertainty of the future can affect the model that analysts use to value securities.”

𝑃9 said: “I found this as a thesis statement and read more into it.” Although Short Summaries may

be sufficient, that is not always the case and as a result it is critical that Short Summaries provide
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good information scent to indicate to users when to use hierarchical features to investigate further.

Users reported they would consider using a tool like this for media they considered “conden-

sible.” They mentioned news, YouTube videos (particularly reviews), interviews, and podcasts as

media that could be condensed. Users also stated they would prefer to use the tool for topics they

were curious about, but “didn’t want to spend too much time on" (𝑃7). One such use case was if

a friend suggested they listen to a long audio file and they “don’t wanna be rude” (𝑃7). Another

use case presented was for situations when a given topic is familiar, but the presentation could give

background that could be condensed (𝑃2). Finally, a third case users noted is when they wanted

specific information from an audio recording, such as "learning what a company does in interviews

with CEOs" (𝑃10). 6 out of 10 participants said they would not use the tool for detailed or technical

topics, particularly if they were responsible for learning the material at work or school. Addition-

ally, they would not use it for personal things they were deeply interested in because “I’d want to

read those in detail” (𝑃2) or for fictional narratives where there is pleasure in enjoying the flow of

the story rather than extracting information. Clearly, this is not a tool for all use cases. Similar to

how people wish to skim text using a tool, our system can allow users to “skim” audio.

Throughout the experiment users frequently relied on their own knowledge to guide them to-

wards exploring content in more detail. 𝑃5 works in the medical field and was intrigued by a

Short Summary in the Health dialog: “There was a spike in demand for specific types of nurses.”

𝑃5 wanted to know what those specific types were. The Medium Summary did not contain that

information but the Long Summary did - ICU nurses and ED (emergency department) nurses were

the two specialties named. 𝑃10 was familiar with “How I Built This” podcast and was specifically

interesting in understanding the “pain points with building the company.” He spent most of his

time in the middle of the interview because he knew from the structure of the podcast that the in-

formation would probably be there. 𝑃4 was already familiar with finance and with Bill Ackman’s

philosophies, but the tool was useful to him as he skimmed the Short Summary to see if there

would be anything new and interesting, given his background. For users with background knowl-

edge, tools which provides user control and freedom enable more efficient navigation in order to

71



locate valuable information.

The hierarchical features were more useful for some dialog than for others. 8 of 10 users of the

Diversity dialog did not mention reading Medium, Long Summaries, and always went to the tran-

script. However, 5 of 5 readers of Ray Dalio dialog used the Medium Summaries. This is likely due

to the nature of the underlying audio and the quality of the summaries. Ray Dalio tends to speak

in structured and organized paragraphs creating longer but structured ASR transcript segments.

This created enough of a distinction between Short and Medium Summaries where Medium Sum-

maries contained a good balance of interesting information while retaining an attractive length.

Meanwhile, the Medium, Long Summaries of the Diversity dialog did not add enough information

causing users to read ASR transcript segments to obtain desired additional details. As these factors

are difficult to control for and user dependent, the solution of presenting summaries at multiple

levels of granularity was successful.

Short Summaries were imperfect, but users found strategies to recover understanding of the

underlying material. A common complaint about the tool was use of ambiguous pronouns in the

Short Summaries. For example, in the Chipotle interview the Short Summary says. “It’s hard to say

what he is like because he was an amazing visionary.” Here “he” refers to the CEO’s mentor - a head

chef at a famous restaurant, but users had to read the transcript to find this information. A related

complaint is that “the short summaries were disconnected from each other” (𝑃7). Summarization

often removes segues and other transitional elements in order to surface meaning. However, this

provides a disjointed experience for users and requires them to “rewind a little bit” (𝑃2) to recover

context or flow. When using the hierarchical summarization features to recover users found “Word

per word highlighting indicates where it was to quickly see the segment to read to resolve” (𝑃10).

This type of consistency across the interface makes information easier to scan. In future work,

we could explore ways to make the Short Summaries flow better, such as resolving pronouns and

linking related information across the Short Summaries.
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3.8 Limitations and Future Work Direction

Users generally found the system useful, though there are several ways the underlying technol-

ogy could be improved to provide better summaries and to generalize to more types of dialog.

3.8.1 ASR Limitations

Although ASR works well for the two-person, studio-recorded interviews in this system, it

still has many limitations. ASR may incorrectly transcribe audio with speakers with accents or in

the presence of background noise, limiting user and context settings. Additionally, ASR makes

diarization errors when multiple speakers are present and interrupt one another, such as in a panel

discussion where participants argue or get excited. These diarization errors in turn limit the types

of conversations ASR works for.

3.8.2 Summarization Language Model Limitations

User Information Retention. The goal of this system is to help users navigate longform au-

dio and find interesting information quickly which creates user comprehension trade-offs. A more

difficult challenge would be to make a system that helps users find all interesting information. We

did not measure the precision of the system, but acknowledge that users missed interesting infor-

mation. In particular, we observe the summarization language model occasionally omits named

entities that can signal interest to readers. For example, in the interview with hedge fund manager

Bill Ackman, he mentions he plays tennis. The system correctly summarizes this fact and several

study participants found it interesting. The system then produced the Short Summary saying "Ack-

man: He spent the rest of the match trying to hit me back after I hit him with the overhead." Many

participants overlooked this. However, the person Bill Ackman mentions hitting is tennis legend

John McEnroe. It is likely users missed this potentially interesting fact due to summarization omis-

sion. Future work could experiment with replacing references with corresponding named entities

in Short Summaries to provide better information scent for users. A first step would be to quantify
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the interesting information that users missed and then identifying the source: ASR system level

errors (transcription, diarization), segmentation errors, or language model summarization errors.

Understanding where errors stem from can inform subsequent research where the system should

be improved upon to provide more complete information.

Subtle System Errors May Create User Misunderstanding. In addition to overlooking in-

formation, users may be misled by the system if output summaries contain errors that users do

not detect. Typically errors are often obvious due to the surrounding context or the reader’s prior

knowledge of the topic. However, subtle non-obvious errors may go unnoticed, obscuring system

inaccuarcies to users. This can lead to misunderstandings as users may not realize a correction

is needed to properly understand the underlying information. Our evaluation did not address this

limitation. An important next step is to study whether or not the summarization system contains

these subtle errors, and if so, how frequent they are. Depending on the nature and severity of such

errors, systems could contextually reason entire dialog transcripts (as opposed to individual local

semantic segment) or query outside information to check summary adequacy.

External Knowledge (Co-)Referencing. Speech summarization is particularly challenging

when speakers reference ambiguous objects without proper introduction. Such instances include

referencing world knowledge (i.e. current events and facts), local knowledge (speaker dependent

context), and deictic references (entity a speaker is directly pointing at). In our study recordings,

speakers often referenced world knowledge. For example, in the Diversity and Inclusion audio, our

system produced the Short Summary: "The two children I have look like dante[sic] and rashad."

Some users picked up that this referred to Daunte Wright and Rashad Turner, recent tragedies that

were foundational to the Black Lives Matters movement, while other users missed this fact. In fu-

ture work, it may benefit readers to link indirect references in the summaries to outside knowledge.

3.9 Conclusion

Longform spoken dialog is a rich source of information that people encounter every day. How-

ever, for individuals who lack the time or inclination to listen to complete audio, the information
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is not easily accessible. Given the marked practical performance improvement in ASR and large

scale summarization language models, new opportunities and affordances exist that were previ-

ously unexplored. These possibilities give hope that content rich longform spoken dialog could

be easier to access for individuals who lack the time, inclination, or ability to listen to complete

audios. However, current state of the art ASR and summarization models still present several

sources of error, ranging from word recognition failures during speech recognition to the intro-

duction of hallucinations, grammatical errors, and misrepresented contexts during summarization.

Such errors ultimately suggest that immediate fully automated approaches are still out of reach

and careful consideration must be given towards creating systems and algorithms to compensate

for such shortcomings. This chapter presents an end-to-end dialog summarization system that ef-

ficiently repurposes existing ASR and language models while mitigating their innate flaws, and

presents an accompanying user interface that allows for user controllable consumption of hierar-

chical information.

While prior work has established the benefits of hierarchical browsing of information [171, 38],

we demonstrate that automatic summarization is now feasible through large scale language mod-

els. Moreover, hierarchical browsing can help people skim information and recover from errors

made by automatic tools. Interestingly, we also observe that users can apply Short Summaries as

a navigational tool to identify interesting parts of audio recordings and drill deeper. From a tech-

nical perspective, our system achieves practical summarization accuracy of spoken dialog without

custom data sets [167] or subsequent retraining of large language models. Rather, by using an

improved segmentation approach we were able to employ out of the box industry standard models

to produce readable and meaningful summaries in a novel traversable interface.
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Chapter 4: Creating a Hierarchical Summarization Dataset for Longform

Spoken Dialog

Figure 4.1: Hierarchical Annotation Procedure. We propose a bottom up hierarchical annotation
protocol that dynamically segments inputs presented in a dedicated summarization annotation user
interface (UI). Annotators recursively summarize text in recursive a manner when harvesting gold
label human written summaries. This allows for a number of benefits: (i) intermediate text repre-
sentations of summaries in varying levels of detail (ii) information of gradual content selection in
summaries (iii) system guided and constrained summarization. For conventions, levels can be in-
terpreted as depth (𝑦-axis) or the longitudinal plane, whereas the lateral intricacies (ASR segments,
individual summaries) within a level can be interpreted as the 𝑥-axis of the longitudinal plane.

In this chapter we explain the process of curating a hierarchically annotated dataset for long-

form spoken dialog. As with the previous proof-of-concept system discussed in Chapter 3, we do

not currently have a human annotated, gold label dataset that contains intermediate text level sum-

maries to automatically benchmark the system against. Figure 4.2 gives an visual overview of the

dataset collection process. We point out that this dataset affords many interesting research ques-
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tions that are outside the breadth of this dissertation1. The same conventions defined in Chapter

2.1 are also used here.

4.1 Motivation

The natural language task of summarization (refer to Section 2.5), where the goal is to compress

a long input text by identifying and extracting the most important parts and output them as a

shorter text, provides an instinctive solution for refining speech. After using automatic speech

recognition (ASR) to transcribe audio into text, lengthy audio transcripts can be automatically

processed and distilled into their most important components. In doing so, longform spoken dialog

can be transformed into a more manageable and viable form. Note that a transcript (obtained

through state of the art Google Speech-to-Text [53]) will be the starting input.

While applying automatic summarization language models (LM) to speech in of itself is not

a new concept, abstractive longform spoken dialog summarization work is still relatively nascent.

Broadly, current research in abstractive speech summarization can be broken down into two cat-

egories: model architecture improvements and creating speech summarization datasets (Refer to

Section 4.3). However, current research do not adequately address challenges stemming from

longform speech summarization.

Challenges arising from longform text inputs. Length constraints occur when the input size

of a summarization model exceeds the typical allotted 1024 tokens, though some language models

may have larger maximum inputs. This is particularly problematic in the spoken dialog domain

where meetings, conversations, and interviews can span hours, for reference a 20 minute speech

audio file may contain anywhere from 4,000 to 6,000 words2, far exceeding a typical transformer

based language model token input limit. Speech and dialog transcript lengths easily exceed the

input size limits of language models and make encoding them in a single forward pass intractable,

forcing the input to be broken up. This leads to context fragmentation, where the input has informa-
1Further experiments on validating data quality and training baselines will appear in a separate work. The gold

summaries are currently only used in the automatic evaluation of System 2 in Chapter 5.
2Accounting for SPM (sentence piece word tokenization) and subwords there is likely a 1.3 multiplier on words to

number of tokens. For example, running can be broken down into run + ning depending on training.
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tion that is predicated on context that is no longer part of the input, leaving inadequate information

for a language model to process.

Language models already require a higher degree of complexity to successfully reason through

an input text’s content in order to successfully determine what information should be conveyed

in the generated abstractive summary (herein referred to as content selection [145, 146]). In a

longform input setting, this is even more challenging. Given the substantially larger information

load, far more content must be reasoned through. Moreover, summarizing such a long (20 minute

or more) audio file in a few sentence is likely insufficient; standard length summaries are too short

to capture sufficient amount of information.

4.2 High Level Overview

Proposed Dataset Solution. From the previously enumerated challenges, we can observe how

curating a dataset that is hierarchical, recursive, and modular is immensely beneficial to longform3

abstractive summarization research.

1. Hierarchical. By providing intermediate summaries in increasingly levels of brevity and par-

ticularity, users are afforded the option of gold summary references at multiple stages. This

provides training or test data for summarization models adapted to output various degrees of

length and detail.

2. Recursive. Bottom-up [44] recursive summarization gives insight towards content selection

by providing a progressive account as to what details are deemed insignificant and summa-

rized out as well as what concepts are important to retain and/or merge with other concepts.

3. Modular. Accounting for long range contextual dependencies and segmenting longform

input into independent smaller chunks, the task of content selection is far easier. The in-

dependent smaller inputs provide a means for size memory constrained language models to

3We primarily focus on the challenges that arise from longform inputs to summarization models.
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process longform dialog. Importantly, this also provides transparency to high level sum-

maries and their respective summarized contents; it is possible to obtain an alignment from

any subsequent (recursive) summary back to the input transcript.

High Level Annotation Procedure Description. Therefore, we propose creating a hierarchi-

cal abstractive summarization dataset. With a longform transcript as the source input, the hierar-

chical recursive annotation procedure, also shown in Figure 4.2, is as follows:

1. The protocol breaks the input text into smaller manageable segments, reducing the complex-

ity of annotator content selection by narrowing the scope of input information.

2. Annotators are then tasked with individually summarizing each segment.

3. All the user provided summaries are collected, finishing the current level. For the next level,

all the summaries are concatenated and dynamically re-segmented and the annotator repeats

step 2. Observe how the text is compressed at each level by the summary compression rate.

4. When the concatenated text is short enough (stop condition), the text is simply summarized

into a short 5-7 sentence (300 word) summary.

Our contributions primarily lie in creating a novel hierarchical summarization annotation pro-

cedure and the resulting dataset, which to the best of our knowledge, is the first of its kind and

not limited to only the spoken dialog domain. This is presented along with a dedicated annotation

user interface (UI)4. We also discuss special considerations towards biases that arise from content

selection and context fragmentation in the annotation process.

4.3 Related Work

For more detail on the related work below, refer to Chapter 2.5 - 2.7.

Hierarchical Recursive Summarization. Two prominent strategies for processing extremely

long form input sequences are used: (i) designing new hierarchical deep learning architectures to

4https://resubstrate.github.io/lex-client/index.html#/login
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accommodate greater context [71, 72, 78] and (ii) modifying input sequences to fit with existing

LMs (i.e. reducing the input length). We will primarily focus on the latter strategy, referred to

as hierarchical or recursive summarization, which our annotation procedure closely mirrors. It is

important to understand the difference and make a distinction between a (i) model level hierarchical

architectural modification and (ii) text level hierarchical processing methodology.

(i) To model long range dependencies in the meeting setting, models typically employ a form of

hierarchical attention architecture [121, 122, 123, 124, 107]. Specifically for meetings and

speech, HMNet (Hierarchical Meeting summarization Network) [125] creates a two-level

hierarchical structure with a speaker turn level transformer and word level transformer.

(ii) Hierarchical recursive techniques [112, 113, 114, 116] are generally concerned with seg-

menting a longform input into smaller and more tractable inputs and recursively using a

summarization model’s output as its input to obtain increasingly shorter summaries.

It is important to recognize [188] and its relationship to this dissertation; the procedures and

challenges (recursive summarization, hierarchical clustering) the authors encountered are widely

similar to this chapter, except perceived from a human annotator’s perspective. However, [188] is

concerned with multi-document summarization (MDS) and does not provide a dataset containing

gold-label human written intermediate hierarchical summaries. As a result, [188] is evaluated with

a series of subjective questions. In this chapter, we provide such intermediate annotations, thereby

allowing automatic evaluation for hierarchical summarization systems.

4.4 Data Preliminaries

All audio recordings consist 1, 2, or 3 speakers engaging in a dialog about different topics

ranging from business to geopolitics to social sciences and range from 25 minutes to 1.5 hours. All

interviews are conducted in English, although not all participants are native English speakers. We

prepared a dataset of 25 transcripts (Table 4.1), of which, 10 are completely human hierarchically

annotated. The data consists of audio recordings from a diverse range of speakers and topics from:
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Transcript Source Transcripts Minutes Word Count Total Hierarchically Annotated

Bloomberg Wealth 6 155 27,801 2
NPR: How I Built This 14 674 122,807 7
TED Talks 5 147 23,097 1

Total 25 976 128,685 10

Table 4.1: Audio file metadata. These are typical podcasts, interviews, and debates. Only a subset
of these files are used in the evaluation of Chapter 5. Currently 10 (proportionally from each data
source) of the transcripts are fully annotated and used in evaluation in Chapter 5; annotations of
the remaining transcripts is ongoing and to appear in this chapter’s corresponding full paper.

1. NPR: Podcasts from the "How I Built This" series

2. Bloomberg TV: interviews predominately on finance

3. Ted Talks: topics range in discussing COVID-19 to Diversity and Inclusion

The audio was transcribed with Google Speech-to-Text. Additionally, we use this service’s

speaker diarization and automatic punctuation to obtain speaker turns and sentence endpointers

respectively. Word recognition errors and erroneous punctuation are not corrected, accurately

depicting an archetype input transcript for later test or training use. As such, gold label transcripts

do not exist in this dataset. Gold label herein refers to the human authored summaries.

4.5 Methodology

Reiterating conventions, levels can be interpreted as depth (𝑦-axis) or the longitudinal plane,

whereas the lateral intricacies (ASR segments, individual summaries) within a level can be inter-

preted as the 𝑥-axis of the longitudinal plane. A segment-summary pair refers to an individual

input segment and its corresponding annotated summary.

Each segment is obtained using a fixed segmentation procedure which truncates at a maximum

length (500 words) while preserving sentence boundaries. In other words, if only part of a sen-

tence can fit in a given segment without exceeding the maximum allowable length, the sentence is

removed from the segment and used as the beginning of another segment. Whenever segmentation
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is discussed in our system, it is referring to this fixed segmentation procedure. Addressing context

fragmentation is discussed in Section 4.5.3 and 4.5.5.

The summarization process begins at the ASR transcript, or level 0. Levels refer to the actual

text and not the concatenation and segmentation process. For example, annotators are at level

1 when summarizing the segmented ASR transcript, and at level 2 when summarizing level 1’s

summaries. For simplicity, when referring to a level’s input, we assume it is already segmented

unless stated otherwise.

The 𝑛-th level denotes the final summary and the input is short enough where it no longer

requires segmentation. This is triggered by a termination condition when the number of words in

the input falls below a fixed threshold. Lastly, observe how the compression rate of a level (the

fraction of total number of words in all the level’s annotated summaries divided by the number of

words in the input) affects the number of levels. A smaller compression rate will result in reaching

the termination condition quicker, resulting in potentially fewer levels.

4.5.1 Annotator Design Considerations

Next we examine challenges due to speech and annotator biases and their implications. It is

necessary to suppress and minimize such complications at any early stage; due to the hierarchical

recursive aspect, initial errors can propagate and become exponentially detrimental towards later

recursive summaries. Consider the case where an an annotator writes an erroneous summary. This

erroneous summary is now a part of the next level’s input, likely guaranteeing the output will again

contain some amount of the erroneous input5. Interestingly, some of the challenges annotators

need to contend with. are similarly reflected in challenges that summarization models also face.

Speech Transcript Comprehensibility. Reading a speech transcript is quite challenging: aside

from imperfect punctuation, word recognition errors, and vague pronoun references, it can be

difficult for a person to track and follow the conversational discourse. Consider the following

5It is possible for users to "summarize out" the erroneous input summary, for example if the erroneous input sum-
mary contains no useful information. However, more likely than not, some amount of information will be propagated
and this will continue recursively bias future levels.
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examples 1 and 2:

1. • Speaker 1: "There was a sale at the store.".

• Speaker 2: "Yeah I bought apples and then returned home."

2. • "There was a sale at the store. Yeah I bought apples and then

returned home.".

Normally, listening to a conversation, it is easy to distinguish who is talking and thus accurately

comprehend the situation as in example 1. However, reading a transcript without any indication

of who is speaking, can contribute to materially different understandings of the same situation.

As with example 2, it is unclear if the same person bought the apples and returned home or if it

was someone else. Note that there may be occasional clues when reading a transcript such as an

interjection or the obvious referring to someone by name. Appropriately, it is important for the

system to convey speaker turns to annotators.

Annotator Content Bias. A "good" summary is inherently subjective; in other words, what

one individual finds interesting and worthwhile in a summary may differ from another individual.

Given an input passage (or transcript) there conceivably countless summary possibilities that may

result in a "good" quality summary. As a result, human written summaries may conceptually dif-

fer due to annotator content selection biases (i.e. What does this annotator deem to be important

vs. another annotator?) and still remain adequate and of high quality. The importance of content

selection is further magnified when summarizing longform text. It becomes clear how summariza-

tion is a fundamentally under-constrained problem [90]. These effects are further magnified when

summarizing longform text. Still, it is worthwhile to point out that breaking up longform input and

recursively summarizing enforces a shared tiered structure between annotators, and should yield

more consistent results summaries [43].

Accordingly, we ensure at least 2 annotators summarize any given transcript. Using more than

1 reference summaries for evaluation (and possibly training) dives into the multi-reference domain
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[189, 190, 191] and outside the scope of this dissertation6.

Annotator Writing Style. Second, different annotators have different prose tendencies. Some

individuals may write with an active voice while others write with a passive voice, meanwhile vo-

cabulary and vernacular is also highly dependent. In order to minimize the variance of summaries,

annotators were instructed to write with a consistent tone of voice, avoid ambiguous pronouns if

possible, incorporate a mix of extractive summarization, and try to not introduce any proper nouns

in the summary if they were not present in the input segment. The last instruction is particularly im-

portant to prevent memorized or hallucinated entities if these summaries are to be used as training

data [69].

Annotator Summary Lengths. Critically, the type of content in the input segment directly

impacts the length of an annotator’s summary; after all segments will vary as some can be more in-

formation dense and others can be non-informative. While having approximately summary lengths

is instrumental towards consistency in intermediate summaries, a fixed length summary cannot be

forced upon users without sacrificing summary content quality. Observe how the distribution of

informative content is not uniform in an input text, suggesting that some segments can have shorter

optimal summaries while others require more text to achieve adequacy.

An annotator’s writing style will also decidedly vary. By default, an annotator that is more

verbose will have a higher average word count than an annotator that is terse resulting in different

summary lengths. From here, we take away the observation that the system needs to be flexible in

accommodating different summary lengths, while maintaining a depth uniformity.

4.5.2 Hierarchical Summary and Level Design Considerations

Collecting longform human annotated abstract summary datasets is already a challenging task

with regards to differences in annotator summaries [192]. With the hierarchical recursive nature,

this is even more difficult as there are new elements to consider. For the same input transcript,

hierarchical summarizations from different annotators need to have the same number of interme-
6This will be addressed in this chapter’s corresponding paper (future work).
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diate levels if corresponding intermediate summaries (i.e. level 1 from annotator 1 and level 1

from annotator 2) are to be used as multiple references. Summary levels between annotators are

only comparable if they are aligned. Note that the final 𝑛-th summary will likely be comparable

in length between annotators due to the termination condition catching the 𝑛-th layer’s input and

coercing it to be similar lengths regardless of annotator.

Ensuring consistent levels between annotators is deceptively complex. Naively, the system can

use a fixed rule pairwise concatenating summaries and recursively summarizing pairs, resulting in

the same number of inputs and levels regardless of annotator. However, this would tremendously

sacrifice quality and runs counter to the requirements set forth from Section 4.5.1 on annotator

summary lengths.

Balancing concerns of flexible inputs and summaries motivates the choice of a concatenation

and re-segmentation procedure [112, 113]. By concatenating and re-segmenting to the maximum

length allowed per segment, level 𝑗’s summaries (outputs) give level 𝑗 + 1 inputs a wider context

(receptive field). Now the system’s backend design question becomes, how can the system ensure

consistent hierarchical levels without fixed rules that constrain annotation quality?

The answer lies in adjusting the compression rate between levels where we have the invariant: a

smaller compression rate leads to fewer levels while a larger compression rate produces additional

levels. Laterally, compression for a level is commutative; it is equal to the average compression

rate of all the individual segments. This reduces the problem to adjusting individual segment

compression rates.

There are two key observations that need to be understood:

1. Individual Input Segment Length. As Goldestein et al. [193] empirically notes: "summary

length [is] independent of document length, and that compression ratios became smaller

with longer documents"7. Rephrased, a segment’s annotated summary output length has a

nontrivial degree of inelasticity, or stays relatively the same, with respect to changing an

input passage’s length. Intuitively, it is difficult for a short(er) passage to be further sum-

7See Figure 1 [193].
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marized without sacrificing quality; meanwhile, a long(er) passage’s summary loses utility

once it becomes too long. If the system can alter the segment lengths, it can govern a level’s

compression rate.

2. Number of Inputs Segments Per Level. Of course, changing segment lengths requires mod-

ifying the total number of segments. By increasing the number of segments, the length of

a segment is reduced while decreasing the number of segments increases the length of a

segment.

As a result, the system these are the two knobs that can be adjusted automatically and dynam-

ically to tailor towards the individual annotator (Section 4.5.4). From a high level, the system

sets an ideal compression rate (0.45) per level. If annotators deviate from it, the system adjusts

subsequent levels’ segmentation lengths and segment counts to guide the annotator back on track

to the ideal compression. Intuitively, if an annotator tends to write less, writing summaries that

have an average compression of 0.3, they can expect segments shorter in length but more numer-

ous in quantity. Conversely, if an annotator tends to be verbose, they can expect fewer but longer

segments.

4.5.3 Annotation Protocol Technical Details

In this section we explain the technical details in the hierarchical annotation process, shown in

Figure 4.2. First we are given an input source text (ASR transcript) which contains 𝑛 sentences,

denoted as 𝑆0 = (𝑠1, ..., 𝑠𝑛). The segmented instance S0 is defined as 𝑆0
𝑖
∈ S0. The superscript 𝑗

indicates the current hierarchical level (e.g. 𝑆 𝑗 ).

The intermediate summary outputs from each level is given as 𝑇 𝑗
𝑖
∈ T 𝑗 . The concatenated

summary is given by 𝑇 𝑗 ,𝑐; the superscript 𝑐 (for concatenated) is indicates the individual sum-

mary outputs have been concatenated. Outputs can be used as individual segment-summary pairs

(S 𝑗 ,T 𝑗 ) for 𝑗 ∈ |𝑙𝑒𝑣𝑒𝑙𝑠 | for training and test data. Additionally, inputs and outputs can be used

at the document level where all segment-summary pairs are respectively concatenated in order

(𝑆 𝑗 , 𝑇 𝑗 ,𝑐).
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Procedure Walk-through. For simplicity, we drop the 𝑗 superscript notation denoting level.

The input source text 𝑆 = (𝑠1, ..., 𝑠𝑛) is first segmented into a smaller, more manageable inputs:

S = [(𝑠1, ..., 𝑠𝑖), ..., (𝑠 𝑗 , ..., 𝑠𝑘 ), ..., (𝑠𝑙 , ..., 𝑠𝑛)] where 1 < 𝑖 < 𝑗 < 𝑘 < 𝑙 < 𝑛. Observe how 𝑆 now

becomes S as it is a collection of segments of sentences, such as 𝑆𝑖 = (𝑠 𝑗 , ..., 𝑠𝑘 ), which is now an

individual input to a summarization model.

For each 𝑆𝑖 ∈ S the annotator writes a summary 𝑇𝑖 ∈ T creating segment-summary pairs. Here,

the annotator has the option of including additional sentences as context for an input segment

𝑆𝑖 from preceding (𝑆0<𝑖) and succeeding (𝑆𝑖<𝑛) segments. An instance of 𝑆𝑖 is made where the

additional context is prepended or appended accordingly (𝑆
′
𝑖
) and set aside for final individual

segment-summary pairs that now have all the required context8. 𝑆
′
𝑖

is not used for future levels.

This concludes the process for one level and is repeated identically until a termination condition is

reached (Section 4.5.4).

4.5.4 Controlling Segmentation

In order to facilitate relatively uniform depth across hierarchical summarization annotations,

annotators were loosely guided by a dynamically calculated segmentation boundary algorithm.

This algorithm began with the follow static assumptions:

1. A maximum segment word length of 500 to comfortably fit within the maximum length

limitations of current state of the art summarization models (1024 tokens) [108]. Recall that

the sentence piece model tokenization will yield more tokens than words.

2. A preset ideal compression ratio of 0.45 based upon past research investigating empirical

optimal summarization compression [193, 194].

Based on these assumptions, an optimal segment length 𝐿𝑐 is determined at every summary

depth for an annotator’s current summarization. The deviation from this optimal segment length is

8Because of the possibility of adding context, the maximum length per each segment was given additional tolerance
to fit within a transformer model.
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then calculated and the maximum segmentation length of the annotator’s subsequent depth is ad-

justed to offset this deviation. By adjusting the maximum segmentation length at each depth (level)

based on each individual annotator’s compression rate, the overall depth across all annotations can

be guided to a fairly convergent and uniform depth for each given source transcript.

We define the following:

• 𝐿𝑚 = Maximum Segment Length (500 words)

• 𝐿𝑟 = Ideal Compression Rate/Ratio (0.45)

• 𝐿𝑐 = Ideal Segment Length

• 𝐿𝑠 = Ideal Segment Count

• 𝑅 = Realized Compression Ratio (of current annotation level)

• 𝑆 = Realized Segment Count (of current annotation level)

• 𝑆𝑡 = Segment Count (of current source text)

• 𝑊𝑠 = Word Count (of current source text)

• 𝑂 = New segment length (in words, not tokens)

𝐿𝑐 = 𝑊𝑠𝐿
log𝐿𝑟 𝑆

−1
𝑡

𝑟 (4.1)

𝐿𝑠 =
𝑅 ·𝑊𝑠

𝐿𝑐
(4.2)

𝑂 =
𝑅 ·𝑊𝑠

𝐿𝑠
(4.3)

Finally, at every depth annotations are validated for a terminal criteria which would conclude

the hierarchy of summarizations based on either crossing a minimum word count or minimum

segment count threshold. For this dataset a terminal threshold of less than 700 words or less than

10 segments was utilized. The termination criteria is given below:
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𝑊𝑠 < 700 𝑜𝑟
𝑊𝑠

𝑂
> 10 (4.4)

4.5.5 Annotation User Interface

The annotation user interface is given in Figure 4.2 for the first level, the segmented ASR

transcript. On the left hand side, users are given the segmented text input where each of the

sentences are numbered. On the right hand side, users are provided a text box for writing their

summary and a smaller box to include external context. At the bottom of the page, there is a

submit button for the user to click when all the segments are complete, which finishes the current

level. Subsequent UI views differ as they no longer contain speaker diarization coloring. The final

level’s UI view only contains one segment as the previous level’s concatenated summaries are not

segmented.

Notably, the UI has the following aspects:

1. Speaker Diarization. Speaker turns are color coded pink and teal to help users follow the

conversation.

2. Context Fragmentation. Due to the fixed length segmentation, it is possible to truncate im-

portant information that is necessary to summarize a segment. As a result the user has

the option to bring in sentences from preceding and subsequent segments for the segment-

summary pair. Now each segment-summary pairs have the necessary context to be used

individually.

3. Text Box. Annotators have the option to include no text as a means of explicitly excluding

all the information in the input segment from the subsequent level. This was intentionally

allowed as users may feel a segment contains neither relevant nor important information

worth summarizing.
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Figure 4.2: Main Annotation/Summarization View. Users are presented with segmented sum-
maries on the left hand side, the right hand side has two text boxes, one for the user to write their
own authored gold label summary and another to include sentences beyond the current source text.
By allowing the annotator to include any extra information that may have been used to write their
summary, the system minimizes context fragmentation and preserves long range dependencies.
Speaker diarization is used to to color code pink and light green to indicate speaker turns to users.
Each segment and respective summary is referred to as a segment summary pair.

4.5.6 User Interface Engineering and Technical Details

Due to the extensive and taxing nature of summarizing longform spoken dialog, we imple-

mented user accounts and saving to allow intermittent working to prevent annotator fatigue and
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Figure 4.3: User Login and Progress Saving. To facilitate multiple annotators the system is
hosted online with different user accounts. To ensure summarize quality and prevent degradation
due to annotator fatigue, the system saves all of the annotator’s intermediate work and not requiring
annotations to be completed in a single sitting.

possible decay in annotation quality. Annotators noted that a 25 minute transcript requires around

4 hours and a longer transcript (1 hour or more), requires around 6 hours.

• Annotator accounts: users are able to sign in from any machine to work on their assigned

transcript.

• Saving annotator progress: instead of saving an annotator’s progress at each level, each

segment’s summary is saved by the system.

4.5.7 Annotator Instructions and Guidelines

There were a total of 11 annotators, all native English speakers with a college degree. Each

annotator summarized 2-3 transcripts and were compensated $20 an hour for their time. Annotators

were provided with a detailed document demonstrating step by step how to use the summarization

system. The following is an excerpt taken from the introduction of the document:

"The purpose of this task is to summarize a very long podcast transcript. This podcast has been
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converted from audio using speech-to-text which means there will be some errors - do your best to

try to make sense of what the text is saying if it does not make sense.

Podcast audio transcripts can be extremely long, and summarizing them can be a daunting

task. What we are trying to do is summarize in a recursive nature, meaning you write a summary

of the transcript, then summarize that summary, and again and so forth until you obtain a much

shorter final summary.

This is aided by breaking up a very long chunk of text into smaller chunks. These smaller chunks

are individually summarized and then concatenated. To create the next summary, the concatenated

summaries are then broken up again into smaller chunks and recursively summarized."

First, annotators were instructed to create accounts in order to save their progress due to the

likelihood of not finishing in a single session. Afterwards, users were given a walkthrough and

example demonstrating how to write (according to Section 4.5.1) their summaries. Speaker turn

color coding and the sentence numbering for additional user specified context were then explained.

Annotators were also provided with the original audio file in case the ASR transcript was too

difficult to understand.

Critically, annotators were instructed to keep their summaries to approximately 0.45 (45%) the

length of the input segment as well as the importance of ensuring periods (or any other sentence

boundaries) are properly written to prevent any issues with the segmentation backend. Lastly, users

were told to take a break every few hours to prevent fatigue and degradation in summary quality.

4.6 Limitations

While we attempt to address many of the biases that are inherent towards collecting a summa-

rization dataset, there are still biases that must be acknowledged.

1. Context fragmentation. While the system does allow for users to readjust local context

boundaries by manually including sentences from other segments, the segment-summary

pairs are processed discretely and bound to miss some long range dependencies.
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2. Under-determined summaries. This problem is endemic towards summarization; simply put,

it is very difficult to define what a "good" summary is and inherently subjective. Though

mitigated by iterative content selection and recursive summarization, final resulting short

summaries are still guaranteed to be dependent on the annotator.

3. Lack of gold transcripts and error propagation. Clearly, the starting point of collecting long-

form spoken dialog transcripts was already imperfect; transcripts can be hard to understand

due to incorrect word transcriptions, speaker diarization, and other factors. If an annotator

makes a semantic comprehension mistake early on, and unless summarized out, that mistake

will be recursively propagated all the way to the final short summary. However, to a user

using this dataset for either testing or training speech, these errors are indicative of what is

contained in a typical state-of-the-art ASR system’s output.

4.7 Conclusion

We created a novel longform summarization annotation methodology where text is recursively

summarized to create progressively shorter and more concise summaries in a bottom up manner,

presented in a dedicated summarization annotation user interface UI. This results in comprehensive

intermediate text summaries that give transparency towards the summary content selection process

and flexible length summaries. The methodology is extensible to not only the spoken dialog do-

main, but also to any general longform text. We hope that the hierarchical, recursive, and modular

aspects of this new dataset promotes more research into longform spoken dialog abstractive sum-

marization9.

9Again, data validation, trained summarization baselines, and other experiments are outside the scope of this
dissertation and will appear in future work.
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Chapter 5: Improving the User Browsing Experience in Summarization

Systems

As with System 1, we have seen that automatic speech recognition (ASR) and automatic sum-

marization can be used to build hierarchical summaries that allow users to browse speech data and

to navigate and discover interesting content. But because these systems intake disfluent speech

data, the subsequent automatic summarization often yields accuracy and readability problems:

summaries may skip content, contain false information, or become difficult to read - especially

when summaries contain ambiguous pronouns such as “it” instead of named entities. To im-

prove the readability, coherence, and adequacy of summarization we develop a novel method for

summary hallucination and quality detection through entity tracking and contradiction assessment

while simultaneously correcting for erroneous summaries with guided text decoding. Additionally,

we improve topic cohesion through entailment inspired clustering and correct for dialog ambiguity

by imputing deictic references through recursive co-reference resolution.

User studies show our system enables users to more easily browse and discover content than

previous systems, as well as provide better readability of high level summarization for navigation.

From Chapter 4, it is now possible to properly benchmark our system (System 2) against human

authored gold standard summaries. We discuss how summarization technologies can be harnessed

to help people browse long unstructured information in trustworthy and readable ways.

5.1 Introduction

Although existing systems for hierarchical navigation have shown utility in browsing and nav-

igating content without having to listen to an entire audio, they face several challenges [63, 64].

Summarization models are not well suited for handling speech errors as they are trained on well
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formed text rather than audio content. Whereas text is structured into paragraphs with topic sen-

tences, audio is far less structured and riddled with speech specific challenges such as disfluencies,

incoherence, and ambiguous pronoun references which prevent straightforward language model-

ing. In order to successfully enable users to browse and navigate longform audio, systems first

have to ensure the hierarchically generated summaries are easily readable and coherent.

We identify three key elements within hierarchical summarization that impact user experiences

in browsing and consumption of longform audio:

1. Readability [148] - summaries that are not immediately comprehensible due to vague pro-

nouns or incoherent grammar impact a user’s ability to quickly understand content.

2. Accuracy [149, 150] - summaries that are inconsistent with the source text may provide

erroneous information and mislead users.

3. Adequacy [151] - summaries that fail to capture important meaning of the underlying audio

or only capture partial meanings result in users missing possibly critical information.

To address these elements, we developed a training agnostic post processing approach that in-

troduces a set of NLP techniques to improve summarization quality for speech data in ways which

help users browse effectively. To improve readability we track entities and impute ambiguous

coreferences to eliminate vague references. To improve accuracy we employ guided text decoding

with contradiction assessment to enhance summary correctness. To improve adequacy we reorder

sentences in the transcript to form a more cohesive input, in turn allowing summarization models

to more easily reason through the input content and sufficiently convey the meaning in generated

summaries.

We then present a speech browsing interface where the improved summaries are presented in

a readable format along with visual information cues that are automatically derived from unstruc-

tured speech transcripts. These information cues quickly and intuitively provide information scent

to users regarding the quality of summary segments, the degree to which the summarization model

compressed the original content, and the amount of information the user has been shown. Thus, by
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providing users visibility of system status and insight into the state of the underlying audio content,

users can make better informed navigation and browsing decisions.

To demonstrate technical performance gains in summary quality and subsequent improved us-

ability in browsing, we evaluate our system in the following three ways:

1. Automatic comparisons of generated summaries with gold standard summary references.

Results indicate our system yields a 19% ROUGE-2 relative improvement in Short sum-

maries over baselines.

2. Via human annotation, our system’s generated summaries improve by 25% on readability,

10% on accuracy, and 17% on adequacy for specific summary quality dimensions compared

to baseline models.

3. A qualitative user study showing that the interface’s information cues successfully assists

users and that they are able to more easily browse content and forage for information.

Lastly, we discuss how advances in summarization technologies can be harnessed to assist users in

browsing long unstructured information in trustworthy and readable ways.

5.2 Background on Automatic Hierarchical Summarization

5.2.1 Criteria for Improving the Usability of Hierarchical Summaries for Audio

Although many off-the-shelf abstractive dialog summarization models are available and have

considerably improved, they invariably perform poorly on longform (20 minute+) audio; stand-

alone usage of these models on longform dialog results in problematic summaries that impact

usability. Our research carefully considers these concerns and posit them as the following three

challenges:

Readability [148]. A summary is only as useful as its ability to be understood by a user.

While readability can refer to fluency, it is critical to view this dimension in the context of speech.

We make the important observation that diectic references in conversation make readability espe-

cially challenging due to constant ambiguous referencing. Confusing, vague and unintelligible text
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represents a significant pain point in automated summarization because not only does it render a

summary useless, it can ruin the users’ trust in a system by highlighting a particularly unpleasant

failure. Poor readability example: The store will have a sale despite rain tomorrow. ⇒ There will

have rains tomorrow but it will have sale. Though the sentence has some syntactical errors, the

pronoun "it" is ambiguous; without any additional context, it is impossible to understand what the

output is referring to.

Accuracy [149, 150] . Outputting inaccurate summaries has insidious consequences if there is

no indication when bad information has been communicated. Users may therefore walk away with

incorrect assumptions of the underlying material, undermining trust in automatic summarization

systems. Inaccuracy example: There will be high winds and heavy rain tomorrow.⇒ The weather

will be cloudy.

Adequacy [151]. Despite summarization being a fundamentally lossy compression of infor-

mation, the most useful summaries are ones that accurately communicate the input passage’s key

ideas. Conversely, if a user reads a summary without reviewing the underlying content, they could

unknowingly miss possibly significant information (i.e. a Type II error). Adequacy refers to how

much of the meaning in the original source text is also conveyed in the hypothesis [151]. Poor ade-

quacy example: There will be high winds and heavy traffic on the freeway due to storm congestion.

⇒ It will be windy.

In recursive hierarchical summarization, errors in summaries will compound and propagate.

Thus, it is important to address these problems at early stages in the summarization process. In

this system, our goal is to improve on these three key metrics.

5.2.2 Dataset

The same dataset from Chapter 4, Table 4.1 is used.

97



5.3 System

In this section, we briefly review the baseline hierarchical dialog summarization system as

the initial foundation for our framework. Next, we detail our speech intrinsic design motivations

and our corresponding technical contributions towards existing summarization systems, focusing

on the criteria defined in Section 5.2.1. Our summarization framework is modular, not requir-

ing any specific summarization model, and integrates external knowledge from language models

trained on various natural language tasks with dialog heuristic constraints to construct a robust

and unsupervised abstractive summarization system. Recent research has leveraged external mod-

els to improve broad domain summary quality by combining knowledge-based approaches with

seq2seq neural models [195]. In a similar fashion with regards to leveraging external models (i.e.

transformer models trained for different language tasks such as entailment [196]), we propose a

hierarchical automatic summarization framework which emphasizes improving system robustness

with a specific longform dialog domain focus. Refer to Section 2.1 for notation and conventions.

Figure 5.1: Dialog Improvement Framework. The overall contribution of the system are a se-
ries of training agnostic speech processing steps which improve overall summary text generation
quality. Step 2 involves reordering input dialog to increase coherence. Step 3 and 4 imputes vague
pronoun references to assist readability and addresses grammatical errors. Step 5 encourages the
system to generate more factually consistent summaries. This process is repeated in between re-
cursive summarization levels.

5.3.1 Baseline Dialog Summarization System

The baseline hierarchical summarization system is adapted from [116] and consists of three key

components: a topic aware semantic segmentation algorithm for dividing longform text, a summa-

rization language model, and a procedure for establishing higher order relationships [123, 197].
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The initial semantic segmentation algorithm is already well suited towards chunking dialog as it

fundamentally incorporates concepts that leverage coreferences and other speech cues [77, 198,

199] to begin an initial chunking of the longform transcript. Between our framework and baseline,

the initial segmentation procedure is kept identical for subsequent analysis and comparisons, and

is not the focus of this work.

We refer to the "baseline" hierarchical summarization instance as Baseline and an instance

utilizing the framework containing our contributions as System. The Baseline and System

both use two summarization language models a BART-L model that is finetuned on the SamSum

Corpus [200] to handle larger segmented transcript chunks, and a PEGASUS paraphrase model for

smaller inputs (30 words or less). In between hierarchical recursive summarizations, System per-

forms Steps 1-4 (Fig 5.2, Section 5.3.2-5.3.4). Finally the Baseline also adopts the hierarchical

procedure from [116] as its hierarchical merging procedure.

All semantic segmentation procedures, language models, and parameters are kept constant for

a fair basis of comparison. Experiments were run on a single RTX 3090; instances where several

large transformer models were required to be simultaneously loaded into memory (such as Alg

3), could be easily fit (1̃5GB) within the 24GB of VRAM. For transparency, System’s inference,

with all steps, typically takes around 3-5x longer (usually 8-10 minutes per transcript, with the

obvious exception for longer transcripts) than Baseline’s inference.

Another important aspect is the compression ratio of the generated summaries. The individual

segments 𝑆𝑖 ∈ S are iteratively summarized resulting in the same number of segment summaries

𝐻𝑖 ∈ H. As such, the compression ratio can obtained by treating the segments in a document level

manner. This is done by concatenating H into 𝐻𝑐 (where the 𝑐 indicates its concatenated form)

and using the unsegmented instance of the input 𝑆. The compression ratio is thus defined as:

Compression_Ratio(S,H) = |Concat(𝐻𝑖 ∈ H) |
|Concat(𝑆𝑖 ∈ S) | (5.1)

Note that the norm notation | · | is used to indicate the number of words in the text passage. While
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an input can be compressed to an arbitrarily length due to the recursive nature of the hierarchial

summarization framework and is dependant on the original input’s length, summarization levels

are stopped at around a 15%-25% compression rate for both System and Baseline summaries.

Regarding the initial input length, longer transcripts would be further recursively summarized.

5.3.2 Improving Adequacy: Entailment Clustering for Temporal Dialog Cohesion

Figure 5.2: Entailment Clustering Process. To increase the summarization language model’s
semantic comprehension of the input text, the temporal ordering of dialog is rearranged and re-
ordered to improve cohesion.

A challenge in processing speech is that most speech and conversation is presented in an un-

structured manner that may not be cohesive (the degree of logical consistency [201] and continuity

[202] of text) or continuous. For example, a speaker discussing an idea could trail off and revisit

that same very idea a few sentences later. This leads to fragmented context and incoherently or-

dered thoughts [203] in ASR transcripts, making it more difficult for a summarization language

model to sufficiently capture higher order concepts. Given the nonsequential temporal ordering in

which speakers communicate, a reordering speaker of sentences can lead to improved cohesion and

context. This step leverages pretrained language models to determine entailment and similiarity to

determine a new ordering and segmentation of speech.

Implementation. The operation starts with the previous hierarchical level’s summary outputs

H 𝑗−1 = 𝐻
𝑗−1
1...𝑛 as S 𝑗 = 𝑆

𝑗

1...𝑛 inputs where each individual summary 𝑆 𝑗
𝑖

is iteratively processed

in a streaming fashion. We consider three criteria to group summaries into semantic clusters.

Pseudocode and full procedure is given in 3.
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1. A well-formed semantic cluster should consist of summaries that do not contradict one an-

other [69]. Specifically a high entailment beyond only a high semantic overlap (i.e. evaluated

by the cosine similarity of SBERT embeddings [173]) may not necessarily ensure cohesive-

ness.

2. Summaries belonging to the same cluster should discuss the same entities. This is enforced

by gathering the overlapping set of detected nouns and coreferenced pronouns and clustering

if sufficient overlap is found.

3. Semantic clusters should have a natural order of entailment. A summary 𝑆 𝑗
𝑖

entails another

if one is logical predecessor, determined by a transformer language model trained on the

MultiNLI dataset [204]. This is a key distinction from prior work as entailment allows

dynamic assignment of cluster centers, in turn allowing for the procedure to reorient the

temporal order of S 𝑗 = 𝑆 𝑗1...𝑛 in a manner that would be easier for a summarization model to

process and output complete and semantically consistent summaries.

Entailment-based clustering is distinct because unlike the aforementioned criteria, entailment

is not symmetric. Because of this, we can use entailment as a signal to dynamically reorder sen-

tences into a logically coherent progression. This is essential as rapidly moving between different

topics and discussing entities out-of-order is common in spoken dialog. For example, consider the

following three sentence toy example, designed to demonstrate the incoherence of dialog:

1. Sentence 1: Because of the sale, Irene bought apples.

2. Sentence 2: The computer had a virus.

3. Sentence 3: The store had a sale on apples.

Clearly, a better logical ordering would be Sentence 3, Sentence 1, Sentence 2. Here the premise

is set first (store had a sale) with the related event following immediately. The unrelated event

(Sentence 2) is now not separating the two related events.
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Algorithm 3: Entailment Clustering Procedure. The procedure is a core stick-breaking
problem, determining which summaries should be concatenated for further summariza-
tion in a manner that maximizes cohesive similarity.

Input: This procedure uses the following inputs and models.

1. Input: List of summaries S 𝑗 = 𝑆 𝑗1...𝑛. For simplicity the hierarchical level superscript 𝑗 is
dropped.

2. Model 𝑀𝑆𝑇 : Embedding Sentence Transformer (SBERT), outputs a 0 to 1 score

3. Model 𝑀𝑁𝐿𝐼 : MultiNLI Language Model (ROBERTA), entailment probability is outputted
(0 to 1)

4. Model 𝑀𝐸𝑁𝑇 : Entity Tagging Language Model (FLAIR [205]), number of overlapping
entities is outputted

5. Hyperparameters:

• 𝑝𝑡ℎ = 0.05: Threshold cutoff for similarity

• 𝑝𝑟 = 3: Maximum visible range for concatenating streaming summaries

• 𝑝𝑙𝑒𝑛 = 72: Maximum word length for a summary

6. Output: 𝐿𝑜𝑢𝑡 , list of combined and reordered summaries

1 𝐿𝑜𝑢𝑡 ← list();
2 𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← list();
3 for 𝑆𝑖 ∈ S do
4 if |𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 | ≤ 3 then
5 𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠.append(𝑆𝑖);
6 continue;

7 if |𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 | > 𝑝𝑟 then
8 Remove 𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 [0] and append to 𝐿𝑜𝑢𝑡
9 𝑐𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← list();

10 for 𝑆𝑘 ∈ 𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 : |𝑆𝑘 | ≤ 𝑝𝑙𝑒𝑛 do
11 𝑠𝑖𝑚 ← 𝑀𝑆𝑇 (𝑆𝑖, 𝑆𝑘 );
12 𝑒𝑛𝑡 ← 𝑀𝑁𝐿𝐼 (𝑆𝑖, 𝑆𝑘 );
13 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← 𝑀𝐸𝑁𝑇 (𝑆𝑖, 𝑆𝑘 );
14 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 ← NORM(𝑠𝑖𝑚 · 𝑒𝑛𝑡);
15 if 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 > 1 then
16 𝑐𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.append([𝑆𝑘 , 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒])

17 𝑐𝑐ℎ𝑜𝑠𝑒𝑛 ←MAX(𝑐𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠);
18 𝑜𝑟𝑑𝑒𝑟 ← Higher Entailment Between 𝑀𝑁𝐿𝐼(𝑆𝑖, 𝑐𝑐ℎ𝑜𝑠𝑒𝑛) and 𝑀𝑁𝐿𝐼(𝑐𝑐ℎ𝑜𝑠𝑒𝑛, 𝑆𝑖);
19 𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠.append(concatenate(𝑜𝑟𝑑𝑒𝑟));

20 return 𝐿𝑜𝑢𝑡
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5.3.3 Improving Readability: Coreference Imputation and Grammar Correction

Unlike written prose, conversation can be ambiguous. When an entity (such as a noun or other

object) is introduced into a conversation, it is therein referred to using pronouns and other deictic

references. While recursively summarizing concatenated inputs, the detrimental impact of vague

references is increasingly intensified at subsequent levels, impacting summary readability. To

rectify this, we propose using coreference resolution to impute missing entities into vague pronoun

references.

Table 5.1: Coreference Imputation Example. The vague reference is given in blue with the coref-
erenced entity is bolded. Subsequent grammar correction is shown in red. 𝑆1...𝑛 are generated
summaries (previously recursive outputs H = 𝐻1...𝑛) for any arbitrary recursive level.

Process Consecutive Text Segments

Vague
Reference

𝑆1: [...] What do we know right now about this variant?
[...] 𝑆2, 𝑆3 not related
𝑆4: It’s highly divergent from ...

Imputation
𝑆1: [...] What do we know right now about this variant?
[...] 𝑆2, 𝑆3 not related
𝑆4: This variant highly divergent from ...

Grammar
Fixed

s1: [...] What do we know right now about this variant?
[...] 𝑆2, 𝑆3 not related
𝑆4: This variant is highly divergent from ...

Implementation. In this operation, each sentence in a summary is considered individually,

𝑆𝑖 = 𝑠1, ..., 𝑠𝑛. Since coreferences are typically accurate for a local context window, we only

search for coreference pairs in a limited sentence span. For example, an "it" mentioned in the first

minute of a speech is likely different from an "it" at the end of the speech. We set our limited

context window to 3 summaries. Concretely, given a 𝑠𝑖 and a context 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = [𝑠𝑖−3, 𝑠𝑖−2, 𝑠𝑖−1],

any identified coreference from 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 to 𝑠𝑖 is imputed into 𝑠𝑖. The process then iterates by a single

sentence; for 𝑠𝑖+1, the new context is 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = [𝑠𝑖−2, 𝑠𝑖−1, 𝑠𝑖]. A key observation of the procedure

is that iteratively imputing coreferences will propagate an initial reference to subsequent pronoun

references.

Such imputations may induce syntactic grammatical errors (such as subject verb agreements)

due to imperfect insertions. Accordingly we use a T5 [206] based neural grammar rewriter trained
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on a fluency corpus [207] to correct for small grammatical mistakes. A full procedure is given in

Alg. 4.

Algorithm 4: Coreferenced Imputation and Grammar Correction Procedure.
Input: This procedure uses the following inputs and models.

1. Input: List of summaries S 𝑗 = 𝑆 𝑗1...𝑛. For simplicity the hierarchical level superscript 𝑗 is
dropped.

2. Model 𝑀𝐶𝑅𝐹 : AllenNLP coreference resolution model, outputs the start and end index of a
coreferenced word pair

3. Model 𝑀𝐺𝑅𝑀 : 𝑇5 trained neural grammar rewriter

4. Hyperparameter 𝑝𝑤 = 3: coreference context window

5. Output: 𝐿𝑜𝑢𝑡 , list of coreferenced and grammatically corrected summaries.

1 𝐿𝑜𝑢𝑡 ← list();
2 for 𝑖 ∈ |S| do
3 if 𝑖 < 𝑝𝑤 then
4 𝐿𝑜𝑢𝑡 .append(𝑆𝑖);
5 continue;

6 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ← [𝑆𝑘 ∈ S : 𝑖 − 𝑝𝑤 ≤ 𝑘 < 𝑖];
7 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 ← S𝑖;
8 𝑐𝑜𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠← 𝑀𝐶𝑅𝐹(𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , 𝑆𝑖𝑚𝑝𝑢𝑡𝑒);
9 for 𝑐 𝑗 ∈ 𝑐𝑜𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 : 𝑐 𝑗 [1] ∈ 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 do

10 Impute 𝑐 𝑗 [0] word reference into 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 [𝑐 𝑗 [1]]];
11 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 ← 𝑀𝐺𝑅𝑀 (𝑆𝑖𝑚𝑝𝑢𝑡𝑒);
12 𝐿𝑜𝑢𝑡 .append(𝑆𝑖𝑚𝑝𝑢𝑡𝑒);

13 return 𝐿𝑜𝑢𝑡

5.3.4 Improving Accuracy: Hallucination Resolution

Hallucinations are a common artifact of large language generative models due to the sheer

corpus they are trained with. While these large language models are able to output sentences

with high realism, we are interested in outputs that consistently and accurately reflect the input.

As such, text generations containing blatant hallucinations or semantically differing meanings are

unacceptable; they represent factually incorrect summaries. However, not all hallucinations are

bad. In fact, some hallucinations are useful abstractions to generalize multiple ideas into a more
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Figure 5.3: Hallucination Resolution Process. Through guided text decoding, the system re-
ranks and selects the most plausibly accurate summaries for subsequent recursive summarization.

succinct categorization. An example of a positive hallucination would be replacing references to

cars, buses, and boats with the label vehicles.

Implementation. The procedure is iterative: the system generates multiple summaries based

on given parameters and subsequently filters out poor summaries, providing feedback to improve

the next iteration’s text generation. This procedure is limited to 3 runs per (𝑆𝑖, 𝐻𝑖) pair.

Assuming the first summary has already been generated, we start by addressing negative hal-

lucinations. These are characterized by the introduction of entities that are not generalizations of

entities from the input passage. We use a Part-of-Speech (PoS) tagger [205] and Named Entity

Recognition [76] to identify entities found in a generated hypothesis 𝐻𝑖 and compare it to the set

of entities found in the original input 𝑆𝑖. By using existing word knowledge systems [208], we

can quickly and computationally tractably determine whether or not 𝐻𝑖’s hallucinated entities are

proper generalizations of existing entities or truly inconsistent with 𝑅𝑖. Second, we use an entail-

ment model (identical to Alg. 3) with the original input 𝑆𝑖 as the premise and 𝐻𝑖 as the hypothesis

and check for logical consistency [69].

We adapt BEAM search to decode multiple candidate summaries𝐻𝑘∈𝐾
𝑖

where 𝐾 = NUM_BEAMS

[209] with the following parameters:

1. Block tokens. Summaries that contain flagged hallucinations have the respective tokens

passed in as blocked tokens, suppressing the hallucinated words from being generated on
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subsequent iterations1.

2. Increasing BEAM Search Space. [209] Simultaneously, we increase the diversity parame-

ters for grouped beam search on subsequent iterations to motivate generating more unique

candidate summaries.

After running guided BEAM search, we process all candidate summaries and rank them based

on their readability and accuracy using Eq 5.2. For readability, we use a language model LM𝑤 𝑓 𝑑

trained on sentence well-formedness dataset2 to score the syntax quality (0-1) of each summary.

For accuracy, we use ROUGE-2 [7] to ensure that the summary and the input passage are similar

in content. Eq 5.2 gives (0-1) an estimate encompassing both of these attributes.

Quality(𝐻𝑖, 𝑆𝑖) = 𝛼 ∗ LM𝑤 𝑓 𝑑 (𝑆𝑖) + 𝛽 ∗ ROUGE2(𝐻𝑖, 𝑆𝑖) (5.2)

5.3.5 User Interface

User Interface Overview. Having established a robust post-processing procedure tailored to-

wards improving readability, accuracy, and adequacy of the underlying summaries, we are now

well positioned to build a viable system for users to consume this content. We present a user in-

terface 5.4 which provides multiple real time information signals to the user alongside a readable

summary view. Building upon previous work which utilized multiple levels of hierarchical sum-

maries to improve a user’s ability to recover from accuracy and adequacy concerns inherent with

generated summaries, we present a more streamlined hierarchical summary interface incorporating

a more human readable Short Summary document while still including one hierarchical layer to

capture the effect of previous hierarchical interfaces that allow users to drill deeper. In addition,

we present meaningful heuristics to the user describing the estimated quality of the summary seg-

ments, the amount of information users would gain by reading more detailed content for a specific

1Critically, in the case of a false positive, where a hallucination is classified incorrectly, it would limit the BEAM
search space and limit the abstractive capabilities of the language model.

2https://huggingface.co/datasets/google_wellformed_query, 𝛼 = 0.5 and 𝛽 = 0.5.
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Figure 5.4: System 2 User Interface. The System UI displays the processed audio file. The left
hand side gives a digest of short summaries, broken up by semantic summary segments. An es-
timate of how much total information is captured by these short summaries is given under "Total
Information Displayed". By moving the cursor onto a summary, the user is presented with addi-
tional information such as the summary’s estimated quality, an estimate of how much additional
information is contained in a longer more detailed summary, said more detailed summary, and the
original ASR transcript with the respective audio segment.

section, and the estimated total amount of information exposed to the user at any given time when

interacting with the system.

On the left side of the interface, the shortest summary is displayed with clear borders indicat-

ing distinct summary segments. Users may hover over any sentence in this high level summary

view which will dynamically populate information on the right side of the interface. This right

side interface includes a dynamic visualization of the estimated summary quality (Eq. 5.2) of the

sentence the user has hovered over. Below on the right side, the system presents to the user an in-

termediate summary with greater detail as well as the estimated amount of additional information

the user would gain from spending additional time reading this more detailed summary.

As users hover and drill down into various summary segments, the total information displayed

to the user counter increases to give the user a better global idea of how much information they

have been exposed to relative to the entirety of the source material. A collapsible view of the

original transcript and audio player for the original audio are also provided to the user on this side
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of the interface should they wish to view the full information for this subsection of the original

content. Finally, the bottom left side includes a temporal navigation bar which visualizes summary

segments temporally to provide an alternative navigation mode for the user based on time instead

of linear scrolling similar to previous interfaces.

Assisting User Navigation In the interface, the user is provided three critical heuristics regard-

ing the summaries they are reading:

1. Total Information: An estimation of the overall amount of content the user has read and

encountered; continuously updating as the user reads.

2. Summary Quality: An estimation of the quality of the summary the user is currently reading.

3. Information Gain: An estimation of additional information a user would gain relative to all

information contained in the audio file, by exploring further into the hierarchical levels of

the content at hand.

These heuristics are displayed in an intuitive and automatic manner which allows users to read

through high level summaries quickly while providing the user with enough information to give

them an informed decision as to whether to drill more deeply into a specific section of the content

either by reading a more detailed summary or even the original transcript and audio through which

various summary sentences are based upon.

Users may use the estimated summary quality to decide whether they trust the quality of a

high level summary sentence or section and use this as a decision point for drilling down or con-

tinuing on. Providing granular summarization quality heuristics to the user allows them to more

quickly browse and navigate the source material. Users may feel more confident reading only high

level summaries of significant portions of the content due to high summary quality heuristic rat-

ings while looking into more detailed summaries or original transcripts and audio where summary

quality falls below their acceptable thresholds. This provides users informed agency in how they

consume summarization content while building transparency and ultimately greater trust in the

system.
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Additionally, users may reference the estimated information gain from reading a more detailed

summary of a given section to decide whether spending the additional time reading into that par-

ticular area is a worthwhile time investment. The estimated information gain is determined based

on calculating the remaining information based on the Information Retained.

Information Retained. Information theory is a popular framework for analysing the com-

pression and completion of information in natural language processing. While information theory

relates information to the number of bits needed to disambiguate probabilistic uncertainty, we rec-

ognize that such an analysis, when applied to generated text, requires constructing a global joint

distribution over users’ subjective interpretations of different sentences. As such we opt for a

simpler analysis.

Simplifying, we define a proxy for the passage’s information content to be the total sum of

nouns and verbs identified in a passage. The rationale and oversimplification is as follows: the

most important words within a sentence are typically proper nouns, common nouns, verbs, and

other named entities. We use a state-of-the-art NLP parts of speech tagger to identify all verbs and

noun occurrences in the original transcript.

To evaluate the proportion of information retained (abbr. IR) by a particular summarization

framework over a particular input summary, we compare the original transcript ASR input 𝑆𝐴𝑆𝑅
𝑖

spanned by a particular summary 𝐻 𝑗=3
𝑖

(in other words, the amount of text that 𝐻𝑖 is responsible for

summarizing). This is done for Short Summaries. We run a parts-of-speech (PoS) tagger to count

the overlap of (unique) nouns and verbs in the generated summary and source text to construct

the amount of information retained by our system. This heuristic has the behavior of punishing

the summary for omitting the previously specified grammatical objects. This can be viewed as a

modified instance of ROUGE-1 (with the grammar objects filter) recall, which computes the word

overlap of a source and reference, out of all reference words.

𝐼𝑅(𝐻 𝑗=3
𝑖
, 𝑆𝐴𝑆𝑅𝑖 ) =

Count(𝑤ℎ ∈ PoS(𝐻 𝑗=3
𝑖
))

Count(𝑤𝑠 ∈ PoS(𝑆𝐴𝑆𝑅
𝑖
))

(5.3)

Note: 𝑤ℎ and 𝑤𝑠 are each word in the generated summary and input source text, respectively.
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Summing over 𝐼𝑅(H 𝑗=3, S𝐴𝑆𝑅) estimates the overall information captured by all Short Summaries,

resulting in a 0-1 fraction. Complete Information Retained estimates typically result around 0.40−

0.60. Due to the resemblance with ROUGE-1 recall, we expect the heuristic to correlate and

perform similarly well. We experimented with a weighted version of Eq. 5.3 where proper nouns

and named entities were given increased importance, but did not observe significantly material

changes.

Furthermore, as users transition from reading a high level summary to a more detailed summary

and potentially an original transcript section, common key topic phrases are highlighted between

them and users can begin to more clearly see the progression an abstract summarization model has

taken in summarizing the content while preserving key ideas.3 Exposing the user to these interme-

diate data points helps build better explainability into an otherwise opaque machine learning based

system.

Finally, users are provided a quantifiable heuristic representing the total amount of information

which is exposed to the user. This final heuristic is based on the complexity intersection between

the short summaries and the original source text. Providing this heuristic allows users a further

decision point where they can decide when they are satisfied with the extent of their consumption

of a given piece of content. An example walkthrough of how a user might engage with the system’s

aforementioned visual information cues is given below:

1. User reads Short Summary segments 1-10 via the left side document and is satisfied with the

level of information they are consuming.

2. Upon reading Short Summary 11, the user becomes more interested and decides they would

like to learn more.

3. The user hovers over Short Summary 11, surfacing summary metrics and the right side view

with a more detailed summary. The user notes the summary quality is high as well as the

estimated information gain (Eq. 5.3), suggesting the intermediate summary is worth reading.

3While not shown in the particular example in Fig. 5.4, this can be seen in the yellow highlighting in Fig. 3.1.
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4. The user reads the intermediate summary that Short Summary 11 is based upon and is satis-

fied, and decides not to read the original transcript for this segment.

5. The user continues on reading Short Summaries 12-20.

6. The user reads Short Summary 21 and suspects the summary is erroneous, disfluent or con-

fusing due to new terminology not related to what they have thus far encountered.

7. The user hovers over Short Summary 21 and sees the summary quality for this segment is

low confirming the users suspicion.

8. The user sees the estimated information gain to be low for segment 21 (in this case due

to the erroneous "new terminology" being the only meaningful information in the current

segment) hinting that the intermediate summary and transcript do not add much additional

information. As a result, the user opts to listen to the original audio while skimming the

transcript. The user determines the ASR transcription erroneously transcribed the "new ter-

minology" leading to an inaccurate summary and now understands this "new terminology"

was not present in the audio.

9. The user notes at this point, they have been exposed to 80% of the total information contained

in this content based on the global count on the left side view, and decides to quickly skim

the remaining high level segments 22-30 as they are satisfied with the information they have

consumed already.

10. The user concludes consuming the content, having a clear understanding of the content being

conveyed by the underlying audio, despite only having listened to a minimal subset of the

original audio itself.

Ultimately, this interface provides the user a highly readable summary view while simultane-

ously surfacing critical heuristics that assist the user in making informed decisions on where to
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spend their time when consuming longform spoken dialog content. These heuristics not only pro-

vide the user greater agency and more time efficient consumption but also increase the trust and

explainability of the system to the user.

5.4 Evaluation

The quality of a summarization system revolves around its ability to distill key ideas from many

longer passages. Evaluating a language model’s text generation is essential towards understanding

the model’s performance and suitability for usage [141]. In this evaluation, the summary text

generations 𝐻 𝑗

𝑖
∈ H 𝑗 are investigated in three aspects:

1. The hierarchical level (superscript 𝑗 ) where the Short Summary is the highest hierarchial

summarization level.

2. The segment level (subscript 𝑖), where each segment summary pair, (𝑆𝑖, 𝐻𝑖) is individually

considered.

3. The document level (𝐻𝑐 = Concat(𝐻𝑖 ∈ H), where a hierarchical level’s summaries are

concatenated together and considered all at once.

Due to differences in subsequent level merging and segmentation, Baseline and System

will have different (pairwise misaligned) individual segment inputs to each respective summariza-

tion system. This results in different content that is summarized, making it impossible to indi-

vidually directly compare corresponding Baseline and System segment summaries. In other

words, 𝑆𝑠𝑦𝑠𝑡𝑒𝑚
𝑖

≠ 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖

implying 𝐻𝑠𝑦𝑠𝑡𝑒𝑚

𝑖
and 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑖
cannot be fairly compared. However,

taking the concatenated individual segments at a document level and then comparing Baseline

and System summaries solves this problem4. For any given level 𝑗 , document summaries𝐻𝑠𝑦𝑠𝑡𝑒𝑚, 𝑐

and 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑐 now holistically summarize the entirety of the same initial input, and thus can be

compared to each other. The same considerations apply for comparing individual Baseline or

System summaries to a reference summary, 𝑅𝑐. It follows that an individual segment summary
4This is a standard practice when evaluating longform text generation, typically seen in machine translation.
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pair, (𝑆𝑖, 𝐻𝑖), can only be assessed at a general level, and cannot be compared between Baseline

and System instance. Unsurprisingly, given the number of optimizations in System that specif-

ically account for speech and dialog based noises, we see a considerable improvement over the

Baseline instance - all without additional training or labeled data.

5.4.1 Automatic Evaluation

We evaluate the Baseline and our System on the 10 (out of 25) transcripts containing

gold standard reference summaries using automatic metrics. We use a standard automatic metric

ROUGE [7] as cheap and inexpensive methods of evaluating our method and baseline. Concretely

we evaluate 𝐻𝑠𝑦𝑠𝑡𝑒𝑚, 𝑐 and 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑐 against 𝑅𝑐 for all hierarchical levels5 𝑗 ∈ {1, 2, 3}, though

the most weight should be given at the final 𝑗 = 3 Short Summary level. Per Chapter 4, each

transcript had 2 different annotators write hierarchical summaries; as such the final score for a

transcript is the average ROUGE 𝐹1 scores of both of the 2 annotated references. We use the

following ROUGE (𝐹1) score variants: ROUGE-1 (unigram), ROUGE-2 (bigram), and ROUGE-𝐿

(longest common sequence). ROUGE-L can be seen as a measure for fluency6 while ROUGE-1

and ROUGE-2 are used as proxies for adequacy. As noted in [7], ROUGE-2 is better suited for

evaluating document summarization; as a result we place specific emphasis on ROUGE-2; in

general ROUGE-2 scores are considerably lower than ROUGE-1 scores and is especially true for

longer sequences. Lastly, we run ablation studies to determine which of the steps in our pipeline

are most effective Summaries are evaluated at the document level.

Automatic Evaluation Results.

Digging into the results, we can observe three interesting phenomena:

1. A steady and drastic decrease in ROUGE score in both Baseline and System as a func-

tion of the hierarchical level, which is explained by the increased difficulty of content selec-

tion due to input length.
5Some transcripts have more than 3 levels due to their substantially longer run times and initial word counts. In

those instances, level 𝑗 = 3 skips directly to the final Short Summary (last level) in the results.
6The intuition is that if a generated summary more closely follows the ordering of words in the reference, then the

generated summary is more fluent [150].
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Table 5.2: ROUGE-𝑁 comparisons of the Baseline and System. The 𝐹1 score for each
ROUGE instance is reported and particular emphasis is placed on ROUGE-2 for document (long-
form) level summary evaluation. While System outperforms Baseline on all experiments, the
ROUGE-2 Short Summary performance is distinctively better. System is run with all steps.

Model & Level- 𝑗 ROUGE−1 ROUGE-2 ROUGE−𝐿
Baseline-3 (Short Summary) 0.434 0.097 0.164
System-3 (Short Summary) 0.470 0.115 0.191
Short Summary % Improvement 8.0% 19% 23%

Baseline-2 (Intermediate Summary) 0.595 0.198 0.234
System-2 (Intermediate Summary) 0.641 0.214 0.260
Intermediate Summary % Improvement 7.7% 8.5% 11%

Baseline-1 (Long Summary) 0.670 0.405 0.432
System-1 (Long Summary) 0.711 0.463 0.471
Long Summary % Improvement 6.0% 14% 9.0%

2. A more pronounced improvement in the System’s generated summaries at the Short Sum-

mary level. Clearly addressing speech errors at each level before allowing them to compound

further is critical. This is further supported by the ablation studies (Table ??) demonstrating

how individual preprocessing steps contribute to only a subset of total performance gains.

3. The overall low performance of summarization systems at the Short Summary level is ap-

parent and highlights the intrinsic difficulty of this dataset, and in particular, the prospect of

adequately and concisely summarizing 20-45 minute audio files into only 500-850 words.

Ablation Experiments. We run separate instances of our System’s pre and post process-

ing steps: coreference imputation 5.3.3, cohesion clustering 5.3.2, and guided decoding 5.3.4. In

comparison to the full method’s (System) results in Table 5.2, individual aforementioned com-

ponents usually improve, with the exception of Level-2’s Guided Decoding. The offending score

is italicized in red in Table 5.3, which under-performs the baseline by 5%. Scores that are close to

Baseline’s performance are colored blue.

Level-2’s Guided Decoding’s behavior is difficult to precisely ascertain; however, we hypothe-

size that the restrictions placed by guided decoding on the text generation adversely affect ROUGE

evaluation due to the rejection of inconsistent candidate summaries. It is important to note that
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ROUGE cannot evaluate the consistency (accuracy) of a text generation and must be done with a

human; unfortunately running a comparison study dedicated to ablations is far too costly.

Moreover, these performance gains are not purely additive in their improvement nature. That

is to say, these are not strictly exclusive in performance gains; total performance gains likely share

overlap in all 3 steps and is difficult to truly disentangle which pipeline steps improved specific

dimensions from 5.2.1.

Table 5.3: Ablation study of individual steps from the System framework. Scores that are close
to Baseline’s performance are colored in blue and scores that underperform Baseline are
colored in red.

Model & Level- 𝑗 ROUGE−1 ROUGE−2 ROUGE−𝐿
System-3 (Reference) 0.470 0.115 0.191
System-3 Clustering Only 0.445 0.108 0.187
System-3 Imputation Only 0.434 0.110 0.187
System-3 Guided Decoding Only 0.432 0.108 0.184

System-2 (Reference) 0.641 0.214 0.260
System-2 Clustering Only 0.602 0.206 0.251
System-2 Imputation Only 0.613 0.201 0.247
System-3 Guided Decoding Only 0.595 0.199 0.221

System-1 (Reference) 0.711 0.463 0.471
System-1 Clustering Only 0.690 0.446 0.448
System-1 Imputation Only 0.692 0.449 0.451
System-1 Guided Decoding Only 0.691 0.441 0.450

Still, it is important to reiterate that ROUGE simply measures lexical overlap and is not a

substitute for human evaluation. The reliance on 𝑛-gram matching can be an issue for long-text

generation [210] as its evaluation does not contain coherence, flow, grammar, and factual correct-

ness.

5.4.2 Comparison Study Methodology

For human annotators, we evaluate on 8 transcripts that do not contain gold labels. With a

directed human annotated study we are able to measure more explicit dimensions dimensions of

readability, adequacy and accuracy (Section 5.2.1). We hired 4 annotators that were paid $20
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per hour. All annotators are native English speakers and were instructed to assess 10 of the the

transcripts from Table 4.1 (2 Ted Talks, 4 NPR Podcasts, 2 Bloomberg Wealth). Each annotator

reported a total of 8 − 10 hours spent performing the evaluation tasks. Note, this section is solely

concerned with evaluating the Short Summary, or the highest hierarchical level’s quality in specific

dimensions.

Readability, Accuracy, Adequacy Evaluation

Annotators were instructed (in accordance with 5.2.1) to assess segment summary pairs for:

1. Readability on a 1 to 5 scale; is the individual summary fluent and unambiguous, leading to

easy reading comprehension?

2. Accuracy in a binary Y/N fashion; is the segment’s summary meaning consistent with the

original source text?

3. Adequacy in a binary Y/N fashion; does the segment’s summary sufficiently cover the main

details contained in the source text?

Each transcript was evaluated by 2 different annotators7 in order to obtain an inter-annotator agree-

ment score (Krippendorff’s Alpha) [211]. A total of 𝑁 = 791 unique segment summary pairs given

as randomized rows each containing: a Baseline generated summary 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖

with the original

portion of the ASR transcript 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖

that summary 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖

covers, and a System summary

𝐻
𝑠𝑦𝑠𝑡𝑒𝑚

𝑖
with the original portion of the ASR transcript that 𝑆𝑠𝑦𝑠𝑡𝑒𝑚

𝑖
that 𝐻𝑠𝑦𝑠𝑡𝑒𝑚

𝑖
covers; this is done

only at the Short Summary ( 𝑗 = 3 or the last level). Summaries are evaluated at the segment level.

Coherence. Lastly, annotators assessed the overall document’s readability and coherence; in

other words, how well do 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑐 and 𝐻𝑠𝑦𝑠𝑡𝑒𝑚, 𝑐 logically flow or "hang together" [212]? An-

notators were presented with all Short Summaries consecutively and were instructed to count each

7The lower (than expected) IA scores for Readability stem from the latitude evaluators were afforded; for example
a 3 or a 4 out of 5 could be quite similar but still counted as agreement. The lower IA scores for Adequacy are
italicized, emphasizing the inherent subjectivity in evaluating summary adequacy (and to some extent, accuracy);
what one annotator rates "adequate" has far more subjectivity than readability and accuracy.
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Table 5.4: Readability, Accuracy, Adequacy human evaluation of the Baseline and System
generated Short Summaries. System is run with all steps.

Model & Level- 𝑗 (Short Summary) Readability Accuracy Adequacy
Baseline-3 3.55 0.78 0.63
System-3 4.10 0.87 0.74
% Improvement 15% 12% 17%

Baseline-3 Inter-Annotator (IA) Agreement 0.26 0.28 0.18
System-3 Inter-Annotator (IA) Agreement 0.24 0.27 0.16

time they deemed there was confusion regarding logical consistency [201] or continuity [202] be-

tween 2 sentences. Summaries are evaluated at the document level.

To calculate the overall coherence of a list of Short Summaries, we assess the overall document

holistically. For this evaluation, sentences are treated pairwise and individually iterated (by one).

Annotators were told to count the pairwise dissonances between sentences, regardless of summary

boundaries. In the instance where the underlying content had a shift in content, such as a break

in between two separate summaries, was not counted. However, in the opposite case, when there

was a break between summaries but the pairwise summaries were clearly related and separated, the

imperfect split was punished and counted in the dissonance tally. This is denoted by the function

𝐵𝑅𝐸𝐴𝐾 (). The coherence score, Eq. 5.4, is computed by the fraction of incoherent sentences out

of all pairwise sentence pairs.

𝐶𝑂𝐻𝐸𝑅𝐸𝑁𝐶𝐸 (H 𝑗=3) = 1 −
∑𝑠∈𝑆
𝑖=1 1(𝐵𝑅𝐸𝐴𝐾 (𝑠𝑖−1, 𝑠𝑖))

|H 𝑗=3 | − 1
(5.4)

A perfect score of 1 would result when there are no issues with sequential ordering and a

minimum score of 0 would result when every possible pairwise ordering is problematic. Note

that this is ultimately a subjective task to the reader to deem what is coherent and what is not.

Annotators were told to use their best judgment.

5.5 Qualitative User Study

In our user studies, we investigate the following:
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Table 5.5: Overall coherence of Short Summaries in Baseline and System instances. A score
of 1 indicates a perfectly coherent summary and a score of 0 indicates total dissonance between
sentences, computed by Eq. 5.4. System is run with all steps.

Model Coherence (Short Summary)
Baseline-3 0.764
System-3 0.836
% Improvement 9.4%

• RQ1: Do the heuristics driving the information cues match what users intuitively and inter-

nally expect?

• RQ2: What drives audio browsing strategies? How do users incorporate visual information

cues in their audio browsing strategies?

5.5.1 Methodology

We recruited 10 participants8 (6 male, 4 female, average age of 25) from mailing lists of gradu-

ate and undergraduate students and working professionals from a diverse range of technical back-

grounds; users were compensated at $20 per hour. Each study lasted from 1 to 1.5 hours, averaging

1.2 hours, using the remaining 7 unevaluated transcripts. For this study we evaluate two instances

of our longform speech browsing system (5.4), an instance with visual information cues UI𝑐𝑢𝑒𝑠,

and an instance without, UI𝑏𝑎𝑠𝑒. For UI𝑏𝑎𝑠𝑒, we remove the "Total Information Displayed" and

the top right box containing "Summary Quality" and "Information Gain". The steps of this user

study are order sensitive and conducted in a semi-structured interview format.

Participants were first introduced to the concept of an AI-driven summarization tool and given

a brief tour of the UI𝑏𝑎𝑠𝑒 instance of the summarization interface using the same control transcript,

"Diversity and Inclusion". After a supervised tutorial stepping through the hierarchical nature of

the interface, participants were instructed to choose a different file from the audio library that they

found interesting and use UI𝑏𝑎𝑠𝑒 to browse the transcript. Users had no time constraints browsing

UI𝑏𝑎𝑠𝑒 and were told they could stop either once they felt satisfied with the amount of content

8These are different individuals from the human annotators in Section 5.4 and 5.2.2.

118



consumed or at their leisure. This concludes UI𝑏𝑎𝑠𝑒 operations.

To acquaint participants with UI𝑐𝑢𝑒𝑠’s visual information cues, we again used the same con-

trol transcript to introduce and abstractly explain estimated summary quality, information gain,

and total information displayed. Specifically, users were told to note the total initial information

displayed percentage on the user interface; this is the starting estimate for how much information

can be gained by solely reading Short Summaries. Participants were then instructed to explore

the control transcript and to fully understand the information cues’ associated behaviors and in-

tended purpose, and ask any questions. Once done, using UI𝑐𝑢𝑒𝑠, participants chose a new unseen

transcript to browse; participants were told to use the visual information cues as they deemed fit.

They were also informed that it was perfectly acceptable to ignore some or all information cues

completely if they found them to not be beneficial.

After users finished browsing their selected audio file with UI𝑐𝑢𝑒𝑠, participants were told to

listen to the complete audio to obtain a complete understanding of the audio file’s underlying

content in order to properly reflect on how well the summaries and heuristics (information cues)

captured the information from the audio. Participants studied and compared the Short Summary’s

individual information gain and summary quality components. Users were then asked for their

thoughts on UI𝑐𝑢𝑒𝑠 and if they matched what they intuitively expected.

Once finished, we asked participants a set of holistic questions (SUS: System Usability Scale)

[213] about their impressions on both UI𝑐𝑢𝑒𝑠, specifically addressing the functionality of the visual

indicators, with UI𝑏𝑎𝑠𝑒 as a frame of reference. We score the SUS survey with standard con-

ventions and investigate the individual categories. Typically, a SUS score of 68 is considered the

margin for usability9.

System Usability Scores (SUS) are computed by:

1. Odd categories (𝑋): sum all odd numbered questions and then subtract 5 from the total

2. Even categories (𝑌 ): sum all even numbered questions and subtract the total from 25

9https://xd.adobe.com/ideas/process/user-testing/sus-system-usability-scale-ux/
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3. Final score: (𝑋 + 𝑌 ) · 2.5, where a score below 68 indicates design issues and scores higher

than 68 indicate minor improvements required. Rough thresholds are as follows:

• 35: Poor

• 55: Okay

• 75: Good

• 85.5: Excellent

• 100: Best imaginable

5.5.2 Findings

RQ1: User Interpretations of Speech Information Cues

In general, participants felt that the summaries adequately supported their understanding of the

podcasts and that the compression of the audio was accurate. 9 out of 10 participants reported

that the percentage of initial information displayed approximately matched what they expected

after listening to the podcast. 8 out of 10 participants were highly positive about the "information

gain" displayed for each Short Summary which estimates how much additional information could

be gained from exploring more detailed hierarchical levels. P1 stated that their expectation of

information gain was accurately reflected by the system and that it was a useful indicator for

browsing summaries: "for a system to be aware of how much information it’s leaving out...it makes

it all that much more powerful. An informed user knows what he does not know."

However, the information gain heuristic is not perfect. P1 also mentioned that this heuristic

could at times be misleading and rationalized why, "here, I was surprised because it seemed like

[the speaker] rephrased the same idea several times, but the system tagged it as having a lot of

information left out. My guess is that a lot of synonyms (Primary Health Care, Ministries, Govern-

ment) were used interchangeably but all ended up meaning the same thing". Notably, this reflects

the drawbacks of a simple heuristic since it technically followed its designed and intended behav-

iors of Eq. 5.3 used in estimating information gain. P2 found the concept of information gain

120



confusing at first, requiring "clicking through one [Short Summary] with high error to understand

what it meant", and approached concept of total information displayed with skepticism since "it is

hard to approximate what a certain percentage of the entire podcast represents". The information

gain figure abstracts out a lot of information. Although a useful heuristic, it was also not immedi-

ately obvious how to interpret it and required users to see multiple examples before they were able

to familiarize themselves with the concept and gain an intuitive understanding for its use.

RQ2: Audio Browsing Strategies and Browsing with Information Cues

We observed that participants shifted between two distinct patterns of browsing, linearly and

sporadically. Most participants started by browsing summaries linearly, occasionally stopping

to investigate more detailed summaries or play audio. Some participants who tried to progress

through the summaries more efficiently tended to keep with the linear trajectory but sometimes

skipped some Short Summaries. They noted how the hierarchical summarization was able to ad-

equately summarize content, allowing them to quickly decide if a Short Summary was interesting

or relevant. P5 in particular was impressed by the "compression" that they observed when they

were listening to a Navy SEAL’s Ted Talk. "In that one, there was a detailed account of a back

and forth chase, but it was compressed into ’they shot at the wrong people’, which was cool." P7

likewise found this compression fascinating and was impressed by the way the model was able to

filter out certain anecdotes and figures of speech that they considered speech filler. Conversely, P6

described instances were the summarization was insufficient but was able to leverage the hierar-

chical nature of the system to recover comprehension by "clicking on a few of the summaries that

were less clear... to see the initial summary".

The other browsing pattern was scrolling up and down between Short Summaries. This behav-

ior was exhibited by all users at some point during the user study. Often users scrolled to see if they

topic they were currently reading about was discussed later, or if it was just a passing comment.

Other times when some users first began using the system and encountered a Short Summary they

deemed to be suspicious, they jumped ahead to see if additional summaries were also suspect. This
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behavior demonstrated the consequence of early mistrust in the AI when automatically generating

summaries.

Participants’ browsing behaviors can be characterized into two decisions: (i) is there enough

evidence to continue exploring along their current hierarchical path? and (ii) is there enough

evidence to stop reading further hierarchical levels and move on to other content. For (i), P8

noted that, "if a sentence in the summary was indicated as contributing a lot to the information

of the podcast, I’d read it a little more carefully, or if it didn’t make sense I tried a little harder

to understand it." Specifically, P9 referenced an instance where the information gain signified

when it was "clear that data has been lost. For example [in a Ted Talk (topic: Ukraine War)],

the summary stated: ’Sweden and Finland did not send arms to Ukraine in the Cold War’ while

the longer summary stated: ’You even see countries like Finland and Sweden sending arms to

Ukraine and closing their airspace, They didn’t even do it in the Cold War, It’s really amazing to

see it.’ providing me [P9] with additional relevant content." Interestingly, P7 arrived at a similar

conclusion but with a different information cue; P7 noted that if "if the quality of a summary is

supposed low, [they] would listen more carefully [to the corresponding original audio portion]".

Meanwhile, for (ii), P9 interpreted a low information gain for a Short Summary as a cue to stop

exploring, noting that the estimated information gain [was] a useful tool for helping me decide if

[I] wanted to read the original transcript or not. It’s like a circuit breaker that saves me time from

reading redundant information.

5.5.3 User Survey Feedback

In the SUS usability survey, users stated that UI𝑏𝑎𝑠𝑒 narrowly met the usability threshold with

a score of 69.2 while UI𝑐𝑢𝑒𝑠 improved the SUS score to 75 and into the approximate "Good"

territory. Table 5.6 gives the individual breakdowns of the survey. Encouragingly, users noted that

the addition of visual information cues resulted in a higher likelihood of usage (Q1, 𝑝 = 0.047)

and that they were well integrated (Q5, 𝑝 = 0.018). Moreover, participant feedback indicates

UI𝑐𝑢𝑒𝑠 either remained constant or did not necessarily result in a statistically significant increases
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in negative (even) questions for the following: unnecessary complexity (+0.28, Q2), inconsistency

(-0.14, Q6), or additional learning curves (+0.42, Q4; +0.28, Q10).

Table 5.6: System Usability Score (SUS) breakdown of UI𝑐𝑢𝑒𝑠 and UI𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒; scores range from 1
(Strong Disagree) to 5 (Strong Agree). Note: when the questions refer to "system" in UI𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,
it is explicitly referring to the condition of adding visual information cues. Participant feed-
back indicates increased enthusiasm for UI𝑐𝑢𝑒𝑠 without additional confusion and complexity.
Index Question UI𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 Score UI𝑐𝑢𝑒𝑠 Score 𝑝-value
1 I would use the system frequently 2.43 3.29 0.047
2 System is unnecessarily complex 1.57 1.85 0.56
3 System is easy to use 3.85 4.28 0.522
4 I would need technical support to use the system 1.14 1.57 0.61
5 System functions were well integrated 3.28 4.43 0.018
6 System has too much inconsistency 2.14 2 0.56
7 Ease of learning for most people 3.71 3.42 0.56
8 System is very cumbersome to use 2.28 1.71 0.48
9 Felt confident in using the system 3.28 3.71 0.44
10 Needed to learn a lot before system use 1.71 2 0.52

5.6 Discussion

Explainability and Trust in Summarization. Abstractive summarization language models,

while powerful, are still opaque black boxes when presented alone to the user. From reading a

summary, users cannot interpret a summarization model’s rationale or decisions on how it distilled

information. This lack of understanding may lead to potentially catastrophic scenarios: a reader

could be unaware that important information was omitted as an abstractive summary can misrep-

resent the content from the original source passage. This is an important consideration since the

ability to decipher a language model’s decisions promotes transparency and accountability of the

system, ultimately driving users to trust the outputs they are consuming.

With visual heuristic cues providing some information scent for summarization quality and in-

formation compression, the user is able to obtain a working intuition of the underlying summariza-

tion models performance. As seen in Section 5.5.2, participants utilized these cues to determine

when to drill more deeply into their current content exploration path or when to "circuit break"
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their information foraging and move on to subsequent segments. Participants also leveraged the

estimates of a summary’s quality to know when to be more vigilant of possible AI gaffes. How-

ever, it is important to note the intrinsic design bias in the algorithms and heuristics behind our

system’s information cues. Assumptions and simplifications can lead to unintended consequences

and potentially misleading users, as noted by P1’s rationalization in Section 5.5.2. Lastly, the navi-

gable hierarchy of summary segments presented alongside original transcripts and audio segments

further provides insight towards a summarization system’s thought process by allowing users the

ability to see the intermediate steps, akin to "showing your work" for a problem.

The visual heuristic cues employed in this system codify basic properties of AI summarization:

summary quality and information compression. Our interface and evaluation therefore serve as

a proof of concept that such heuristics embedded alongside hierarchical summaries can provide

utility in this medium, suggesting future work may be successful in discovering more effective

heuristics and visualizations for automatic summarization transparency.

User-Tailored Summarization. A notable consideration when discussing abstractive summa-

rization is its user-dependant nature and how different users may prefer not only different content

but also varying levels of detail in their own summaries. For example, consider how a subject

matter expert’s ideal summary may prefer far greater detail and a different content selection than

that of a lay person’s. In order to create an effective summarization system for content dense long-

form audio content, we must address the subjective nature of user’s expectations in this context;

no single summary is a one size fits all.

Previous work has explored improving the flexibility of information selected by state of the

art summarization models by introducing hybrid language frameworks which pair customizable

extractors with abstractors in an effort to offer more granular and explainable control of the ex-

tracted information [214]. Such approaches attempt to address the problem from the model design

front as opposed to an interface and processing side. Our solution takes the latter approach pro-

viding an interface which allows users agency to select their preferred level of detail and consume

the information accordingly. This approach, coupled with training agnostic post processing solu-
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tions, decouples achieving user tailored summarization from specific and complex language model

instances. It should be noted, however, that solutions addressing this issue from either side are

not mutually exclusive and future work should explore the efficacy of employing both approaches

simultaneously.

5.7 Conclusion

This Chapter presents a novel system for efficient navigation and consumption of longform

spoken dialogue by incorporating a series of training agnostic language post processing steps with

an explainable and navigable hierarchical summary interface that surfaces a text representation of

audio content alongside visual summary heuristic cues to the user.

Although, previous works have also leveraged hierarchical and abstractive summarization mod-

els to tackle this medium they are susceptible to three key challenges of abstractive summariza-

tion: readability, accuracy, and adequacy. Intrinsic challenges ranging from ASR errors to model

hallucinations all work to lower overall summary quality. The proposed system addresses these

issues providing a better foundation for leveraging hierarchical summarization as an improved

medium for consuming long form audio. Critically, our system showcases the ability of these

training agnostic post-processing solutions to take an off-the shelf state of the art abstractive sum-

marization model and apply them effectively to the audio domain without additional training or

custom datasets. Furthermore, the system showcases how hierarchical summaries in particular

coupled with visual heuristic cues provides a novel level of browsability and explainability in an

AI based system targeting this domain. Both qualitative and quantitative evaluations show our

system achieves statistically significant improvement over previous hierarchical summarization

interfaces as well as state-of-the-art baseline summarization models.
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Chapter 6: Conclusion and Future Work

6.1 Restatement of of Thesis and Contributions

To review, this dissertation proposed using HCI principles of information foraging to design a

system that leverages automatic summarization to structure longform audio transcripts and create

information cues to enable navigating and browsing of longform spoken dialog. The contributions

of this dissertation are as follows:

1. Chapter 2 (Theory and Background). We apply the HCI concept of information foraging

to longform speech, enabling people to browse and navigate information in podcasts, inter-

views, panels, and meetings.

2. Chapter 3 (System 1). We accordingly introduce an approach that recursively applies auto-

matic summarization to create hierarchical summaries, thereby condensing longform dialog

to help users to 1) skim (browse) audio and 2) navigate and drill down into interesting sec-

tions to read full details.

3. Chapter 4 (Dataset Collection). We created a human annotated hierarchical dataset to quan-

titatively evaluate the effectiveness of our system’s performance and find that users prefer

our system in navigating and browsing content.

4. Chapter 5 (System 2). We introduced a suite of dialog oriented processing optimizations

to improve the user experience of summaries: enhanced readability and fluency of short

summaries through better topic chunking and pronoun imputation, and reliable indication

of semantic coverage within short summaries to help direct navigation towards interesting

information.
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6.2 Limitations

As with all systems, our speech browsing and navigation tool has limitations in both its techni-

cal design and usage.

6.2.1 Technical Limitations

1. Automatic Summarization Performance Concerns. While abstractive summarization has

markedly improved through deep neural architectures and increased summarization data

availability, it is still important to emphasize the abstractive component of such summa-

rization systems. Because the model generates an entirely new output (compare this against

extractive summarization where direct verbatim passage components are taken), it is possible

to generate a summary where its content is not consistent with the original source text. Com-

bined with a challenging and noisy domain of speech, this is even more problematic. Though

System 2 remedies some of these concerns, it is impossible to ensure perfect summaries; as

such, systems should design around such imperfections and facilitate user recovery.

2. Text to Speech (TTS) Performance Concerns. Similar to language modeling concerns, ASR

TTS model performance also present challenges towards our longform speech navigation

system(s). Recall how ASR is the initial starting point of the entire system pipeline; it

follows how initial errors such as word recognition and improper segmentation bounds al-

ready detrimentally bias the subsequent downstream summarization model. While outside

the scope of our work, we do note that improvements to TTS will be similarly mirrored

through higher quality summaries.

3. Speech Domain. Speech summarization is particularly challenging when speakers reference

ambiguous objects without proper introduction. Such instances include referencing world

knowledge (i.e. current events and facts), local knowledge (speaker dependent context), and

deictic references (entity a speaker is directly pointing at). When summarizing a text with

such incomplete background, it is possible to still generate a grammatically correct, consis-
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tent, and coherent summary. However, it will still be confusing to a reader. For clarity, we

say background here as opposed to context. Background refers to worldly knowledge while

context refers to relevant information still contained in the source text. Issues stemming from

context are from language modeling imperfections while issues from background cannot be

blamed on the language model.

6.2.2 Usability Limitations

1. Users May Miss Information While Browsing. The goal of the visual information cues in

System 2 is to help users navigate longform audio and find interesting information quickly

which creates user comprehension trade-offs. Concretely, what the longform speech brows-

ing system does is allow users to jump around, bit by bit, and in turn, makes it probable that

users will gloss over information and still be unaware of doing so. While we have designed

indicators to try to estimate the amount of information users have already encountered in

System 2 to provide more informed browsing, this still remains a challenging problem bal-

ancing user value propositions of time spent and knowledge gained.

2. Incorrect User Comprehension of Underlying Content. In addition to overlooking informa-

tion, users may be misled by the system if output summaries contain errors that users do not

detect. Typically errors are often obvious due to the surrounding context or the reader’s prior

knowledge of the topic. However, subtle non-obvious errors may go unnoticed, obscuring

system inaccuracies to users. This can lead to misunderstandings as users may not realize

a correction is needed to properly understand the underlying information. Our evaluation

did not address this limitation. An important next step is to study whether or not the sum-

marization system contains these subtle errors, and if so, how frequent they are. Depending

on the nature and severity of such errors, systems could contextually reason entire dialog

transcripts (as opposed to individual local semantic segment) or query outside information

to check summary adequacy.
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3. Loss of Vocal Information Cues. By converting audio into a transcript, there is a loss of emo-

tion, tone, and prosody found in speech. Intonation, pauses, and inflections often provide

additional information and meaning beyond the underlying spoken words. For example, sar-

casm may be immediately apparent in audio but it is difficult to detect, much less preserve,

in a text form, especially when summarized hierarchically. Although our interface still pro-

vides the original audio, most users opted to only consume the summary text representation

as reading is more efficient than listening. As is currently in the system, if the user does not

elect to listen to the audio file, they would lose these information cues.

6.3 Future Work

1. Domain extension. The system is designed for two-person audio dialogues and performs

particularly well for interviews where one person is creating a majority of the information

content and narrative. However, there are many other types of speech and audio that future

work could extend to: political debates, city council meetings, project discussions, doctors

appointments, quarterly earnings calls, sporting events, documentaries, and instructions as

they all typically share an information dense characteristic. Extending this approach to these

areas has many technical challenges including connecting audio to video, increasing ASR

accuracy for multi-person audio, and tracing multiple threads of conversation across people.

Currently, these audio sources remain relatively free of external references. Compared to an

audio source such as a calculus lecture that contains many references to an external source

such as a whiteboard with equations, it is extremely likely that the system would not work

well here. We note that that the system has fundamental limitations of being unimodal and

that it cannot incorporate visual information. As a result, proposed domains have to contain

knowledge that is primarily present in the audio file.

In future work, the existing system could explore how multimodal models can jointly pro-

cess image and other such references to provide adequate context to users. Naively, some

forms of data such as images and video can be aligned with the longform audio’s high level

129



summaries and presented as a reference (similar to [36]) to provide the user with a more

complete context. In a more involved approach, future work could explore ways to encode

such information and provide additional context to language models. VisualBERT [215]

provides an example as to how a text and language model can be employed to also gain an

understanding of aligned images and text. Technical modeling can adapt this as an encoder

basis with a subsequent possibility of improved contextual text generation.

2. External knowledge. Clearly in speech, background is often missing in a conversation, as it

is often assumed. This future work direction is similar in the previous point of providing ad-

ditional useful context. However, the distinction for this aspect of future work is to provide

models with missing worldly external knowledge. Consider an audio transcript that is dis-

cussing a recent event such as the "War in Ukraine". A language model that was trained on

crawled web data from a year prior to this event would not have enough context to properly

comprehend specific news references; a speaker referencing the "Bridge Attack" is referring

to a specific event, whereas a language model can construe "bridge attack" simply at face

value. Future work can expand on leveraging external information in a search and retrieve

manner; this is remniscient if open domain question answering [216] where language models

attempt to retrieve arbitrary documents from an index corpus.

3. Dataset and Training Based Methods. As newer abstractive dialog summarization datasets

become more widely available, we could further explore technical training based approaches

in form of novel objective functions for speech specific hallucination robustness and archi-

tectures designed for longform text generation. In a similar vein, future work could explore

augmenting training samples with poor ASR examples to improve robustness towards speech

recognition errors. Currently, the dataset provided in Chapter 4 is only sufficient as a test set,

and does not yet have enough data to be used as a training dataset; direct subsequent work

involves obtaining more summary annotations. Other direct subsequent work include train-

ing baselines and data validation (quality assessment). Specifically, future work will involve
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evaluating both lexical quality and content selection between annotators. In a broader sense,

future work can leverage this dataset as a way of providing additional intermediate text level

supervision for longform summarization models.

4. Incorporating Higher Text Summary Levels for Hierarchical Summarization Refinement. Fu-

ture work can explore how different summary levels can leverage other summary levels to

improve summarization quality. Consider an example containing a Long, Medium, and Short

summary. After the hierarchy of summaries is initially generated, how might a Medium sum-

mary leverage the Short summary’s existence to improve its summarization quality? One

important aspect to consider is the logical content coherence between summary levels; in

other words, if a Short summary is discussing a topic, then Medium summaries should elab-

orate on said topic in more detail. Sometimes, similar phrases on a topic are regurgitated in

the text generation process across different levels, providing no useful additional amounts of

detail, despite increasing in length.

Future work can explore ways to improve distinctions between levels in the text generation

process. For example, Medium summaries now have access (a new prior) to the topics dis-

cussed in the Short summary. In this sense, it would be possible to re-generate or rewrite

(where needed) Medium summaries to include relevant details of topics in a Short summary.

Some relevant works have proposed models "grounding" the abstractive summarization pro-

cess [107] by extracting portions that may be more relevant and increasing their importance

in subsequent text generation. With this in mind, one proposed future work direction can

investigate how to encode higher level summaries as priors (along with the input text) to

rewrite a given (current level) summary. Theoretically, improving the summarization lan-

guage model in this facet would lead to improved utility and cohesiveness of intermediate

level summaries.

5. Encoding Auditory Information. In conversation, intonation, pauses, and inflections give

additional information and meaning towards the underlying content. Currently, our system
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does not address retaining this form of information. This behavior is in line with our ex-

pectations as the audio component is seen as a last resort intended for recovering from ASR

errors or model hallucinations. However, future work should explore incorporating models

[217, 218] for translating these forms of vocal information and conveying them to readers.

Similar to how visual information cues are currently presented in the system, future work

could explore how to convey this information to users. By adding a separate language model

or service1 that is trained on a task such as emotion detection, it may be possible to identify

relevant parts of a transcript that may be said with different intents. For example, a part

of audio file may be said very quickly and enthusiastically, revealing the speaker’s personal

bias on the subject matter.

6. Tailored Summarization and User Profiles. A more difficult challenge would be to make a

system that helps users find all interesting information if a user so desires. In a sense, this

would measure the precision of the system. By design of the longform speech browsing

system, users (ideally and typically) will not encounter all the content in an audio file, and

by definition would "miss" information - either relevant (bad) or irrelevant (good). Thus, a

more tractable reformulation of the problem would be to optimize how content is presented

and to tailor it at the user level.

First it is important to note that summarization has a user-dependant nature; different users

may prefer not only different content but also varying levels of detail in their own summaries.

Consider how a subject matter expert’s ideal summary may not require having introductory

material while a lay person’s preferred summary would include such content in order to be

useful. By developing user profiles that model user interests and expertise, content can be

filtered and restructured in a manner that suits an individual’s specific browsing needs. Such

user profiles can explore the thresholds of user behavior with regards to information need. In

another tangential vein but in a language modeling perspective, future work can incorporate

advances summary language modeling allowing for tailored text generation [214] as the new

1https://developer.ibm.com/patterns/use-advanced-nlp-and-tone-analyser-to-extract-insights-from-text/
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backbone to our system. In tandem to user profile modeling, the system’s core language

model can take into consider a user’s priors (such as their interests) at the summary text

generation stage.

7. Visual Information Cues. Though users found the system’s visual information cues useful,

they required additional work to understand. Users found there was a learning curve in

order to build an intuition and mental model of the provided indicators; in our experiments,

we found that individuals first had to build a conceptual understanding for quantifying both

information compression and summary quality. For example, a person first had to gain a

sense of the ranges of information compression and summary quality (what is a 60% on a

0% to 100% scale?) by working through examples.

With more extensive experimentation and understanding different users’ sensemaking, we

could further iterate and refine how the system presents additional visual information cues

towards users. Instead of a user needing to interpret 60%, the system could bucket per-

centages into meaningful categories which reflect people’s existing notions of "quality" and

"information retained". 60% could be “much information retained” while 20% could be "lit-

tle information retained". Another possible visual representation worth exploring could be

with "stars"; users innately know "5-stars" is the maximum a metric could achieve in terms

of "goodness" whereas "3 out of 5 stars" is still somewhat decent. Regardless of the repre-

sentation chosen, future work can iterate on finding the most effective visual encoding that

naturally maps to people’s intuitive notions of quality and can still be easily perceived and

interpreted.

8. Prolonged User Study. The next logical step is evaluating our system in a longitudinal study

in an extended practice studying user engagement with information cues and the system’s

performance on different domains. As with all systems, some of the longform speech brows-

ing system’s quirks and unforeseen bugs can only emerge after extended use. With the

deployed instance of the system, future work can collect user engagement data, providing
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insight as to how users spend time with the system. Some questions that can be addressed

include: (i) Where do users spend most of their time reading (and compared to the estimated

information estimation heuristics)? (ii) When do users elect to listen the original audio?

Such data invariably will help future iterations on the system.

In another prolonged study, future work can technically evaluate how well the heuristics

driving the visual information cues match what users intuitively expect. Does the choice

of counting language objects (ROUGE-1) in 5.3 (as opposed to a different 𝑁-gram) recall

affect the heuristic enough to alter how users interpret the information cue? Another question

to investigate is the differences between the thresholds users have when quantifying and

interpreting information cues. By having insights towards these questions, future work can

refine the system accordingly.

6.4 Conclusion

6.4.1 High-Level Takeaways for HCI from NLP

Technologies in aiding ‘human’ understanding of language have drastically improved in re-

cent years and have seen widespread adoption in various domains and tasks in the form of large

scale transformer language models. One important consideration for HCI practitioners looking

to develop new text based systems and applications is to recognize the break-neck pace at which

language models are advancing. These language models require little to no additional modification

nor training data in order to achieve decent off the shelf performance. Moreover, existing popular

frameworks make them easy to adapt and use. As a result, these new and powerful models present

a unique and modular opportunity to impact user interactions.

Natural language modeling can be viewed as providing a technical toolbox while HCI concepts

and theories compose them into useful and meaningful applications for people. Typically language

models are trained to solve a targeted and specific natural language task (such as sentiment clas-

sification, translation, or summarization); these tasks frequently exist as a subproblem within a
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more involved HCI application which these models can then by directly applied to. Some of these

subproblems that were once extremely human intensive and prohibitive, can now be solved at a

degree that matches or exceeds a human’s capability in a cheap and efficient manner. For example,

Soylent [219] which required Mechanical Turkers to edits and shorten parts of an input text, can

now be automated with summarization and grammar quality classification language models. This

in turn eliminates the dependency on crowdsourcing and allow the system to be deployed on a

previously thought impossible scale. Though past HCI systems were lacking in raw computational

power, they have already presciently addressed how such simple subproblems can be composed

together within a system to solve a more complex challenge.

The powerful language modeling capabilities now possible from these language models enable

novel end user applications and use cases. For example, recent work [220] has explored applying

the powerful generative ability of large language models in a constrained manner to aid users in

creative writing. Whereas past language models simply did not have the semantic understanding

to scale to the degree required to make useful creative suggestions to users, current advances in

modeling now allow for useful AI creativity tools.

6.4.2 High-Level Takeaways for NLP from HCI

Current research is heavily focused on metric performance measures such as task accuracy or

text generation fidelity, and little work is done on assessing these models and their utility in differ-

ent interaction scenarios. Obviously, improving a language model’s performance is important as

it translates to an improved experience towards users. However, understanding the different needs

of how different end-users will use such language models can better help refine how different lan-

guage tasks are posed. In the example of neural machine text quality classification [221], different

users can tolerate different levels of quality in a translation. An individual requiring a textbook

to be translated can tolerate no errors while an individual reading a Facebook post’s translation

can tolerate some, so long as the individual can still understand the content. From this example,

we can observe how different user needs dictate the requirements for a model’s (or two models’)
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sensitivities and subsequent training.

Another HCI perspective to motivate future work in NLP language model development is to

consider an interaction angle. Current AI systems that claim "human interaction" do not afford

users the ability to truly dictate what their desired result is. Consider an example with Dall-E;

a user only has two points of interaction with the AI system: (i) specify what they wish to have

generated and (ii) decide whether or not the generation is acceptable. As is, such large scale

systems do not provide users with fine-grained control to influence the end result. In the previous

example, the user is relegated to "guessimating" how to change the input text prompt. Now from an

interaction perspective, allowing the user to specify to the model what dimensions (such as style or

color) were good and that the model should keep in subsequent generations, would result in a more

effective interactions. On this technical note, by developing models that allow users to provide

input and feedback at multiple points specifically at inference time, AI models can be tailored and

adapted towards different users on demand.

6.4.3 Closing Remarks

One of the key themes this dissertation explores how we applied information foraging towards

structuring longform spoken dialog and thus allowing users to subsequently browse and navigate

content. It is important to emphasize that the systems presented in this dissertation are an abstract

framework: while the technical procedures we have employed are currently state of the art, such

as the abstractive summarization models and coreference resolution methods used, they can easily

be substituted out for newer (and not yet developed) methods and applied in the same manner. In

that regard, the resulting system would still remain identical, albeit with improved performance.

Given the mass adoption of video and audio for communication, developing tools for auto-

mated abstractive summarization from audio represents a valuable opportunity to re-invent how

we consume such information-rich mediums. In particular, with new technologies, it is possible

to browse and skim audio content on the web, similar to how we forage for visual information

clues on web-pages. This thesis developed an application that utilizes automatic summarization
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and speech modeling to structure longform dialog to present information in a manner that is both

intuitive and flexible towards different user browsing needs.
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