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Abstract

Enabling Structured Navigation of Longform Spoken Dialog with Automatic Summarization

Daniel Li

Longform spoken dialog is a rich source of information that is present in all facets of every-
day life, taking the form of podcasts, debates, and interviews; these mediums contain important
topics ranging from healthcare and diversity to current events, economics and politics. Individuals
need to digest informative content to know how to vote, decide how to stay safe from COVID-19,
and how to increase diversity in the workplace.

Unfortunately compared to text, spoken dialog can be challenging to consume as it is slower
than reading and difficult to skim or navigate. Although an individual may be interested in a
given topic, they may be unwilling to commit the required time necessary to consume long form
auditory media given the uncertainty as to whether such content will live up to their expectations.
Clearly, there exists a need to provide access to the information spoken dialog provides in a manner
through which individuals can quickly and intuitively access areas of interest without investing
large amounts of time.

From Human Computer Interaction, we apply the idea of information foraging, which theorizes
how people browse and navigate to satisfy an information need, to the longform spoken dialog
domain. Information foraging states that people do not browse linearly. Rather people “forage” for
information similar to how animals sniff around for food, scanning from area to area, constantly
deciding whether to keep investigating their current area or to move on to greener pastures. This

is an instance of the classic breadth vs. depth dilemma. People rely on perceived structure and



information cues to make these decisions. Unfortunately speech, either spoken or transcribed, is
unstructured and lacks information cues, making it difficult for users to browse and navigate.

We create a longform spoken dialog browsing system that utilizes automatic summarization
and speech modeling to structure longform dialog to present information in a manner that is both
intuitive and flexible towards different user browsing needs. Leveraging summarization models
to automatically and hierarchically structure spoken dialog, the system is able to distill informa-
tion into increasingly salient and abstract summaries, allowing for a tiered representation that, if
interested, users can progressively explore. Additionally, we address spoken dialog’s own set of
technical challenges to speech modeling that are not present in written text, such as disfluencies,
improper punctuation, lack of annotated speech data, and inherent lack of structure.

We create a longform spoken dialog browsing system that utilizes automatic summarization
and speech modeling to structure longform dialog to present information in a manner that is both
intuitive and flexible towards different user browsing needs. Leveraging summarization models
to automatically and hierarchically structure spoken dialog, the system is able to distill informa-
tion into increasingly salient and abstract summaries, allowing for a tiered representation that, if
interested, users can progressively explore. Additionally, we address spoken dialog’s own set of
technical challenges to speech modeling that are not present in written text, such as disfluencies,
improper punctuation, lack of annotated speech data, and inherent lack of structure. Since summa-
rization is a lossy compression of information, the system provides users with information cues to
signal how much additional information is contained on a topic.

This thesis makes the following contributions:

1. We applied the HCI concept of information foraging to longform speech, enabling people to

browse and navigate information in podcasts, interviews, panels, and meetings.

2. We created a system that structures longform dialog into hierarchical summaries which help
users to 1) skim (browse) audio and 2) navigate and drill down into interesting sections to

read full details.



3. We created a human annotated hierarchical dataset to quantitatively evaluate the effective-

ness of our system’s hierarchical text generation performance.

4. Lastly, we developed a suite of dialog oriented processing optimizations to improve the
user experience of summaries: enhanced readability and fluency of short summaries through
better topic chunking and pronoun imputation, and reliable indication of semantic coverage

within short summaries to help direct navigation towards interesting information.

We discuss future research in extending the browsing and navigating system to more challeng-
ing domains such as lectures, which contain many external references, or workplace conversations,
which contain uncontextualized background information and are far less structured than podcasts

and interviews.
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Chapter 1: Introduction

Spoken dialog is a rich source of information that is present in all facets of our everyday lives.
Speech is a medium that is native and relatable - we communicate and share ideas, debate topics,
and express ourselves through speech. Take for example a televised political debate where two
opponents engage in heated discussion over policy regarding immigration, or in a different set-
ting where a company is discussing its quarterly earnings and its future direction through a panel
call; they both contain rich information with varying degrees of individualized relevance towards
different listeners. Similar speech also extends to many spoken settings ranging from city coun-
cil meetings, project discussions, doctor’s appointments, seminar based commentary, and dictated
instructions. Undoubtedly, conversation and dialog is content rich and diverse. Creating such lan-
guage applications for navigating and modeling speech for more efficient understanding has many
direct and immediate user benefits.

One of the largest challenges with longform audio is the difficulty in navigating and exploring
the medium [1, 2, 3]. Speech is intrinsically disorganized and lacks traditional structure such as
paragraphs, topic sentences, and proper punctuation that is present in traditional prose and written
text. Such information cues that normally can be used to assist users to more quickly identify
relevant information are non-existent. Furthermore, speech can often be non-informative as is in
the case of greetings and banter, resulting in unnecessary details that are not necessary or pertinent
towards understanding the underlying content.

To demonstrate the problem with navigation in a real world setting, consider an example where
you’re in a teaching position at a learning institution. A colleague emails you a 30 minute YouTube
video containing a recent interview on diversity and inclusion. This is an area that you’re not an
expert on, but as an educator, is something you’re interested in. This is something that you might

find interesting, but not to the extent that you’d be willing to invest 25 minutes into. What’s more



is that there is no easy way to skim through and navigate through the interview’s content to find

parts that you find interesting. Some strategies that you might be left with include:

1. Randomly skipping throughout the video.

2. Listening for a few seconds periodically and making an educated guess on what you think

each segment discusses.

3. The obvious method of simply listening through the entire interview (potentially in a sped

up manner).

4. Obtaining a transcript (presented without any punctuation, capitalization, or paragraph for-

matting) and reading through.

For options 1 and 2, this could lead to frustration due to missed information and the lack of
user awareness in navigating the interview content - consider the user’s navigation choice in option
3, this somewhat guarantees no missed content and provides an indicator as to how far the user has
progressed into the interview’s content. The tradeoff in option 3, however, is too much of a time
investment from the user and a cognitive overload if listened to on a sped up timeframe.! Lastly,
in option 4 there is no structure nor punctuation as to how information is presented, which in turn
does not offer a clear navigation procedure. Clearly, there exists a need to provide a tool or system
that helps users more easily skim audio content within an audio file and quickly identify parts that
they are interested in.

From the brief example, it becomes immediately apparent what criteria must be met to have a

successful speech content navigation system:

1. Importance and Relevance: Content needs to be succinctly presented in a manner that
preserves the most important and salient information. Irrelevant information (such as filler

sentences in speech) should be summarized out.

IFor the purposes of this work we do not consider this option, we use automatic speech recognition to distill audio
into a text transcript and then operate on said transcript for the entirety of this dissertation. References to speech,
longform spoken dialog, audio, and etc. are to their transcribed (transcript) form.

2



2. User Tailored: Information that is interesting to one user may not necessarily be interesting
to another user. The proposed system should enable present information in a manner that

supports user browsing freedom.

3. User Needs: Different users have different browsing objectives, ranging from a quick look-
through to an in depth structured exploration. The proposed system should be able to support

different styles of browsing.

With these criteria in mind, this thesis addresses the application need by developing a system?
that utilizes automatic summarization and speech modeling to structure longform dialog to present
information in a manner that is both intuitive and flexible towards different user browsing needs.
Leveraging summarization models to automatically and hierarchically structure spoken dialog, the
system is able to distill information into increasingly salient and abstract summaries (which can be
intuitively thought of as a long summary, medium summary, and short summary), allowing for a
tiered representation that, if interested, users can progressively explore.

Additionally, when designing such a system, we need to contemplate how users intuitively
browse and search for information to satisfy an information need by examining different patches
of information. This is described by a concept in human computer interaction known as informa-
tion foraging [4], which we use to guide our system design. Consequently, our system’s summaries
of longform spoken dialog mimic semantically cohesive "patches" of information that can be indi-
vidually browsed. With separate patches, the system is now able to impose a hierarchical structure
on the underlying longform speech content.

The hierarchically presented nature of the summaries affords flexibility by allowing users to
be in control of what information they read at a high level and what information they choose to
consume in greater detail. We aim to structure and format spoken dialogue in a way that allows

users to fit the cognitive tasks of information foraging with the following concepts:

1. The system begins with providing an overview of the different topics discussed in a long-

2For reader clarity, any time this dissertation mentions something along the lines of "(our) system", it is referring
to the overall longform speech browsing system that we developed.



form audio file. By reducing the total amount of information and abstracting it into distinct

concepts, users can quickly scan for pertinent high level information.

2. When a user finds interesting information and wishes to learn more, the system needs to
support user freedom by allowing the user to drill down into the identified topic for a

deeper dive into the corresponding finer details.

3. However, if at any point, if the desired information is not found in the user’s particular
navigational path, the system also needs to support the user in popping back up. Users must
be able to reorient themselves to find the relevant information that satisfies their information

need.

4. Creating information cues through information estimation heuristics to provide users with

means to inform and guide content browsing.

By supporting these actions, we are able to present longform dialog content to users in a man-
ner that not only enables navigation, but also reflects tailored user information goals. Simultane-
ously, we address technical speech domain characteristics (such as disfluencies, incorrect sentence
boundaries, and word recognition errors) and the unique challenges they pose towards speech and

language processing.

1.1 Thesis and Dissertation Contributions

Concisely stated, this dissertation proposes using HCI principles of information foraging to
design a system that leverages automatic summarization to structure longform audio transcripts
and create information cues to enable navigating and browsing of longform spoken dialog. This
contributions of this dissertation are as follows:

First, we apply the HCI concept of information foraging to longform speech, enabling people
to browse and navigate information in podcasts, interviews, panels, and meetings. Before even de-

signing a system for navigating and browsing of longform audio, it is important to understand how



people browse for information. People do not browse linearly, rather they “forage” for information
similar to animals sniffing around for food, scanning from area to area. The underlying hypothesis
is that users have some innate foraging mechanisms that guide them in a rational and goal-driven
manner through different levels of specificity [S]. When searching for relevant information, users
rely on the concept of “information scent” which they use to estimate how much useful information
is contained on any given path, and how to adjust and reorient themselves as necessary to retrieve
relevant information. A successful system that allows users to effectively browse longform speech
content must consider and incorporate user browsing habits.

Second, we accordingly introduce an approach that recursively applies automatic summariza-
tion to create hierarchical summaries, thereby condensing longform dialog to help users to 1) skim
(browse) audio and 2) navigate and drill down into interesting sections to read full details. The
system employs abstractive summarization language models to recursively process and structure
longform dialog into summaries containing multiple levels of detail, with the most high level sum-
mary (or short summary) containing only the most important key concepts and the most detailed
level summary (or long summary) containing additional information, such as supporting facts to a
central point. The system’s user interface presents users the summaries in a hierarchical fashion,
leading the user’s attention to the shortest summaries, presented in a column. These can then used
quickly skim all the high level pieces of information discussed. Because the short summary retains
the segment’s most salient information, it gives the best indication to the user on whether or not
this segment contains the information that the user wants; if the user decides the information is in-
teresting, they can proceed to read subsequent levels of detail until their "information need" [4] (in
other words, how content is the user with their current understanding of the presented content) is
met. The user interface also provides additional information cues [6], such as visual indicators es-
timating the amount of content contained and captured in summaries to better assist user browsing
and navigation decisions.

Third, we created the first human annotated hierarchical summarization dataset, providing

gold standard intermediate text level summary annotations. This is then used to quantitatively eval-



uate the effectiveness of our system’s performance against these human written gold summaries. To
the best of our knowledge, no abstractive summarization datasets exist for longform speech, much
less annotated with multiple levels of summarization detail. To provide additional levels of an-
notations, we create a hierarchical abstractive summarization dataset and protocol (complete with
an live open-sourced user interface annotation tool®), where longform text is recursively summa-
rized to create progressively broader summaries in a bottom up manner. In addition to user studies
and qualitative evaluation, this heirarchically annotated dataset* facilitates quantitative evaluation
our system’s summary quality performance for various summary detail levels with conventional
metrics such as ROUGE [7].

Fourth and lastly, we introduce a suite of dialog oriented processing optimizations to improve
the user experience of summaries: enhanced readability and fluency of short summaries through
better topic chunking and pronoun imputation, and reliable indication of semantic coverage within
short summaries to help direct navigation towards interesting information. Unlike written text,
transcribed speech is far more noisy and difficult to process and model; speech contains informal
language and disfluencies such as hesitation and vocal fillers, and discussions frequently jump
from topic to topic. These speech specific attributes makes it challenging for summarization lan-
guage models to semantically comprehend and generate high quality summaries, leading to user
frustration when extra time and energy is spent trying to comprehend the Al generated summary.
By specifically modeling speech noise effects and correcting input transcript text before summa-

rization, the system is able to minimize detrimental speech effects.

1.2 Dissertation Overview

This section presents an outline of the dissertation by chapters.

3https://resubstrate.github.io/lex—client/index.html#/login
“4The full scope of this dataset can be of wide interest to the overall NLP community and not immediately relevant
to this thesis. We plan on additional development for a this dataset.


https://resubstrate.github.io/lex-client/index.html#/login

1.2.1 Related Work

The Related Work (Chapter 2) is used to properly contextualize and situate this dissertation and
its contributions in the cross section of Human Computer Interaction (HCI) and Natural Language
Processing (NLP). Specifically, we examine principles from user browsing habits (information
foraging) and how to apply them when designing a system to help users browse and navigate

longform dialog.

1.2.2 Hierarchical Summarization for Longform Spoken Dialog

Chapter 3 presents the first proof of concept longform audio browsing system, herein referred
to as "System 1" and proposes the foundational framework of using automatic summarization to
decompose and presenting longform spoken audio in a hierarchical nature. Specifically, Chapter
3 discusses initial speech and language modeling challenges in developing the proof of concept

audio browsing application.

1.2.3 Creating a Hierarchical Summarization Dataset for Longform Spoken Dialog

Chapter 4 discusses the development of a summary annotation tool and annotation protocol for
the creation of a hierarchically annotated abstractive summarization dataset; this is required for
the quantitative evaluation in Chapter 4. Chronologically, this data was obtained after work and
development in Chapter 3 had finished, meaning longform hierarchical summaries were not yet

available for use at the time.

1.2.4 Improving and Evaluating the User Browsing Experience in Summarization Systems

Chapter 5 covers an iterated and improved longform audio browsing system, herein referred
to as "System 2", addressing and improving upon technical shortcomings in System 1 (Chapter

3) that affect usability. System 2 also introduces additional features to improve information cues

>System 1 exclusively refers to Chapter 3’s instance of longform audio browsing system, while "system" refers to
the overall concept of a longform audio browsing system.



and better assist user browsing. In particular, Chapter 5 emphasizes evaluation: quantitatively
evaluating System 2’s technical improvements on generated summary quality and qualitatively

studying user interactions on browsing and skimming efficiency with System 2’s.

1.2.5 Conclusion and Future Work

Chapter 6 summarizes this dissertation’s contributions, discusses limitations of the longform

audio browsing system, and suggests future work directions.



Chapter 2: Related Work

This section discusses the relevant subsets of Human Computer Interaction (HCI) and Natural
Language Processing (NLP) fields this dissertation builds on top of through the lens of the spoken
dialog (speech) domain. We begin by providing the necessary background theory on information
foraging and related work describing how individuals browse for information. We then cover
current works on media browsing systems and how automatic summarization is currently used in
HCT applications.

On the NLP portion, we provide a brief overview on automatic speech recognition (ASR)
systems and provide a discussion on their downstream effects towards language modeling. Next,
we provide background on existing abstractive summarization architectures (with an emphasis on
hierarchical and recursive abstractive summarization), summarization datasets, and summarization
quality evaluation.

The vast majority of existing work in NLP summarization field is focused on developing and
improving summarization language model quality and performance, neglecting research in down-
stream user applications and additional language model use cases beyond condensing text. How-
ever, by applying information foraging principles from HCI to longform speech, we gain valuable
insights as to how automatic summarization can be leveraged to create a novel longform speech
content browsing system.

It 1s important to note that our longform audio browsing system simply uses an abstractive
summarization LM as its backbone in the overall system. Technical LM performance improve-
ments (i.e. through new architectures or training regimens) are not the primary focus of this work
and outside the scope of this dissertation, though improved LM performance directly translates to

a better longform audio browsing experience to the user due to improved summarization quality.



2.1 Notation and Terminology

Throughout the technical portions of the dissertation we will symbolically refer to text at dif-
ferent levels (sentences, words, etc.) and use this section to set the standard notation and define

terminology used throughout this dissertation.

* Transcript: Using ASR speech-to-text to transcribe an audio file (i.e. a .mp3 or .flac) outputs
a text transcript that can then be then used as in input to downstream applications (such as

summarization).

* Gold Standard and Gold Label: A reference to a summary that is human authored and as-
sumed to be the perfect benchmark. Colloquially this can also be referred to as the reference
summary. In the case of ASR transcripts, a gold standard or reference transcript is free of

word transcription errors.

* Language Model: Though a language model (abbreviated LM or sometimes referred to as
just "model" given sufficient context) typically refers to a probability distribution over words,
we refer to them as exclusively large scale transformer architectures [8] that have been pre-
trained on a large corpus and can be further used for additional NLP tasks. For the scope
of this dissertation, we typically use language models in the context of summarization; for
example a summarization language model is a LM that has been adapted for summarization
use. Language modeling refers broadly to any sort of NLP task (i.e. machine translation,

summarization, classification, entailment, etc.).

* Indexing: given example variable s, indexing will be usually expressed using subscript s;
to denote an element in a set. If another index is required, superscript s* will be used.
Superscripts s can also be used to signify membership to particular class or group (e.g. s*
belongs to class K and s° belongs to class O). Variable n will be used to denote the last
element in a set, such as (s, s, ..., i, ..., S,). Indexing will be used when specific references

are needed, otherwise s € S is used.
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* Word w is a singular token and is treated as the lowest level unit for the scope of text process-
ing in this thesis. For simplicity, though words can be split into multiple tokens depending

on their tokenization schema [9], we always assume one word is exactly one token.

» Sentence s is a sequence of words, where w € s.

 Capital variables (e.g. S) refer to a list of sentences s, where s € S. The grouped sentences
are considered a structure. There are several ways S can be interpreted and referred to, all of

which are a list of sentences:

1. Source text: this is the set of input sentences that is passed into a summarization model.
When referring to training and test data, all the inputs can be referred to as "source"
and will usually be denoted with an §. In addition to source text, the input (to be

summarized) can also be referred to as a "document" and input sequence.

2. Target text: this is the set of text sentences generally on the output side. Reference text,
text that usually consist of gold standard human authored summaries, is an example of
a target sequence. This is colloquially referred to as the "targets" in text generation and

will usually be denoted with a 7. Output text (below) is also an instance of target text.

3. Output text: also known as the hypothesis, this is the set of sentences outputted by a
text generation model. In other words, this is the summarization model produced text

summary, usually denoted with a H.

* Bold faced capital variables (e.g. T indicating a collection of a list of segmented (defined
further down) sentences, such as a segmented audio transcript) indicate the the highest rank

of items unless otherwise specified. This will refers to all segments S, where S € T.

* Ordinals and hierarchy: w € s € § € T shows the complete progression of a word in a
sentence in a segment in a transcript. Note that we can omit levels when referring to this
hierarchy. For example, w € T refers to all words in the transcript, s € T refers to all

sentence in the transcript, and w € S refers to all words in the segment (list of sentences).
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» Text Segmentation: where a text is broken into semantically topical segments (or other infor-
mation units), typically preserving and using existing sentence boundaries (.!?). The follow-

ing example uses a toy illustration and to cover notation used in a combined setting.

Consider a list of 5 sentences S = (s1, 52, 53, 54, 55), Where each sentence has a word count of
30 words (|w®| = 30Vs; € S) with the goal of segmenting S into segments, each containing
no more than a total 65 words. Concretely stated, S now becomes S = SEGMENT(S)! as S

now becomes a collection of segments (each is a list of sentences) and |w3/| < 65VS; € S.

1. Topic segmentation [10]. Sentences are typically grouped according to their semantic
similarity and can be thought of as a clustering problem [11]; a segment can also be re-
ferred to as a cluster. If 51, 57 discussed dogs, s3 discussed pet food, and s4, 55 discussed
pet care, a resulting topic segmentation of these sentences would be: S| = (s1, 52),

S2 = (S3), S3 = (S4,S5) and S = (S], SQ, 53).

2. Preserving sentence boundaries. When creating a segment of sentences, we do not split
sentences apart (unless otherwise noted). If s3 had also discussed dogs and is now
semantically related to sy, s, would result in S| = (s, 52, s3) and would not a valid
segment (Jlw51| = 90). Thus s3 can either (i) be added to S, removing either sy or s, and
placing either in a different valid segment S; : i # 1, preserving sentence boundaries or
(i1) split between sentence boundaries and be grouped where the first 5 words are now

s1 . s 52 . 5

contained in S = (wi', W W W W w?), partially truncating s3.

2.2 Human Computer Interaction

2.2.1 Information Foraging Background

Information foraging theory [4] is a concept from HCI that describes how users navigate and

browse a large dataset to satisfy an information need. When browsing for information, people do

'Functions on variables in equations will be abstracted away when possible and referred to just as an operation.
For example calling SEGMENT (S) means segmenting the set of sentences S.
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Emma’s Large Nacho .
Homemade tortilla chips covered with our ho Nmm&
‘sauce, two cheeses and melted together

err$9.75

Emma’s Nachos Supreme ... -
Homemmade ol chips covered with tacormeat
two chagses, tomatoss, olives, homemade sauce,
‘sour cream and guacamole.

Homemade Tortilla Chips & Sals:
Chicken Quesadilla...
Veggie Quesadill

-Wraps-

Turkey Avocado Wrap........
Turkey breast, avocado, tomatoes, red onions, shredded
lettuce, provolone checse and mayo wrapped in a tortlla

Chicken Ranch Wrap..........
Shredded lettuce, cisp chickeni trps:
cheese and ranch dressing wrappedin a to

Chicken Fajita Wrap
Giilled chicken breast strips,
‘mexi-ranch wrapped in  tortill

Philly Steak Wrap....
Thin Philly Steak with sliced onions, peppers, mushrooms,
cheese and mayo wrapped ina tortilla

BLT Turkey Wrap... e $10.28
Bacon, turkey, lettuce, tomeato and lm»\\\\'“\'\\x‘d ina tortilla

-A La Carte-

French Fries.......

Steamed Vegetables .

Mashed Potatocs wigravy

Taco Salad

e S1125
me tossed green o topped with golden frcd chicken
breast, toasted almonds and crunchy rice noodles, served

with our special dressing

Southwest cken Salad.o e $10.95
A flour tortilla shell filled with tossed green salad, scasoned
chicken breast strips, colored tortilla stris, two kinds of

cheese, mexi-ranch sauce and our homemade cilantro sauce.

Chicken Apple Pecan Salad.... .SI1.
Thin sced grilled chicken on tossed green salad, with sliced
apples, candied pecans, dried cranberries and feta cheese.
Served with raspberry vinaigreti dressing

-USDA Grade Choice Steaks-
Sirloin Strips & Bits... e $13.25
Beef strips grilled wi mmmmemu arions, served
with potato o fetuccine noodies, covered with beef gravy

(one side only)
Ty
LTS
nj&fﬁ%

12 0z, Aged Ribeye Steak..
-$24.50

Char-broiled aged steak, this one’s.

Steak & Shrim
Aged 12 0z ribeye steak and two jumbo shrimp,
‘cookad to perfection!

Tender Flat Iron Steak Sandwich ...
A guaranteed tender flavorful steak.
Choice steak dinners served with two sides
and DayLean’s Dinner roll.

-Houston’s Special-
Dinner Bowls

$14.95

Potato Salad $3.25 Butter Garlie Shrimp ...

Dinner Roll $.75 Grilled and lightly en

Tossed Dinser Salad 150 veacables, Lumvud with slicod almonds and crunchy rice
‘ossed Dinner Salad roe pilal

Deluxe Tossed Salad

Mixed Fruit Bowl. $3.95
Bowl of Soup.

Orange Chicke:
Lighty e desp

reeee $14.25

p
Topped:

Soup, Salad and Dinner Roll......................$8.25

**Add Soup or Salad to any meal for $2.25%*

and mm rice noodles served overrice pilaf.
Above bowls served with your choice of
soup or salad and DayLean’s dinner roll.

-Dinner Entrees-

Houston’s Famous Chicken Fried Steak
$13.25
Fresh cubed beef steak, lightly breaded with our
special breading and topped w/Bob’s country gravy.
Our #1 Seller!

Southwest Chicken ..
Boneless chicken breast sm
chilies, tomatoes, olives and served with mexi-ranch over rice.

e 31325

Chicken Strips...
Breaded chicken breast
Chicken Fried Chicken Breast ... 81325
Bongless chicken brcast breadd, e and opped with

Bob's country gravy

Chicken Broceoli Alfredo.....
Fettuccine noodles and fiesh broceoli
alfredo sauce, topped with grilled bor
(one side only)

Chicken Quesadilla...

Seasoned fajita chicken, tw
tortilla, served with chips and salsa, (no side)

Special Shrimp Dinner ...
Fresh hand shelled jumbo srinp cooke i our special
bater (ot breading) and scrved piping hot!!

Deluxe Veggie Burger....... e $9.95

Served with lefuce, fomato and pi

Orange Veggie Bowl.. enmnnensSLLTS
Garden burger strips and fresh \Ezgmms‘m with
orange sace and served over rice

Veggie Quesadilla waes $9.95
Al the fresh vegetables jack
‘and cheddar cheese, with a special mexi-ranch salsa
Served with chips and salsa. (no side)

Black Bean Chipotle Burger....
Servedon Ciabata oll wih lefuce, fom
Pasta Veggie Bow......
Fettwecine noodles with fresh
our creamy alfredo sauce.
Veggie Meals include choice of one side.

-Super Sandwiches-
Hot Roast Beef
Hot Roast Turkey
Hot andwich.

Above sandwiches served on open faced
texas toast smothered in gravy.

French Dip.

BBOQ Baby Back Pork Rib 51825
Baked all rught, so tender they fall off the bone.

Served slathered with BBQ sauce.

Country Style Boneless Pork Ribs .............815.7§
Slow rastcd in our special smoked BBQ sauce

BBOQ Chicken Breast . ..81325

Chicken breast grilled and l'mqed mll\ our ﬂ'\mal
smoked BBQ sauce.

USDA Choice Ground Round....
Gilled ground siroin, toppeed with il onicns and
mushrooms. Smothered with beef gravy.

$13.25

Dinner entrees served with twa sides
and DayLean’s dinner roll.

-Houston Side Dishes-
Small Dinner Salad Baked Potato
Macaroni & Cheese Cowboy Beans
Fresh Steamed Veggies Cup of Soup
Mashed Potatoes/Gravy French Fries
Rice Pilaf

Loaded Baked Potato for .75 extra.
Upgrade dinner salad to deluxe for $1.00 extra.

Philly Steak Sandwich,
Triple Club Sandywicl
Patty Melt (Cheese, Chilies, T
Turkey BLT on Ciabatta .

BLT on Ciabatta ...
Super Sandwiches int

-Hamburgers-

Rustler Burger (Ham & Cheese) ...x
Ranch Burger (2 Patties & Cheese)

Cheese Burger
Outlaw Burger (Ba
We grill 1/3 Ib. h
sesame seed bun with lettuce, tomato and pmkm
Hamburgers include choice of one side.

Figure 2.1: The typical restaurant menu best demonstrates information foraging and infor-
mation browsing. Menus are a good example of how information can be optimized for browsing.
When a patron is at a restaurant, they typically do not already know what to order, but have a rough
sense of what they like. This puts the patron in a browsing mindset, where information cues and
structure such as subheadings are immensely helpful. They can quickly indicate what the different
categories of menu items are, without requiring the reader to sift through unnecessary and irrele-
vant details.

not search linearly. Instead, people "forage" for information, similar to how animals sniff around
for food, scanning from area to area (where each area is a possible source of information in the
aforementioned hypothetical dataset for this analogy). Clearly, it does not make sense for an animal
to stay and explore an area without an obvious indication that it contains food; the animal should
move on to greener pastures.

Similarly, when browsing, people mentally consider the trade-off between how much infor-
mation can be gained from a particular source of information versus the cost (i.e. time spent) of
exploring and extracting information from said source. When considering the time cost of brows-

ing [12], they generally fall into two categories:

1. Between-patch: where the user spends time determining what information sources are rel-
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evant. For example, when researching a subject you may compile a list of all the websites

that may be relevant.

2. Within-patch?: where the user spends time investigating each of the patches of information

to extract information from them.

People tend to investigate information sources (areas) that minimize both of these time costs and
maximize the information gain as a trade off. In other words, people try to obtain as much relevant
information in as little time as possible.

An example that demonstrates users in an information foraging context is when one visits a
restaurant and is handed a menu (Fig 2.1). Typically, the customer does not know precisely what
to order, but has a general idea of what kind of food they like. To explore the restaurant’s offerings,
customers scan (forage) areas and portions of the menu. When the customer finds a particular
section that plausibly contains an item that satisfies what they want (information need), they can
dive deeper to find a specific menu item to order.

To help the reader navigate, the menu has large header sections that signify different item
categories, followed by subheading titles and smaller details of each item. Each of these section
headings provides clear indicators to a customer on the finer details of the menu’s content. Based
on these information cues, a customer is able to estimate how relevant the food items in a particular
section is towards what they may want to order. This concept is known as information scent,
[13] which describes what people use to imperfectly estimate how much relevant information is
contained on their current exploration path, and how to adjust and reorient themselves as necessary
to retrieve relevant information.

There are two aspects of information scent that are especially important to understanding user

browsing behavior:

1. SNIF-ACT [5] keenly observes how information scent is incorporated into a person’s thought

process. Users would leave their current exploration path if the information scent diminishes

%For the scope of this dissertation, our speech browsing and navigation system primarily focuses on the second
category of within-patches where the focus is to help users browse and navigate audio within a particular information
source (such as a podcast or interview) as opposed to finding different podcasts and interviews to listen to.
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below a certain threshold. This generally categorizes how people browse for information,
as individuals browse a source for information and they realize that the information is now
no longer relevant to their browsing interests, they typically proceed onto the next source or

patch of information.

2. Next, Pirolli [13] theorizes that if information scent cues are perfect then the user will make
no navigation errors and will proceed directly to the desired information. In other words,
when browsing, if each navigational decision is made on perfect information, that is to say
each information cue or indicator perfectly aligns with the individual’s interpretation of what
the subsequent information is and provides, the user will have no difficulty in finding the

information they desire.

In most cases, people do not know in advance how much information a particular source of
information has and how much time it would take to extract said information. However, people
are able to draw upon any information cues the current source of information emits to make their
browsing decision. How people make sense of the information cues that are present is known as the
concept of sensemaking. Sensemaking [14] describes the process of searching and forming useful
representations from data. When users give meaning and rationalize information, they draw upon
their own collective experiences. As a result, the final understanding an individual arrives at may
vary from a different individual’s and is relative. It is also important to point out that the concept
of information scent is relative to an information need [15]; the same source of information can
give off different information scents for different information needs. For example, if a customer
is in the mood for sweets and desserts, then the main course section would have a non-existent
information scent to this particular customer, as it is very likely that sweets and desserts are not
served as main courses. Conversely, the main course section will emit a large information scent to
a customer looking to order a filling meal. It follows that different users have different user needs,

demonstrating how information scent is also relative to users.
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2.2.2 Information Foraging Implications Towards Longform Spoken Dialog

Principles in information foraging describing how users browse information are universal and
provide valuable insights that can be applied towards designing a system to help users navigate and
browse speech.

Information Patches and Structure. First and foremost, speech content should be structured
in a manner that is conducive towards browsing, motivating the system’s hierarchical presentation
of information and segmenting content into topically distinct segments, or "information patches",
which are then presented in a linear sequential fashion. By breaking up and structuring audio and
longform dialog transcripts into manageable information patches, users are able to individually
assess, patch by patch, what is relevant to their current information need and whether or not to
adjust their navigational path.

The system’s hierarchical presentation allows users to investigate progressively in more and
more detail, giving the user multiple stages to opt out of their current navigational path and to
stop browsing when their information need is satisfied. This can be interpreted as an optimization
for reducing user’s within-patch information extraction time. Encouragingly, foundational work
in information foraging [16] supports the notion that structuring information (from a document)
into hierarchical clusters is an effective user interface representation that is conducive towards user
browsing and navigating. In a different study discussing the effects off text structure on navigation
performance [17], researchers found that subjects tend to perform better navigating text that is
presented in a linear manner (as opposed to non-linear) whereas a hierarchically structured text
experiment fell in between the two. This study emphasizes the importance of maintaining an
aspect of linearity to when presenting browsing content.

Information Scent. Next, the system needs to provide a reliable and accurate way for users to
estimate an information source’s content (information scent), articulating the requirement for in-
formation to be represented in a manner that is both concise and indicative of its actual information
content [12]. Now, it becomes apparent how automatic summarization can be leveraged.

By extracting salient and representative information of different portions of speech transcripts,

16



the summaries now fit the additional function of being representative indicators of a portions of
a speech transcript’s underlying content. In other words, summaries can be used as waypoints
to help users navigate longform audio. This can be interpreted as an optimization for a user’s
between-patch browsing time. It is important to also observe the opposite situation; when sum-
maries are used as a navigational vehicle and provide no information cues (i.e. the summary is
unintelligible and/or confusing), it will cause the user’s browsing strategy to devolve into random

choices; highlighting the importance of coherent and accurate summary text generation.

2.3 Applications (HCI)

2.3.1 Systems for Navigating and Browsing Media Content

Various tools already exist to assist users with navigating and browsing different forms of
media, primarily concerned with videos and the audiovisual domain. In this section we break
down prior research in audio (text transcripts) and visual media (video) domains.

Audio and Text Navigation. To the best of our knowledge systems designed to navigate and
browse strictly spoken dialog (and text transcripts) have primarily been explored in older work
(pre-2000s). Many of the language processing techniques common today were not yet available
(primarily due to advances in transformer architectures [8]) which limited automatic processing
and modeling capabilities.

SpeechSkimmer [18] is an early tool that lays the foundation in addressing the challenges and
difficulties of navigating and browsing speech, expressing how "there is no natural way for hu-
mans to skim speech information because of the transient nature of audio—the ear cannot skim in
the temporal domain the way the eyes can browse in the spatial domain" . SpeechSkimmer devel-
oped a system that enables users to quickly skim through an audio file by listening to compressed
segments and choose to continue to listen to compressed segments in more detail, demonstrating

the effectiveness of hierarchically structuring audio. Notably, the system is paired with a hard-

3Taken from Section 1. Introduction of SpeechSkimmer: A System for Interactively Skimming Recorded Speech
[18].
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ware touchpad with begin, skim, no pause, normal controls to allow users to listen
and navigate audio in forward and backwards temporal directions. To initially find skimmable
sound bites, SpeechSkimmer leverages natural dialog structures such speakers pauses and pitches
as a basis for segmentation and compresses the audio in a manner that retains intelligibility and
voice quality. It is important to note that SpeechSkimmer operates entirely on the audio domain,
without any text, and is a system that assists with within-patch navigation.

Another example of an early work focused on helping users navigate speech is SCAN [19], a
prototype speech retrieval and browsing system that aims to help users navigate poor automatic
transcriptions and retrieve multiple speech transcripts. Unlike SpeechSkimmer, SCAN operates
on the text level with automatic speech transcription and assists with between-patch navigation.
Critically, there is a difference between systems such as SpeechSkimmer and SCAN where the
former is focused on enriching within-patch navigation and the latter addresses between-patch
navigation. Other between-patch systems (i.e. a recommender system) help a user browse and
decide between multiple audio files (podcasts) to listen to [20, 21, 22] based on their preferences.
The idea of between-patch browsing and exploration is also applied to other domains, such as news
[23]. In News Rover [23], the system structures and links multiple news sources in a unified user
interface.

Navigation systems [24, 25] also attempt to visually represent audio content and investigate
another angle of helping users navigate audio, particularly meetings, by presenting concepts dis-
cussed as timelines and concept maps that encapsulate the the underlying speech content. By
identifying salient elements of the meeting content and presenting them through an augmented
storyline visualization, MeetingVis [24] helps users better recall and reflect on portions of the
meeting quickly. This approach is also extended beyond communicative and expository audio;
MusCat [26] is a system that helps users browse through music (non-informative content) audio
through abstract visual image representations. The system reduces music files into features and
hierarchically clustering them to generate abstract pictures, MusCat helps users associate music

features to images, enabling users to browse audio visually.
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Visual Media Browsing and Navigation. Videos can be defined as a "document" containing
a succession of images over time, usually with additional modalities such as audio and text. For
similar reasons to audio, browsing and navigating video is also challenging for users. However,
unlike audio, visually browsing content is possible (ranging from browsing videos such as single
and multiple thumbnails, playable video segments, to video collages [27]), prompting a different
set of strategies with respect to how a user can navigate and browse audio. Accordingly, a host of
different systems and methodologies have been developed to easily navigate through videos and
movies by navigating to the video clip and allowing users to interpret content [28, 29, 30].

Video summarization [31] [32] as means for skimming and browsing for information [33] is a
popular domain and active area of research. Early work [34] on video summarization automatically
generated concise video summaries as a way for fast skimming and browsing. CueVideo [35] pro-
poses a system where sequences with low motion (with the assumption of low information content)
are played with fewer frames, allowing the viewer to gloss over scenes with less information.

SceneSkim [36] is an example of sensemaking that made lengthy multimodal data, video from
movies and text from movie scripts, indexable, enabling users to efficiently search movies for spe-
cific segments. In the user interface, SceneSkim presented multiple modes of search, over captions,
summaries, movie script, and movie clip, synchronized by timestamp. VidSceneDetect [37] sim-
ilarly identified scenes within video and longform multimodal content by creating a hierarchical
representation that covered various degrees of granularity for a recursive approach to video sum-
marization. More recent work has also adapted the use of hierarchical information to provide users
with multiple levels of summarization and information [38] for instructional videos.

Other work on video browsing and navigation investigate methods to enrich existing user
browsing behaviors; Swift [39] and Swifter [40] tackle the challenge of real-time seeking in video
scrubbing (where a user drops and drags a the playhead on a video timeline). When a user moves
the playhead on a video timeline player, Swifter presents surrounding local video frames in a tiled
manner, giving the user an idea of what video content is locally contained at this particular timeline

location. Relating back to the concept of information cues, this provides the user with more in-
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formation cues to more accurately infer what the content is in the underlying video content at this
particular time. The similarities of successful content navigation systems are evident; providing

users sufficient information cues that fit user browsing habits is paramount.

2.3.2  Summarization in User Applications

Summarization is employed in a variety of user applications across different domains, such as
summarizing doctor notes [41]. In addition to the principal function of summarization to condense
information, these applications have found additional innovative uses applying summarization to

collaborative editing:

1. Wikum+ [42] is a system that presents groups with a way to interleave and summarize dis-
cussion on an online forum into summaries. A key contribution of their system was the
interleave and summarize method in a recursive manner, creating a summary tree, which
allowed ideas to flow back and forth into an iteratively refined summary between multiple
editors. This work demonstrates the effectiveness of refining and summarizing information
in a hierarchical and recursive nature, albeit with human editors. Moreover, by presenting the
hierarchical summarization structure in a user interface, experiments demonstrate Wikum is

able to help users better identify and explore main topics.

2. Arkose [43] presents a different approach towards incremental summarization to distill in-
formation from online discussion boards. The system proposes a method of collaborative
summarization that involved merging at multiple hierarchical levels under the name of "in-
cremental diagenesis" as a way to structure and process unorganized online large-scale com-
munity discussions. By deconstructing summarization into a (recursive) incremental pro-
cess, writers are able to improve the quality of final summaries. Interestingly, this mirrors
(and predates) automatic procedures in later automatic summarization models [44] that find

content selection in summarization is better for content selection?.

“Given an input text, the system (summarization language model) must determine what information should be
retained in the final output [45]
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Other systems join automatic summarization language models with multi-modal content [46],
applying them to new domains such as summarizing Uls [47], medical videos [48], and generating

pictures, textual summaries and structure of complex text [49].

2.4 Automatic Speech Recognition (ASR)

2.4.1 Speech-to-Text

Automatic Speech Recognition systems (ASR) [50, 51] are used to transcribe audio (using
word recognition) into a source language transcript [52]. Concretely, in speech-to-text ASR sys-
tems, an audio file, such as a .mp3 file, is converted a text transcript. Such systems have re-
cently made relatively significant strides in terms of practical performance. and have seen recent
widespread adoption in various practical language applications.

State of the art (SOTA) ASR [53] is no longer constrained by vocabulary and remains relatively
robust, encouragingly extending word recognition to topical domains and noisy audio. SOTA sys-
tems [53] also offer a wide suite of useful services such as automatic punctuation insertion [54,
55, 56], where raw transcribed text has punctuation such as capitalization and sentence endpoint-
ers (periods, exclamation marks, and question marks) are automatically inserted using another
language model. Advances in audio source separation can be used to identify speakers (speaker
diarization) [57] and enhance difficult-to-hear dialog while suppressing background noise. Cleaner
transcriptions enable better downstream processing opportunities, such as dialog summarization,
spoken machine translation, and dialog classification systems. Figure 2.2 demonstrates how ASR
can convert speech into transcripts and the subsequent multiplicity of use cases of downstream use.

Note that speaker diarization classifies all words w with a speaker label in a given transcript
S. This can induce a segmentation and create speaker turns that are chunks of sentences where
the breaks that create segments are the breaks from alternating speaker dialog turns. Formally this
gives S = (51,52, 53, ...,5,). Many systems and works [18, 19, 58] use the concept of speaker
turns as part of their speech processing.

ASR systems have already re-invented how we interact with audio. SCANMail [59], an early
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work, lays such foundations of user interactions with ASR. Combining an intersection of HCI, ASR
and information retrieval (IR), SCANMail allows users to browse and search voicemail messages
according to content. Such parallels can be seen today in everyday Google Home and Alexa
speaker interactions of voice information retrieval [60]. State-of-the-art speech recognition models
have also been deployed to automatically caption subtitles for videos [61] to improve accessibility
for deaf users and have demonstrated that automatic speech recognition can be applied towards
use cases in various settings such as classrooms [62], home environments, and meetings. The
system [62] utilizes ASR techniques in classrooms to automatically analyze classroom discourse

and collect feedback for teachers.

AS R_ LM Pipeline Downstream Language Model(s)

Large scale transformer model that is trained for various
downstream applications and language tasks

Summarization

ASR Punctuator M | Summary
Adds punctuation and sentence ode
breaks to the ASR output.
Neural Machine
Speech wav ASR Output . .
Input P Fi P Translation Translation Output
iles (System)
Model
Additional
ASR Output Language * Outputs

Speech to text transcriptions

Applications

Figure 2.2: Automatic Speech Recognition and Language Model Framework. ASR systems
are typically used as a starting point from where audio is transcribed into text for further applica-
tions. This figure demonstrates the possibilities of downstream language modeling.

For the scope of this thesis, we make the distinction that the vast field of ASR is not the focus
of our research®. We treat ASR systems as a separate black box and the starting point for our work

and subsequently employ summarization language models for our applications.

3 All references to ASR in this thesis are towards Google’s Speech-to-Text service which is widely considered state
of the art.
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2.4.2 ASR and Speech Challenges towards Language Modeling

While transcribing audio, ASR systems may introduce problematic errors, word recognition
and context fragmentation, that propagate and affect downstream language modeling (Fig 2.2 blue

and yellow segments).

1. Word Recognition. The first immediate challenge for ASR is word recognition; transcribing
words that are phonetically similar by different meanings remains a challenging task for
ASR (e.g. “weather” vs “whether”). This problem has been explored extensively in
ASR models [63, 64] and typically addressed through domain and context specificity [65].
Though rarely an issue, we find that word recognition errors are occasionally present in audio
files where speakers with accents or large amounts of background noise are present. We
defer correctness to Google Speech-to-Text API. It is evidently apparent how an incorrectly
transcribed word can ruin a downstream language model’s text comprehension and lead to
poor performance. Consider the perfectly transcribed sentence "There will be day
of reckoning" compared to one containing a word transcription error "There will
be a loud rectangle opening". Itis inconceivable that a downstream language

model (such as Alexa) will be able to sufficiently recover the correct semantic meaning.

2. Segmentation and Context Fragmentation. Generally, longform input text has to be ap-
propriately split (segmented) because of the limited input size of language models and used
as separate independent inputs during encoding. This is typically referred to as the task of
text segmentation where a text is broken into semantically topical segments (or other infor-

mation units), typically preserving and using existing sentence boundaries (.!?) [66].

Unfortunately, segmentation leads to problems such as context fragmentation where the input
has information that is predicated on context that is no longer part of the input, leaving
inadequate information for a language model to process. Ensuring text inputs that are not
only free of context fragmentation but also semantically cohesive is instrumental towards

downstream LM performance.
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When a large input text requires segmentation, two dimensions of the underlying text must
be considered: fine syntactic segmentation where words in a complete sentence are grouped
together and not divided, and coarse semantic segmentation where semantically similar sen-
tences are grouped together. While this can usually be done by segmenting along pre-existing
syntactic boundaries (periods, commas, question marks) for written text, ASR transcripts
obtained through word recognition speech models either do not contain punctuation or have
punctuation that is predicted by separate models and is often imperfect, creating sentence

fragments and incorrectly compounding sentences.

Furthermore, due to the stylistic nature of spoken language and intrinsic lack of structure,

unlike that of a written article, topics are not presented in a cohesively segmented manner:

(a) There are no topic sentences to rely on.
(b) Speakers can stop mid sentence and backtrack their thought or never complete it.

(c) Maintaining coherency is challenging when multiple speakers are making different

points simultaneously.

These speech domain unique attributes of spoken language make proper segmentation into
topical chunks particularly difficult and is a wide field of active research. We can easily ob-
serve how poor syntactic segmentation’s impact on model inference is immediately apparent
- context in a sentence could be missing because of an incorrect split or incorrect information
could be added due to an erroneous sentence join. Poor topic semantic segmentation behaves
similarly, but on a larger scale. Particularly, joining sentences containing distinctly differ-
ent information can confuse a model and output a nonsensical and grammatically incorrect
summary. Conversely, splitting sentences too aggressively would defeat the purpose of sum-
marization. Accordingly, finding a careful balance on semantic grouping presents itself as a

unique challenge in speech segmentation.

These errors can be addressed at the ASR system level or at subsequent downstream processing

stages (done in our system). Some examples of downstream system [2] post processing of ASR
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include: running a parts of speech tagger (POS) to identify and remove disfluencies, repetition

removal, and sentence boundary (.!?) correction of improperly joined sentences. In the follow-

ing enumerated examples, we go over some technical challenges posed by speech data and their

ramifications specifically towards speech summarization.

1.

Lack of Spoken Language Summarization Training Data. The most apparent (and generally
machine learning) concern is the general lack of annotated training data for longform speech
and dialogue summarization (see Section 2.7 for existing datasets), leading to the issues of
domain adaptation and model robustness towards spoken language specific noises. In do-
main adaptation, existing pretrained models are dataset oriented, trained on domains such as
news [67] or social media [68]. As a result, these models incur specific memorized behaviors
[69]. For example, a news based model may insert a preamble of "According to the
Huffington Post" before an output, regardless of the subsequent text’s origins. In
model robustness, speech and conversation contain spoken user disfluencies such as "1ike
you know like the actual underlying prices" that do not convey mean-
ingful information. Without speech and dialogue specific annotations, standard training data
does not contain sufficient diversity of training pairs leading to summarization models strug-

gling to filter out unimportant phrases.

Propagated ASR Errors. As noted previously, ASR errors such as improper segmentation
and word recognition errors are propagated downstream and given as the language model’s
input. The impact of these errors are immediately apparent as the lack of context (or addi-
tion of unnecessary / confusing context) from poor segmentation and erroneous transcribed
words would lead to a decrease in semantic understanding for the language model, thereby
producing poor summarizations. More specifically, abstract summarization already requires
a high degree of semantic comprehension [70] of the underlying transcript meaning in or-
der to generate a cohesive summary; multiple contrasting topics introduced as a single input

could easily confuse the model. Due to the tendency of run-on sentences in speech and the
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limited input size of language models, accurate coarse structuring of topics and fine segmen-

tation of sentences are paramount towards proper conceptual LM understanding.

2.5 Text Summarization Overview and Challenges

Language Modeling and Text Generation. With recent deep learning advances, most no-
tably in the form of powerful transformer architectures [8], language models now have far greater
contextual modeling and understanding capabilities. Using the attention mechanism design as a
base, subsequent modifications towards modifying transformer complexity [71, 72] and refram-
ing of novel semi-supervised pre-training objectives [73, 74], broadly benefit many language tasks
ranging from text generation (content understanding) tasks such as abstractive summarization [75]
and Machine Translation (MT) to classification tasks like Named Entity Recognition (NER) [76]
and coreference resolution [77].

By reducing the complexity of the transformer’s attention mechanism from quadratic to pseudo-
linear [78], newer models are able to handle larger text input sizes. Through providing a larger
direct input size, language models are able to process a greater amount of contextual informa-
tion and potential semantic dependencies, improving semantic understanding for any particular
language task. This allows for such architectures to be extended towards other domains such as
conversations (spoken language) that traditionally could not be processed due to text length con-
straints. Furthermore, newer word tokenization schemas [9] are specifically optimized for neural
text processing and allow for specific data instance based training of subword segmentation, al-
lowing for more flexible and independent end-to-end language modeling.

Text generation is the task of automatically producing text subject to certain contexts and con-
straints [79, 80], that typically consists of an encoder and decoder language model [81] where,
given an input passage or source text S = (si,...,5,), the objective is to output a sequence of
tokens (the hypothesis H = (s, ..., s,)) that fit the task. In the example of summarization, the
output sequence of tokens would be a summary that best compresses information from S. The

encoder first encodes the passage into a fixed hidden representation [81] containing some repre-
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sentation of the input passage; intuitively, one can consider this vector representation as containing
the most salient information in the passage. Afterwards, a decoder language model interprets the
hidden representation into a sequence of words that best summarizes the input [75]. This proce-
dure broadly generalizes to all text (token) generation tasks, such as neural machine translation
[82], controllable generation [83], summarization [75], and even music composition [84].

Extractive and Abstractive Summarization. In text summarization, a subset of the text gen-
eration natural language task, the goal is to generate a concise and accurate summary of a larger
input text and attend towards key sections. Text summarization techniques can be classified into
two categories: abstractive [75] and extractive [85]. Abstractive summarization generates (token
by token using the previously described seq2seq text generation framework) a new unique sum-
mary of text given a context whereas the extractive summarization “quotes”, selecting relevant
portions of the input text (usually formulated as a binary classification problem [86]), and concate-
nates relevant portions to compose into a summary. Because of spoken language noise effects in
ASR transcripts, extracting transcript segments verbatim often leads to poor summaries. There-
fore, we opt for abstractive summarization in our system. However, abstractive summaries are
more difficult to generate but more closely mirror human written summaries as they may contain
key words and phrases that may are not present in the original text but better describe the source
text [87]. Conversely, for abstractive summarization language models [88], as with most large scale
LMs on text generation tasks [89], learning to output syntactically correct and fluent summaries is
not challenging and is less of a concern.

Challenges and Considerations in Abstractive Summarization. Purely generating a sum-
mary requires a high degree of semantic understanding, as opposed to the “cut and paste” approach
of extractive summarization, to produce a cohesive and fluent summary. When a language model
is unable to properly understand a given input, it is prone to hallucinations [69, 90], phrases or
entities that appear to be semi relevant but are not actually present in the underlying text. Typically
issues in model comprehension are attributed to insufficient context, training data challenges of

domain shift, or model complexity limitations.
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Another important consideration in abstractive summarization is the factual accuracy of a gen-
erated summary with respect to the input text. Differently stated, is the summary’s meaning con-
sistent® and faithful with the original source text? The possible ramifications of giving a user
inaccurate summaries can lead to arbitrarily detrimental results. Ensuring faithful and accurate is
vital to real-world applications of abstractive summarization.

Several different approaches exist to tackle the issue of faithfulness and can be broadly catego-

rized as follows:

1. Improving models to become more robust and generate more consistent summaries at the

model level through architectural and training regimen modifications [91, 92, 69, 93, 94].

2. Evaluating generated summaries for factual inconsistencies with external language models
(such as Question Answering that automatically ask questions about a summary and deter-

mining if the answers are consistent with the source) [94, 95, 96, 97]
3. Correcting and rewriting factual errors in generated summaries [98, 99].

Of course, while having factually consistent summaries is paramount towards our longform

dialog browsing system, this research area is not a primary technical focus of this dissertation.

2.6 Summarization Models and Summarization Methodologies

This section, with an emphasis on speech and dialog, gives a brief background on abstractive
summarization models and current challenges and strategies of summarizing longform text. While
there are many summarization models and work [100, 101, 102] that address speech induced spe-
cific technical challenges [103, 104, 105, 106] (Chapter 2.4.2) as well as new and interesting mod-
eling approaches (i.e. an iterative processing model that allow for longform podcast summarization

[107]), we specifically focus on the input size challenge that longform speech poses.

®Faithful, consistent, and factually accurate are dimensions to describe how well the text generated summary’s
content compares to the source text. See Section 2.8 for a complete list of definitions for summarization evaluation
dimensions.
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Popular Abstractive Summarization Models. In the most popular’ abstractive summariza-
tion models, the language model’s core architecture remains unchanged from the original trans-
former block [8]. Instead, work has largely centered on modifying on modifying the language

model’s objective function (training criteria).

1. BART [108] is a denoising autoencoder that modifies the pretraining of a standard trans-
former based neural machine translation (text generation) architecture. Additional opera-
tions such as token masking, token deletion, text infilling, sentence permutation, and doc-
ument rotation extend the existing word masking and next sentence prediction objectives
in BERT [73]. Specifically, for text generation (summarization) tasks, the BART instance

comprises of an encoder and autoregressive decoder.

2. PEGASUS [109] is another popular summarization model. By innovatively changing the
pre-training process from standard word level masked language modeling (where models
learn language conventions and syntax by predicting individually removed words within sen-
tences), to sentence level masked language modeling (where entire sentences are removed
and then recovered), the language model is tasked with a substantially more challenging
task. Not only does this new pre-training objective encourage the model to learn more gen-
eralized knowledge (through posing a difficult inference problem), it also closely mirrors

summarization as a downstream task.

2.6.1 Hierarchical and Recursive Summarization

Encoding longform text for summarization (typically referred to as longform summarization)
poses technical obstacles due to language model size and memory constraints; sometimes text
inputs are still too lengthy to be processed in one forward pass of an encoder. Length constraints
occur when the input size of a summarization model exceeds the typical allotted 1024 tokens,

though some language models may have larger maximum inputs. This is particularly problematic

7A quick way of determining this is by looking at HuggingFace’s most downloaded summarization language mod-
els.
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in the spoken dialog domain where meetings, conversations, and interviews can span hours, for
reference a 20 minute speech audio file may contain anywhere from 4,000 to 6,000 words®, far
exceeding a typical transformer based language model token input limit. The inability to jointly
encode text is problematic as important information and context that is critical to producing a
summary may not be available to the LM during decoding and is similar to the segmentation
context fragmentation challenges discussed in Chapter 2.4.2.

As a result, two prominent strategies® for processing extremely long form input sequences such
as multiple documents [111] or long conversation transcripts are used: modifying input sequences
to become more tractable with existing LMs (i.e. reducing the input length) or designing new
hierarchical deep learning architectures to accommodate greater context.

Text Level Hierarchical and Recursive Summarization. In the first approach, techniques are
concerned with breaking up the input source text S = (s, ..., §,,) into a more manageable form. Ata
high level, this typically is done by breaking S into smaller segments: S = [(s1, ..., 8;), ..., (8, ..., Sk)»
vees (87, 000, Sp)] Where 1 < i < j < k <[ < n. Observe how S now becomes S as it is a collection
of segments of sentences, such as S; = (s}, ..., sx), which is now an individual input to a summa-
rization model. For each §; € S the summarization model generates an output H; (meaning now
there are / summaries). The outputs H; € H are all then concatenated to form the final concatenated
summary H¢. The superscript ¢ indicates this is the concatenation of all individual H; € H'°. From
here, the process is typically repeated where the output H now recursively becomes the new input
source text.

To train a language model to that can handle and summarize a longform document that is
broken up segments, Divide-ANd-ConquER (DANCER) [112] introduces (as its name suggests),
a divide and conquer strategy to generate training data examples from any existing dataset. Given
a dataset containing source text and summary pairs (S;,7;) € (S, T), every single (S;, T;) training

pair is broken into multiple shorter training pairs. This is done by iteratively taking a sentence

8 Accounting for SPM (sentence piece word tokenization) and subwords there is likely a 1.3 multiplier on words to
number of tokens. For example, running can be broken down into run + ning depending on training.

“We do not go into detail on retrieve-then-summarize pipeline models [110].

10 Another way to imagine this is flattening the list of lists H by one level.

30



T;

s'" € T; in the summary and using ROUGE [7] as a metric, match it to all similar sentences

s5i € §; in the source text. Intuitively, the matching attempts to find all the information (sentences

Ti € T; in the summary. Now,

s5 € S;) that may be relevant to generate the individual sentence s
there are far more training pairs, with each new target summary being substantially shorter than
the original dataset’s summary. SUM MY [113] expands upon the Divide-ANd-ConquER process
by repeating the process recursively generate target summaries. Here a generated output summary
H¢J  which has already been concatenated from all the individual components, at hierarchical level
j (containing a total of J recursive levels), would become the input S/*! to another summarization

model!!

. This is repeatedly done until a short summary of a longform document remains. Note
that this creates J separately trained summarization language models. By processing longform text
is this manner, SUM M" improves upon context fragmentation and can handle even longer inputs.

OpenAl [114] successfully applied recursive task decomposition to abstractive summarization.
The authors first observe that large pretrained LMs do not produce good quality summaries and
train a reward model to learn what summaries are preferred by humans. From here, the authors
fine tune an instance of GPT-3 [115] according to the previous reward model. This process is
repeated recursively until a short summary is achieved. Impressively, this model is able to ingest
and summarize entire books with the aid of intermittent human summarization annotations and
feedback.

In our work [116], we similarly hierarchical processing approach to break down longform
spoken dialog into distinct and concise summaries. However, we repurpose existing summarization
models and approach the problem from a non-training stance. Specifically, Chapter 3 address
segmentation and concatenation in between recursive hierarchical levels and Chapter 5 discusses
non-training speech specific optimizations that improve longform dialog summarization.

Hierarchical Architectures in Summarization Models. The second approach towards sum-
marizing longform text (and most commonly longform speech an dialog) is to develop new hier-

archical attention [117, 118] transformer architectures!? to increase long range modeling capacity.

1157+1 would need to be segmented again into S/*! before being used as j + 1 level’s input.
12These are in addition to the improved transformer models discussed in Chapter 2.5.
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While hierarchical architectures are adept at modeling longer range input sequences, they do not
fit our need of producing hierarchical summaries in various levels of detail. Thus, it is important
to understand the difference and make a distinction between a fext level hierarchical processing
methodology and model level hierarchical architectural modification. Note that work in neural net-
work architecture, namely imposing structure such as memory [119], and attention mechanisms
[120] is a a popular and active area of research and go far beyond the scope of this related work
portion.

13

In order to include more global context and better model long range dependencies'”, current

works have proposed:

1. Adding recurrent hierarchical modules within a transformer block to propagate document

level information at the token level [121].

2. Assuming a hierarchical latent top level structure to capture information at a coarser granu-

larity to share with a bottom token level representation which captures finer details [122].

3. Encoding multiple documents in a hierarchical manner via a shared attention mechanism to

learn latent inter-document relations [123].

4. A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents
[124] which uses a hierarchical attention encoder (RNN structure) to explicitly attend to

important points in an input document.

In particular, to model long range dependencies in the meeting setting, HMNet (Hierarchical
Meeting summarization Network) [125] creates a two-level hierarchical structure with a speaker
turn level transformer and word level transformer. Though the authors encounter the same data
scarcity challenge of insufficient spoken dialog summarization training data, they adapt news do-

main data and simulate a multi-person turn based meeting conversation.

3Long range dependencies refers to a concept in the source text that requires a reference to information contained
in another section of the source text (typically temporally far away) or even different document to obtain a full context
and properly comprehend.
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2.7 Summarization Datasets

In this section we provide an overview and short description of select popular datasets used
to train and evaluate summarization models. While the popularity of abstractive summarization
datasets continues to grow, especially in the speech domain, it is still difficult and prohibitively
expensive to collect. Unfortunately, for longform dialog, existing datasets (i.e. AMI [126] & ICSI
[127]) are primarily focused on meetings and do not cover the variety of topics that are discussed

in interviews and podcasts. In the following datasets, articles refer to the source text S;.

1. CNN / DailyNews [128] consists articles and summaries from CNN (93k) and the Daily

Mail (220k).

2. XSum [129] consists of BBC articles (227k) with single summary-sentences.

3. Newsroom [130]: consists of 1.3M human written articles and summaries from 38 sources

between 1998 to 2017.

4. arXiv and PubMed [131] consists of longform papers from arXiv (113k) and PubMed (215k)

where the paper’s content is the source text and the provided abstract is the summary.

5. ENTSUM [132] is an entity focused dataset where human written summaries were a se-
quence of annotation instructions were given to write a summary prioritizing a particular

entity.

6. GovReport [133] is a longform document summarization dataset from U.S. Government

Accountability Office on national policy issues.

Spoken Dialog Domain Datasets

1. AMI [126] & ICSI [127] consist of longform meeting transcripts and summaries. The meet-

ing transcripts contain an ASR word error rate of 36% and 37% respectively.
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. QMSum [134] consists of a query-based meeting summaries. Because content selection
difficulty directly scales with source text length (i.e. it is clearly more difficult to summarize
longer passages), authors try to guide annotators with targeted queries to keep summaries

focused.

. MediaSum [135] & SummScreen [136] are conversation summarization datasets where the

source texts are speech transcripts and the summaries are mined from recaps and overviews.

. SamSum [137] consists of short exchanges of text messages and summaries (16k), is one
common dataset used to train and benchmark conversational summarization. Each text mes-

sage source 1s very short, containing on average 94 tokens per conversation.

. DialogSum [138] is a conversation summarization dataset (13.5k) that attempts to increase
diversity compared to SamSum [137] and contains an average of 39.8% longer dialog for

source text.

. ForumSum [139] is a conversation summarization dataset (4k) containing human annotated

summaries collected from internet forums.

. Spotify Podcast Dataset [140] contains ASR transcriptions of over 100k podcasts. Authors
hand annotate a small subset (303 summaries) to determine a quality threshold for using
content creator (podcast author) provided descriptions. It is important to note that a content
creator is not incentivized to write a high quality summary as much as writing an attention

grabbing advertisement for a description.

Because no dataset with intermediate text level summaries exists, we are unable to compare

the longform dialog browsing system’s hierarchical summaries to human annotated gold standard

summaries. Though, interestingly, summaries that were collaboratively written (albeit not for spo-

ken dialog) using systems such as Wikum+ [42] should retain intermediate text representations that

can be used as hierarchical summaries. In Chapter 5, we discuss how we harvest our hierarchical
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longform spoken dialog dataset’s summaries while addressing challenges in the summarization

such as subjectivity and content selection.

2.8 Text Evaluation for Automatic Summarization

Evaluating the a language model’s text generation is essential towards understanding the model’s
performance and suitability for usage [141]. For this section, we give a background and overview
of text evaluation methods concerning summarization; though it should be noted that many of au-
tomatic metrics used here are nearly identical in evaluating text generation in other tasks such as
machine translation.

Human evaluation of text generation is generally considered to be the best metric and gold
standard method for assessing generated text quality [142]. For the most part, humans are able
to successfully coarsely estimate a text’s quality based on innate heuristics; however, on a finer
scale and for more nuanced tasks, there may be issues of human annotator bias annotator disagree-
ment [143, 144]. Because of the time intensive nature of human evaluation, automatic evaluation
procedures were developed to quickly and inexpensively assess a generated summary’s quality.
Work in human evaluation has proposed assessing summary quality through a "Pyramid" perspec-
tive with "Summarization Content Units" (a departure from previously the used DUC, Document
Understanding Conference, evaluation procedure) to address the fact that no single summary itself
is the best [145] when comparing multiple summaries. The procedure that [145] had outlined is
also beneficial in showing not only the semantic content overlap between summaries, but also what
content is missing across summaries. Subsequent work in Pyramid Evaluation [146] demonstrated
its effectiveness and human correlation.

In an automatic text evaluation setting, there are three components: the source text (such as
transcript) S = (sy,...,5,) which is encoded by the language model, the generated hypothesis
(output summary) H = (s, ..., s,), and the reference summary text 7 = (s, ..., s,). Typically
the hypothesis H is compared to the reference summary 7', known as reference-based evaluation.

Depending on data availability however, 7" may not always be provided and H’s quality must be
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estimated leveraging other information such as § and external language models; this is known as
reference-free evaluation.

For both of our systems, Chapter 3 and Chapter 5, we perform qualitative human assessments
of summary quality. Due to the lack of references at the time of development, the automatic
evaluation is in Chapter 3.3 is still limited and cursory; however, with gold summaries harvested
in Chapter 4, we are able to more rigorously analyze the Chapter 5’s system performance.

Human (Manual) Summary Evaluation For human evaluation, human annotators are tasked
with assessing the quality of machine generated summaries, scoring along some predefined di-
mensions [90, 147]. This is known as intrinsic evaluation'*. Different authors may use different
terms for previously listed dimensions, though they typically encapsulate similar meanings. Some

examples of these dimensions are:

1. Fluency or Readability: evaluates grammaticality, spelling, and syntax (such as capitaliza-
tion and formatting). This is done without consulting the source text as it is content indepen-

dent [148].

2. Coherence or cohesion: measures how well sentences are in relation to each other (do they

form a coherent block of information?) [144].

3. Accuracy or Factuality or Consistency: evaluates the factual agreement between the source
text and target summary, in other words, are claims made in the summary supported by the

source text [149, 150].

4. Informativeness: how well does the summary capture the important ideas found in the source

text, or colloquially, is the generated text useful as a summary [130].

5. Completeness or Focus [144]: how many of the "main ideas" in the source text are captured

by the generated summary.

14 Extrinsic concerns evaluating a model’s performance at a specific task and is outside the scope of this section.
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6. Adequacy: how much of the meaning in the original source text is also conveyed in the

hypothesis [151]. This dimension was originally introduced in machine translation!®.

7. Semantic Coverage: How much semantic content units (meaning) in the reference summary

is captured by the generated summary [145, 146].

8. Relevance: this is a term where conflicting definitions were provided and remains vaguely

defined.

* Evaluates how consistent the summary is with the source text. This can be rephrased
as "Are the details provided by the summary consistent (and appropriate) with details

in the article?" [130].

» Assesses the content selection of the generated summary, does it contain only the im-
portant information [150]. This shares characteristics with informativeness and com-

pleteness.

Out of these dimensions, adequacy appears to be quite similar to semantic coverage. The key
difference here is that the adequacy is comparing the the generated summary H to the information
content contained in the entirety of input source text S, while semantic coverage is comparing
the summary H to strictly less information contained in the gold standard reference summary R.
It is also interesting to point out that the information summarized by the reference summary R
is not always perfect: summarization is inherently subjective [152]. Thus, additional information
contained in H could cause this particular summary to score well in adequacy while scoring poorly
on semantic coverage given how semantic coverage is defined.

Completeness and focus also appear to be similar in adequacy, with the salient difference being
an emphasis on "main ideas", which again is inherently subjective to readers. They (completeness
and focus) also share characteristics with informativeness; the difference here can be found in
that informativeness describes how well a generated summary expresses the important ideas in the

source text whereas completeness and focus are concerned with how many (different) main ideas

Bhttps://catalog.ldc.upenn.edu/docs/LDC2003T17/TransAssess02.pdf
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are captured. Clearly many dimensions can be left up to human interpretation and lead to difficulty
in obtaining consistent and unbiased assessments of generated summaries.

Reference Based Evaluation. Untrained automatic metrics measure some form of string over-
lap, content overlap, string distance, or lexical diversity [144] between the generated summary H
and the reference summary R. The core idea behind these metrics is that the closer the predicted
summary sequence is to the reference, the better of summary sequence. Some of the most common

reference based evaluation metrics are:

1. BLEU [153] which aims to capture the adequacy and fluency of translations, but has been
adapted for use in other text generation, such as summarization. This is calculated with a
geometric mean of the precision of the hypothesis n-grams present in the reference n-grams.
In other words, how many n-grams in the generated summary H are present in the reference

summaries R.

2. ROUGE-n [7] (where n indicates the number n-grams used) which aims to assess semantic
coverage and was developed for summarization. Unlike BLEU, ROUGE is a recall based
metric that count how much reference summary R n-grams appear in the generated summary

H.

3. METEOR [154] which improves upon BLEU by adding additional features such as stem-

ming and synonym matching.

Furthermore, it is important for automatic metrics to correlate closely with human evaluation
of summaries. In SummEval [150], authors comprehensively ranked 14 automatic metrics against
human judgments along 4 dimensions (coherence, consistency, fluency, and relevance). In Table 2
[150], authors found that different ROUGE variants tend to correlate well with human judgment
across the 4 dimensions.

More recent evaluation works propose different ways of leveraging pretrained language models
for semantic evaluation of text such as BERTScore [155], which uses pre-trained contextual BERT

embeddings to match a generated summary with a reference summary at the token level with cosine
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similarity. In a different vein, BARTScore [156] utilizes BART’s pre-trained word probability
distribution to score a generated sequence in 4 different categories. BLEURT [142] proposes
several changes to training using synthetic data pairs where target labels are human ratings and
automatic metrics in order to adapt a BERT model text evaluation.

Reference Free Evaluation. Recent research has also explored the far more difficult challenge
of automatic evaluation instances where a reference summary R is unavailable. SUPERT [157] cir-
cumvents the lack of references by generating pseudo references and calculates the word mover’s
distance!'® between the generated summary and pseudo references. Wu et al. 2020 [158] train an
evaluator with contrastive learning on augmented negative (poor artificial summary) examples to
subsequently predict summary quality. In the machine translation domain, RUSE [159] employs
learned sentence embeddings from three different models, paired with a multi-layer perceptron to
predict translation quality. [160] finds that modifications to a multilingual model can match BLEU
performance, demonstrating further promise in reference-free evaluation.

Annotator and Qualitative Evaluation Considerations. Unlike evaluating other more "con-
strained" instances of language modeling such as machine translation where the totality of correct
translations is limited (i.e. even accounting for stylistic and vernacular considerations, there are
only so many correct ways to translate a given sentence into another language), evaluating sum-
marization may is inherently subjective and under constrained [152]. As a result, it is importantly

to clearly define evaluation dimensions and properly scale annotators to close standards.

16This is similar to Earth Mover’s distance but uses word embeddings to create a space where sentences with no
shared words can still be semantically compared.
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Chapter 3: Hierarchical Summarization for Longform Spoken Dialog

Chapter 3 lays the foundational framework and proof of concept system (again referred to as
System 1) of decomposing longform spoken audio in a hierarchical nature and presenting it to
the user in a user interface, enabling users to browse and navigate content to find things that are
interesting to them.

We begin with the motivation in designing a system to browse longform dialog content (Sec-
tion 3.1), along with selected related work (Section 3.2). We then conduct a formative study and
investigate the impact of longform dialog on existing summarization language models and their
implications for immediate practical usability (Section 3.3). From these findings, we develop a
user interface and the necessary language modeling components (Figure 3.1, Section 3.4) to create
a proof of concept longform audio browsing system (System 1). This is accompanied with a walk-
through demonstration of how a user might use the system (Section 3.5). Lastly, we conduct user

studies and evaluate (Section 3.7) the system.

3.1 Overview and Motivation

An ideal solution would be to automatically summarize the content and distill it to its most in-
teresting points, but this is problematic for three reasons. First, despite many advances in machine
learning, Automatic Speech Recognition (ASR) and summarization are not yet mature enough to
accomplish this. Second, there is a question as to whether the ASR transcripts and summaries
can be trusted to be accurate, especially in the presence of informal language, minimal structure,
and speech disfluencies. Third, what each user wants from a summary will differ based on their
previous knowledge and expertise on the subject matter — summaries are not one-size-fits all. This

makes it difficult to provide training data for summaries that would be acceptable to a wide range of
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users, even if machine learning algorithms were perfectly accurate. We want to explore solutions

that can leverage the strengths of machine learning, while overcoming many of its weaknesses.

UIST 2021
Currently Analyzing Audio: diversity
Short Summary How to foster true diversity and inclusion at work (and in your
ICILCH community,

One of the reasons we did the anti bias orig I [CI 1o
training was to make sure we started those Long

- conversations after the person running that Med
store was a young leader. short ‘

Medium Summary Long Summary Original Transcript

One of the reasons we did the anti bias training was to The person that was running that store was a very
make sure we started those conversations after the young up and coming leader for the company and to

So that was a real example of leadership.

person that was running that store was a young put her in a store in 18th was an example of how
leader for the company. starbucks failed in selecting.

And actually where Starbucks had failed in selecting
the right leadership for that store and to give you an
example, you know, the person that was running that

Some of our baristas asked if we could take

allowed me to take the black girl to the prom.

We started a discussion that we have been able to One of the reasons why we did the anti bias training store was a very young up-and-coming leader for the
use. wasto we started those company and to put her in a store in 18th and Spruce.
Think about how your employees and partners
can make a difference We started a discussion that we have been able to ity for all of

use.

So in retrospect one of the reasons why we did the
anti-bias training was to make sure that we begin
those conversations and when | talk about not just
training that training was very unique because it was
self engaged.

I wonder if there is the same level of
investment in other organizations.

You know, it was we started what we felt like a
movement and a discussion that we have been able

Figure 3.1: System User Interface. Example of the system’s summarization display for each
unique audio file. The left part of the interface contains several short summaries which, when
clicked, displays the medium and long summaries along with the corresponding original transcripts
and audio clips. The top part of the interface shows what part of the transcript each summary
encapsulates information about. When the top part is clicked, users can navigate to any part of the
summaries or transcripts.

We present a system that produces hierarchical summaries of spoken dialog that allow a user to
browse and navigate the content to find things that are interesting to them. Hierarchical summariza-
tion allows users to first see a high level summary of the content and then drill into progressively
longer and more detailed summaries - or listen to the raw audio itself. This approach addresses

two key issues:

1. It allows users to be in control of what information they read at a high level and what infor-

mation they consume in greater detail.

2. When machine learning (ML) models makes mistakes in ASR and summarization, users can

quickly recover the ground truth.
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Although the typical approach to creating automated summarization systems requires training
data that is difficult to obtain, our approach allows us to employ previously trained ML models re-
cursively to generate shorter and shorter summaries. However, reusing models that were trained on
different data requires careful model selection as well as novel algorithms to semantically segment
the input text and thus output coherent summaries.

This system makes the following contributions:

1. An end-to-end system that automatically generates hierarchical summaries of longform spo-

ken dialog.

2. A novel semantic segmentation algorithm that allows the reuse of existing machine summa-

rization models rather than training a new one.
3. A user study demonstrating:

(a) the system is 72% accurate in producing condensed Short Summaries.

(b) system hierarchical features enable users to recover their understanding of 98% of sum-

maries despite ASR and ML summarization model errors.

(c) the average time that users spent to reach an understanding of an audio recording was

27% of the original audio length.

4. Qualitative findings about how people use Short Summaries as navigational tools to help

them "skim" audio and find the content most interesting to them.

3.2 Related Work

We discuss the primary areas in natural language that our work builds upon'. Specifically, we
leverage several of the techniques used in both the user studies and the summarization works to
create our system.

Using NLP to Generate Multimodal Interactions

IPlease refer Chapter 2 for the complete background related works.
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Researchers have developed models and systems to easily navigate through videos and movies
by navigating to the video clip and allowing users to interpret content [28, 29, 30]. However, these
videos require users to search visual information in a video they may know little about and is inap-
plicable to pure audio files. To solve these issues, some researchers have employed summarizing
key content in text as a means of helping users easily digest long-form content [161], [162]. More
recent work has adapted the use of hierarchical information to provide users with multiple levels
of summarization and information [38]. We build on top these systems targeting multi-party audio
transcripts which pose novel challenges because these transcripts necessitate proper semantic seg-
mentation to preserve meaning across speakers while simultaneously leveraging the usefulness of
hierarchical information.

Still other work utilizes NLP to generate multimodal interactions such as images for video edit-
ing or even adding visuals to existing audio files [163, 164]. However, they rely on human-created
transcripts, hurting the ability for the system to scale without automatic processes. Furthermore,
visual representations only represent higher level abstract topics not the summarizations needed to
represent the speaker.

Summarization of Multi-Party Audio

Creating meaningful summarizations from multi-party audio has been a difficult problem for
researchers, often requiring hierarchical transformers and speaker segmentations to effectively re-
tain information. Many of these papers, however, require full end-to-end training on transformers
and even custom datasets [125, 165, 166, 167, 168]. Still others also employ graph-based summa-
rization and coreferences to better summarize discourse [169]. Meanwhile, current unsupervised
abstractive summarizations do not utilize deep learning summarization modules and require the use
of word graphs and ranking algorithms [170]. These systems and models focus on learning end-to-
end summarization which is not practical across multiple domains. Instead, we focus on utilizing
these summarization systems as part of a larger unsupervised abstractive system to generalize and
reduce the overhead needed to deploy and scale such a solution.

Recursive and Hierarchical Summarization Summarization of long complex material into
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recursively shorter and more tractable artifacts has been previously explored and found to pro-
vide an effective avenue for gaining useful comprehension of content [171]. Notably, this work
showcased an interface displaying multiple summaries with varying levels of detail resulting in
users having superior substantive recall and enabling non-linear exploration of the source material.
However, this prior work employed crowd-sourced techniques to generate summaries and targeted
solely threaded discussions typically found in forums. We build off these findings by developing
a novel system employing automatic summarization and speech recognition techniques to spo-
ken dialogue in order to generate a similar hierarchical exploration of content without requiring
human-in-the-loop summary generation.

The utility of hierarchical summarization has also been shown for multimodel instructional
videos that use audio and video to demonstrate each instructional step [38]. By using computer vi-
sion, ASR, and domain-specific heuristics they automatically group fine-level actions into coarse-
level events (with summary text) that users can navigate at their own pace. We build on these ideas
by using machine summarization to provide multiple levels of summarization detail and allow

users not only better navigation but also time savings in consuming media.

3.3 Formative Study and Preliminary Investigation

There has been much progress on machine learning models for natural language processing,
including ASR and summarization. If possible, we want to use existing pretrained models as a
component of our system to avoid the costly process of collecting longform summarized speech
training data, as none exist or are readily available. This is particularly difficult for summarization
because every user may want a slightly different summary.

Because of spoken language noise effects in ASR transcripts, extracting transcript segments
verbatim often leads to poor summaries. Therefore, we opt for the current state of the art abstractive
summarization model, PEGASUS [109], which is able to achieve much higher human-quality
summaries. Though promising, like most language models, it is important to note that PEGASUS

is tailored towards specific benchmark datasets such as news or social media and that performance
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does not translate across different data domains, especially when applied to speech specific noise
and disfluencies.

Moreover, there are two key problems:

1. ASR and summarization models are far from perfect and have inherent pre-existing chal-

lenges.

2. Summarization models are almost always trained on text rather than speech data. If a text
trained summarization model is deployed on speech data, there would be a data domain

mismatch, leading to considerably degraded model performance.

To evaluate the practical performance of existing ASR and summarization models and deter-

mine which models to use as the basis of our system, we investigate the following criteria:

1. Coherency, are the final output summaries coherent? If this constraint is not met, the model
is not usable. Aside from re-training and adapting a model towards speech data, we have no

tractable strategies for compelling model coherence.

2. Information retention, because output summaries are shorter and lossy, we check if they
still retain salient information from the original passage. If a shortened summary does not

contain useful or relevant information, it has no value.

In the formative study, we identified three models that had various summarization properties
and tested each model’s reusability. Each model was applied to seven different recordings and an
automatic evaluation score was computed to determine the quality of the summarization. To further
substantiate each model’s summarization, we check each model’s performance with qualitative

analysis.

3.3.1 Evaluation Data

We evaluate on a test set of seven recordings of longform spoken dialog that span different

topics, domains, and speech styles (Table 3.1). Important note: this is the beginning of our cu-
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Transcript Name Length Word Count  Source Edited?
NPR: M. Night Shyamalan 48 minutes 9184 words How I Built This podcast Yes
NPR: Chipotle 48 minutes 7847 words How I Built This podcast Yes
NPR: Health 29 minutes 5102 words  How I Built This podcast Yes
NPR: Teach for America 22 minutes 3909 words  How I Built This podcast Yes
Diversity and Inclusion 23 minutes 4201 words Recorded Ted Talk Interview No
Bill Ackman on Economy 29 minutes 5140 word  Recorded Bloomberg TV Interview No
Ray Dalio on Economy 29 minutes 3971 words Recorded Bloomberg TV Interview No

Table 3.1: Dataset metadata used in formative study and final evaluation

rated dataset from Section 4. Section 4 builds off of this dataset and harvests further gold human
annotated summaries that do not yet exist for this work.

The average length of each of the recordings is 32.5 minutes and the average word count output
from ASR is 5622. Of these seven recordings, four are edited interviews from the NPR podcast
"How I Built This", and 3 are unedited recordings from live events. Two are Bloomberg interviews
regarding finance and one is a conversation about "How to foster true diversity and inclusion at
work (and in your community)." These recordings were selected based on being content rich and
of reasonable length. Information rich dialogue serves as a useful medium for this experiment by
providing a sufficient density of information to showcase summarization. Additionally, choosing
sources from the same producer reduces variance and provides a consistent structure for experi-
ments. Finally, our experiment included both edited and unedited recordings of dialog to expose

our system to both more coherent and structured conversations as well as free form dialogue.

3.3.2 Automatic Speech Recognition Model

For word recognition, we use a state of the art ASR model, publicly available with the Google
Speech-to-Text API. This system is already robust to a variety of domains and speech noise, while
providing features such as diarization (speaker detection) and punctuation prediction. While we
suspect the ASR component will not be a large contributing factor to poor summarization, we
conduct a brief investigation on word recognition errors (word errors, i.e. homonyms such as

weather compared to whether) as they could non-trivially impact downstream summarization
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Model Domain / Fine-Tune Data  Max Words Output Size

M1 XSUM News / BBC News 64 words 1 sentence
M2  News/CNN, DailyMail 128 words ~ 3-5 sentences
M3 Paraphrase / Quora, PAWS 60 words 1 sentence

Table 3.2: Model nomenclature where Mi indicates Model 7, training data descriptions, and model
maximum input and typical output sizes.

performance.

3.3.3 Summarization Models

For summarization, we investigate the current abstractive state of the art language model PE-
GASUS [109]. While PEGASUS is noticeably improved over other summarization methods in
terms of producing human level quality summaries, it requires fine-tuning onto domain specific
summarization data. It is also important to note that a pre-trained only instance of PEGASUS is
not normally used without modification; the pre-training procedure is different from summarizing
and the authors focus solely on fine-tuned downstream summarization datasets. Appropriately, we
select fine-tuned instances from huggingface. co [172] that generate complete and grammat-
ically correct passages (i.e. not a few keywords) and are still in considerably general domains
(i.e. not a medical field model instance) to assess PEGASUS coherence and information retention.
Model details are given in Table 3.2.

We begin by processing audio files to obtain raw ASR transcripts. We use three instances
of a PEGASUS model (M1, M2, M3) that are fine-tuned according to Table 3.2; all models
have the same architectures. However, because of the nature of longform dialog, the number
of words per transcript greatly exceeds the maximum input length that M1, M2, M3 can accept.
Transcripts must be processed and split into manageable lengths. We naively segment the transcript
in fixed 60 word length segments set to M3’s maximum input length?>. For example, if an input

transcript segment had a total of 154 words, it would be broken into a list of 3 individual segments,

2We also experimented with increasing the input size to 128 for M2, but still observed poor results (in fact, noise
artifacts and incorrect model behaviors were more exaggerated than using 60 word length segments)
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each containing [60, 60,34] words. To maintain evaluation consistency across all models, any
evaluation involving naive fixed segmentation is set to 60 words. These are then summarized by
M1, M2, and M3, which are set to output summaries containing at most half of the original passage’s

words.

3.3.4 Heuristic Score

We evaluate a summarization model’s coherency and information retention using a heuristic
score consisting of state of the art automated metrics in natural language processing. It is important
to note that we do not yet possess gold human annotated summaries for our dataset (Section 2.7)
that are later collected in Section 4).

For coherence evaluation, we use a BERTScore [155] between a reference ASR segment and
a model generated summary (candidate input). This method correlates well with human evaluation
and uses word level contextualized embeddings to capture dependencies and word ordering. For
retained information, we use the cosine similarity between Sentence Transformer [173]
embeddings of a reference ASR segment and a model generated output summary. A higher cosine
similarity between the reference ASR segment and output summary suggests the summary captures
the reference ASR segment’s semantic content. The final heuristic is the simple average of the two
and has arange of [—1, 1]. In practice, cosine distance based metrics used to determine similarities
between word embeddings are positive, with a general range of 0 — 0.5 for a weak correlation,
0.5 - 0.8 for a moderate correlation, 0.8 — 1 for a strong correlation, and 1 for a perfect correlation
[174]. As a sanity check, we observe a correlation of 1.0 when we set the reference and candidate
text inputs to be the same. Intuitively, as M1, M2, and M3 outputs are still summaries, they will
contain at least some semantic similarity to the reference ASR segment; therefore we expect to
observe a somewhat moderate correlation (0.5 — 0.6) with our heuristic. After determining which
model can be feasibly re-purposed, we use the heuristic score again to evaluate our method’s impact

towards improving summarization.
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3.3.5 Heuristic Score Limitations

In evaluation, a longer reference text (an ASR segment) and a model’s generated summary
are passed in as inputs to an evaluation model that computes a numerical score describing the
summary’s accuracy. Usually a text generation’s quality estimation focuses on adequacy (content
faithfulness) and fluency (coherence). Unlike typical evaluation, our dialog’s evaluation setting is
unsupervised which poses an extra set of challenges.

Our heuristic adopts two individually unsupervised components, BERTScore and Sentence
Transformer to measure adequacy (information retention, or semantic content) and to a lesser
degree fluency (coherence or grammaticality). Evaluating a generated summary’s fluency with-
out a reference is notably challenging (discussed below) but is, to some extent captured, within
BERTScore’s token embedding matching.

Unsupervised systematic and automatic evaluation of a summarization model’s text generation
is particularly difficult as it requires comparing generated sentences to non-existent annotated ref-
erences. The benefit of the unsupervised reference-free evaluation setting of the heuristic score
fundamentally incurs similar trade-offs to that of the underlying automatic evaluation methods
BERTScore, Sentence Transformer.

Because of the lack of human authored summaries in both training and evaluation data, we
are unable to use standard summarization evaluation standards such as ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) [7]. Moreover, existing n-gram evaluation metrics cannot be
effectively used on summaries as they tend to fail at robustly capturing performance; shortened
paraphrases containing semantically critical changes in word positions may be unfairly penalized
due to a mismatch with the reference text.

One subsequent trade-off is the possibility of achieving adequacy at the cost of low fluency.
Recall that semantic content is compared to an entire (unsummarized) dialog segment as a refer-
ence; thus a model can theoretically fool the metric by outputting many shorter and less relevant
segments in an incoherent manner instead of a single relevant segment to achieve a better score, as

is the case with M2’s marginally better score over M3’s.
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ASR Transcript Segment

Summary

Description

opportunity is inclusion
because you know, I have
heard this stories so many
times about there’s you
know, no Black Talent out
there. No Latin next talent
for these particular roles.

. Twill tell
you that is underdeveloped
because I think we have spent
more time trying to reach
numbers. Then we have
changing our [60 words]

M1: [In our series of letters from
African-American journalists, jour-
nalist and columnist Richard Law-
son looks at the importance of inclu-
sion in the workplace.

Hallucinations, M1 pro-
duces words and concepts
(italicized red) in the sum-
mary are not present in the
given input.

M2: opportunity is inclusion be-
cause you know i have heard the sto-
ries so many times about theres no
black talent out there no latin next
talent. 1 think we have spent more
time trying to

Speech noise sensitivity,
M2 loses abstractive sum-
marization ability and out-
puts unimportant sections.

M3: I think we have spent more
time trying to reach numbers than
we should because there is no black
or latin

Semantic Inaccuracy, M3
combines two different
sentences into a semanti-
cally incorrect output.

Table 3.3: Example summary generations on the "Diversity and Inclusion" dialog showing an
instance of the ASR transcript for one speaker turn and errors frequently made by the three sum-
marization models. Text is color coded to indicate shared regions between the input and output.

3.3.6 Formative Study Findings

We discuss Table 3.3 throughout this section. It contains an example of the ASR transcript seg-
ment of one speaker in the "Diversity and Inclusion" recording and the corresponding summaries
generated by the three models. Text is color coded to indicate shared regions between the ASR

transcript and the summary.

3.3.7 Google Speech-to-Text Automatic Speech Recognition Quality

We quickly and quantitatively evaluate the word error rate (WER) of the ASR system. Because
Table 3.3 only consists of audio data and perfect transcripts (human transcribed) are non-existent,
we benchmark ASR performance on a random subset of Ted Talks as they are somewhat similar
in terms of speech and data structure to Table 3.3 and thus would likely be indicative of ASR

performance. We find an average WER of 10%?, slightly above the reported 6.7% WER [175],

3This number should be treated as an upper bound as the human transcribed transcripts contain artifacts such as
" (Applause) " or " (Laughter) ".
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and far below a usability constraint of 30% [176].

As seen in the provided ASR Transcript example in Table 3.3, the ASR Speech-to-Text makes
very few errors. However, rare words, unfamiliar phrases, or new words not yet encountered still
degrade performance. For example, in the NPR: Chipotle dialog, "mise-en-place” was mistakenly
transcribed as "knees in place”. In the "Diversity and Inclusion" dialog, "rectangle. Opening"
was mistakenly transcribed from "reckoning”. Additionally, performance can fluctuate due to a
variety of noising factors such as speech disfluencies, foreign accents, and audio recording quality.
Although ASR makes few errors, they will propagate to downstream tasks and create challenges

for generating a practical audio summarization system.

Model Name Segmentation Strategy Heuristic Score

M1 Naive Fixed Length 0.61
M2 Naive Fixed Length 0.70
M3 Naive Fixed Length 0.68

Table 3.4: Automatic evaluation heuristic scores for various segmentation strategies.

Summarization Model Quantitative Analysis

Table 3.4 gives the automatic evaluation heuristic scores for M1, M2, and M3 ranging from
0.61 —0.70. Despite generating summaries on out of domain speech data, we can conclude that all
the baseline language models can still reasonably function and retain a moderate amount of infor-
mation with a summary containing at most half the words as the input ASR segment. Nonetheless,
the the tight spread of the heuristic score range indicates a moderate correlation and merits further
investigation into the re-usability of M1, M2, and M3 to fully understand model behaviors. While
the heuristic score is telling, it is not a replacement for human level evaluation; it provides only a
limited perspective into performance that is subject to intrinsic methodology constraints. To get a
sense of what types of errors the automatic summarization models are making and whether they

could potentially be addressed, we studied various segments by hand.
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Summarization Model Qualitative Analysis

This style of evaluation was not formal; the errors were pronounced, ubiquitous, and imme-
diately apparent. Such poor performance severely impeded practical usability and therefore did
not necessitate a formal evaluation. Unfortunately, we observe that all three summarization mod-
els make frequent and substantial errors; however, M3 stood out as containing problems that were
addressable.

M1 produced summaries that contain frequent hallucinations [69] — phrases or entities that
appear to be semi-relevant but are not actually present in the underlying text. This can be attributed
to its news based training data.

For example, in Table 3.3 M1’ s summary contains the text “African-American journalists”
and “Richard Lawson.” Neither of these entities are mentioned in the input (or entire audio file).
However, these entities are in M1’ s training data. This is a typical problem seen in language
models when deployed on new data that is not encountered in training. Only recently, an attempt at
fixing hallucinations has resulted in improved ROUGE precision and increased human preference
[177], but still requires additional dataset generation. These errors are in almost every summary
produced by M1. Thus, fixing M1’s hallucinations would be nontrivial and require a new training
dataset.

M2 does not contain hallucinations but unfortunately it introduces many grammatical errors
and performs especially poorly with regards to fluency: sentences trail off without finishing and
summaries consist of concatenated phrases that may be individually sensible but holistically in-
comprehensible. Moreover, it fails to produce an abstractive summary and defaults to an extractive
behavior; it mostly picked sections of the input rather than summarizing the entire input. This
is likely because M2 is trained to produce longer summaries than M1, and thus it is not forced to
produce abstractive summaries. Reiterating Section 2.4, it is essential for a speech summarization
model to be abstractive. These errors are frequently in summaries produced by M2.

M3 has more fluent text with no hallucinations. However, it makes an egregious error of mis-

representing the content. The transcript clearly states that ‘“The [Black and Latin] talent is out
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there,” but the summary introduces a negation to say that the talent is not there. The root of this
problem is that M3 coerces two different segments into a semantically incorrect summary. These
errors occur when multiple non-sequitur or different topics are provided as a single input. Because
abstractive summarization generates words that are not necessarily present in the source input text,
they require a high degree of content understanding of the underlying semantic information in the
passage [70] to successfully generate a semantically faithful summary; a poorly segmented input
containing multiple different concepts would be exceedingly detrimental towards a model’s seman-
tic comprehension. Thus, M3’s resulting coherent and abstract summaries (albeit with contextual

misrepresentation errors) signal that:

1. A successful semantically accurate segmentation that can group similar topics and ideas
together, while splitting dissimilar sentences into a separate chunk can improve a model’s

semantic comprehension, and transitively improve summary generation accuracy.

2. The summary context’s input accuracy issue is now reframed as a processing challenge that
does not require changes to the model’s architecture, re-training, or additional annotated

training data.

3. M3 is able to maintain its abstractive nature, which is essential to summarizing dialog due to

speech disfluencies and other noise artifacts.

Formative Study Key Takeaways

Based on this exploration of the three models, we hypothesize that M3 is the best one to build
on top of and reduces the challenge of practical dialog summarization to a tractable problem. M1
and M2 errors are exceedingly difficult to correct without significant amounts of specialized speech
training data. M2’s marginally higher score over M3 is immaterial given M2’s disfluency and inco-
herence. Although incoherent topic grouping is rarely the case in written language where ideas are
well-formed and presented in a manner that is optimized for ease of understanding, it is usually

the norm in spoken language where topics shift over time as speakers react to the last thing that
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was said. Concretely, if we can segment transcripts into semantically cohesive segments, creating
easier inputs and facilitating improved summarization performance, M3 may be an effective sum-
marization tool. When errors do remain, there is the fallback of the user using the hierarchical
browsing features to investigate surprising or suspicious claims to see if the summary is consistent

with the text.

3.4 System

We present a system that produces hierarchical summaries of spoken dialog that allow the
user to browse and navigate the content to find things that are interesting to them. Hierarchical
summarizing allows users to first see a high level summary of the content and to then drill into
progressively longer and more detailed summaries - or listen to the raw audio itself.

As shown by our formative study, pre-existing technology performance drastically suffers when
applied to speech and is still considerably below the requirement for practical usage. Therefore,
in addition to the borrowed pre-existing ASR system (Google Speech-to-Text API) and language
summarization model (M3, paraphrasing adapted PEGASUS), we develop a method to identify
semantically related segments of text that can be input into the summarization model, then merged
back together to maximize coherent summaries. This process can be done recursively to get in-
creasingly shorter and more abstractive summaries.

The core technical novelty and contributions within our speech summarization framework are

as follows:

1. A novel segmentation algorithm that creates semantically similar input blocks from an input

ASR segment in order to maintain conceptual cohesiveness

2. A semantic hierarchical clustering algorithm that joins conceptually similar ideas for logical

subsequent (recurrent) abstract summarization

The inclusion of these procedures to the two-stage hierarchical framework enables not only im-

proved grammatical and semantic cohesiveness but also facilitates various levels of summarization
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detail, which can be intuitively thought as the following:

1. Long Summary: Cleaned ASR Transcript. At this stage, a transcript’s disfluencies and noises

are cleaned and presented according to conversational order or speaker turns.

2. Medium Summary: Moderately Detailed Summarization. Similar Long Summaries are merged

and further paraphrased, providing key concepts along with essential details.

3. Short Summary: High level Summarization. Similar Medium Summaries are further merged

to provide the transcript’s salient ideas in more concise language.

3.4.1 Interface

The interface (Figure 3.1) consists of three main sections: high level summary column on the
left, the segment data view in the middle and the timeline of segments at the top of the interface.
Users explore the content by first browsing the Short Summary column to get a high level overview
of the content.

Users may click a Short Summary to see summaries of different length and additional levels
of abstraction (Medium and Long Summaries) as well as the ASR transcript, or elect to listen
to the corresponding audio. Yellow highlighting shows a key phrase in the short summary and
it’s corresponding phrase in the other summaries and the ASR transcript to help orient readers as
they move from reading the short summary to the other summaries of the same underlying text.
The timeline of segments shows how all the summaries are aligned. The user can see some Short
Summaries that cover longer portions of the original transcript than others. Clicking on the timeline
will take the user to the summaries of that section.

The interface was designed with two goals in mind:

Design Goal 1: Enable users to quickly identify useful information to them. Presenting high
level summaries to the reader allows them to quickly grasp a general idea of what is being said.
However, simply reading Short Summaries may not entirely satisfy the reader. By nature of being

summaries, they may omit details that may be of interest. Additionally, the automatic summariza-
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tion algorithms are imperfect and sometimes present summaries that are more vague than a user
would prefer. However, the purpose of the Short Summaries are not necessarily to fully summarize,
but to allow the user enough information scent [178] to decide if they want more detail. If they
want more detail, they can use the hierarchy of summaries to read Medium or Long Summaries,
read the ASR transcript, or listen to the underlying audio.

Design Goal 2: Support error recovery. As both automatic speech recognition and summa-
rization may produce errors at various stages of the system, the interface provides multiple tiered
layers of information for users to fall back on in order to recover comprehension of any given set
of summarization data in the event that either a portion of the transcribed audio or summaries has
erroneous text.

Listening to the raw audio will provide the full information a user should need to recover from
confusion or loss of comprehension due to an ASR or summarization error. However, listening to
audio takes longer for most people than reading text. If users wants near-full fidelity information in
a form they can read (or scan), they can refer to the ASR transcript. Many find transcripts of dialog
difficult to read because of the informal language and speech disfluencies. Thus, users may find
the Long Summaries easier to read - they retain almost all the information of the ASR transcript,
but the text is cleaned up to remove these artifacts of speech. Recall that M3 is an instance of
PEGASUS trained on a paraphrasing dataset, resulting in summaries that tend to be cleaned of
superfluous text, including speech artifacts. Users who want more actual summarization can refer
to the Medium Summary.

By presenting users with these options for recovering from ASR and model errors, users can
decide how much time and effort they want to put into recovering from the error. However, there
is a possibility that offering users multiple options could provide a negative experience by over-
whelming them with choices. Over time, we expect users will become familiar with the nature of
each level of detail and get a sense of which option to select. This is an issue we address in the

Section 3.7.
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3.5 System Interface Walkthrough

To give an idea of how the system can be used, consider the following Figures: 3.2, 3.3, 3.4 with
the given 29 minute podcast on financial markets hosted by David Rubenstein interviewing Bill
Ackman. These figures demonstrate an example thought process of a user browsing the podcast
content and how the hierarchical structuring of the system allows the user to further dive deeper

into content he or she finds interesting.

BLOOMBERG MaR:

Short Summary H Ackman, Rubenstein on Markets, Money and More
January 4, 2021 . 201 AM ET
= Long
Med

35 percent of your income is cwned
by the eountry, which is one of the
most valuable assets, and we have
outstanding social security.

The

=Tmminute

We will return to a nermal econemy
by the end of the year, but | don't
think it will happen until the second
half of 2021

The healtheare system is getting
better and people are going to be
mere careful

I den't know what ta do if the
treasury secretary calls tomarrow,

Figure 3.2: System View Part 1. Initially in this view, the user is presented with Short Summaries

that capture the most salient ideas in a podcast. The user can read these in a quick and linear
fashion.

3.6 Summarization Algorithm and Implementation

Figure 3.5 shows the steps through which an audio file is recurrently processed to obtain dif-
ferent levels of summarization (Short, Medium, Long). At a high level, the system segments an
ASR transcript and iteratively summarizes previously combined conceptually similar segments to
obtain increasingly abstract summaries while preserving semantic meaning. Note, the system is

inference only and is not trained.

Stage 1 (Fig. 3.5) of the system employs ASR to create a speaker diarized transcript of the input
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Currently Analyzing Audio: ackrman

Select an Audlo:

Short Summary

The markets are a strange place for
someone who Isnt following the
=ame path,

BLOOMBERG MATKETS AMD ENAN
Ackman, Rubenstein on Markets, Money and More

January 4, 2021 - 200 M ET

orig [T AR TR A ORI 0 T AT O RN AT AT T

St )

35 percent of your income is owned
by the country, which is one of the
most valuable assets, and we have
outstanding social security.

We will return toa nermal economy
by the end of the year, but | don't
think it will happen until the second
half of 2021,

The healtheare system is getting
better and people are going to be
more careful.

Idon't know what to do if the
treasury secretary calls tomorrow,

Figure 3.3: System View Part 2. Upon further inspection, the user decides that the 20th Short
Summary piques his/her particular interest. The user finds the summary "the healthcare system
is getting better and people are going to be more careful" particularly interesting as it is widely
known the United States healthcare system is not the greatest and decides to further investigate to
hear the podcast’s perspective on this issue.

Select an Audio:

Currently Analyzing Audie: ackman

Short Summary ubenstein on Markets, Money and More

orig || . . . . ‘

e il return 3 mormal econormy
by the end of the year, but | don't
think it will happen until the second
half of 2021

The healthcare
system is
getting better?

Medium Summary

In afew months it will be a lot better
because people are going to be mere
careful and the healthcare system is
gerting better,

How? What's

The healthcare system is Setting —
betrer and people are going to be .
rrore carsful happening?

I don't know what to da if the

Long Summary

§
I

The healthcare system is getting better
and better at treating the virus, so they are
learning when to put paople on a
ventilator, when net to, and what drugs
can have » positive effect.

L]

1 think in a few manths it will be a lot better
because people are going to be more
careful and the states will have @
modarate their sconomic activity

Original Transcript

Ithink what will happen is the the
healthare system is getting better and
Ibetter at traating the virus.

6, you know, they re learning when to put
people on a ventilator more importantly
when nat to their learning which crugs can
have a positive effect and what you know
learning more about what doses and
oarlier and went t© give the medication
testing is improving and | think all of these
things will you knew are positives and will
improve corfidence and reduce.

If we can take death off the table, 1 think by
the fall, we'll feel a lot better, because we
have more resources going into .

troasury secrotary calls tomorew,

Vou know kind of risk things will be a lot
better.

Figure 3.4: System View Part 3. By clicking on the Short Summary 20, the user can see the
progression of detail from reading the Short Summary to the Medium Summary. The Medium
Summary provides the user with context that the speaker is referring to healthcare in the context of
recent months. Not the overall US healthcare system as a whole. Further investigating and reading
the Long Summary segments, the user finds that the healthcare system is in reference to getting
better at treating the coronavirus with ventilators.
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Figure 3.5: Summarization Generation Pipeline. Our system enables the conversion of audio
files to multiple tiers of summarization. In the first stage, we convert the audio file into a speaker-
segmented and punctuated transcript and process the transcript, split by speaker turns. In the
second stage, we take each speaker turn and cluster conceptually similar summaries via semantic
segmentation. Each cluster’s summaries are joined (concatenated) based off of semantic similarity.
We remove small summarizations and then repeat the summarization and merging process to obtain
the Medium and Short summaries.

audio file. These speaker turns are further processed by a semantic segmentation algorithm which
divides a given speaker turn into chunks of semantically related sentences. The now refined speaker
turns are iteratively given as inputs into stage 2 (Fig. 3.5) of the system where processing and
hierarchical automatic summarization occurs. After each speaker turn is individually summarized,
its summaries are embedded which are then used to cluster sentences of the summary. Clusters are
concatenated (merged) and shorter summaries, which generally contain little salient information,
are stemmed. The first resulting summary of this iteration through the pipeline represents a Long
Summary. This Long Summary is fed back into the the automatic summarization model and follows

the same embedding, hierarchical clustering, and stemming steps once more to generate a Medium
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Summary. One further cycle using the Medium Summary yields a Short Summary.

Details of each system component are as follows:

Automatic Speech Recognition. We begin by using the Speech-To-Text Google API to ob-
tain transcripts with speaker diarization and predicted punctuation for initial sentence boundaries.
Speaker turns are alternating blocks of text separated by changes in speaker; they provide a very
coarse starting point for transcript segmentation. Speaker turns frequently discuss multiple differ-
ent ideas and may result in a long monologue before another speaker interjects.

Coreferenced Semantic Segmentation. The procedure is given in Algorithm 1 and a visual-
ization is given in Figure 3.6. We directly refer to variables in the pseudocode, in the following
walk through and explanation of the algorithm.

To understand why we employ coreference resolution [179] and speaker shifts to semantically
link sentences together and correct poor segmentation, we must recognize two linguistic tenden-

cies:

1. Unlike written prose, conversation can be far more vague; nouns and objects, herein referred
to as entities, are usually initially mentioned and then sporadically referenced, while all other
mentions are pronouns (it, s/he, they, etc.). Generic topic modeling of dialogue performs
poorly due to the nature of conversations, since conversations have both local and global
topic structures that have weak signals in conversation [180]. Individuals can talk about a
topic using specific references, but a model not trained to recognize these topics could fail
to recognize the boundaries of the topic effectively. To eliminate a dependency on custom
training data, we instead choose to identify expressions that refer to the same entity using
coreference resolution. To employ this technique, our algorithm seeks to group sentences
spanned by an entity, which is defined as the sentences contained by the start and end of the
entity. This method of using coreferenced entities to model text has historically been shown
to be successful [181] [182] and is still used in current state of the art models [169]. We use

the publicly available Allen NLP API [183] for state of the art coreference resolution [184].

2. Speaker shifts may begin relatively different concepts [185] and repeated references to the

60



Algorithm 1: Coreferenced Semantic Segmentation

® 9 A A W N e

10

11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27
28
29
30

31

Input: List T;, of n speaker turn segments {S}! , where word w € sentence s € S,
hyperparameters m = 100 for maximum coreference word span and p = 3 for
minimum number of coreference mentions.

Tour < list() # all semantically segmented speaker turns;

Initialize ey, e s # coreference span start and end pointers;

Initialize B « list("l", "me") # stop tokens;

fori=0,1,...,ndo

C « Coreference(S;) # Allen NLP API;

for coreference entity c € C do

if c.span > m and |c| < p then

L delete ¢ from C;

if ¢ C B then
L delete ¢ from C;

Siew < list() # instantiate new speaker turn block;
P « list() # semantic topic cluster within speaker turn S,,,;
eq, €5 < Cmin With min(wq € ¢ € C) # entity with earliest word index;
Cuxed — liSt(Cmin);
for s € S; do
50, 8§ < wo, Wy € s # start and end word indices of s,
for coreference entity c € C and ¢ ¢ C, 5.4 do
co,Cr < wo,wy € ¢ # start and end word indices entity c;
if 5o < eg and ef> sy then
P.append(s) # s within span, add to semantic block;
ifcr>epandsy<co<sythen
L eo, er < co, Cy # update maximal entity span;
Cused~append(c);
break;

else

S,.ew-append(P) # add topic cluster to speaker block;
P « list(s) # begin new topic cluster;

e, ey < ¢ with min(wg € ¢ € C) and ¢ ¢ C,5c4;
Cused .append(c);

break ;

| Tour-append(Syey ) # add semantically segmented speaker;

32 return T,,; # all semantically segmented speaker turns
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Input:
Speaker Turn

Output:
Semantically Segmented Speaker Turn

Well, | think there g three big forces that are at work that] Well, | think there are three big forces that are at work that

[have not existed in our lifetimes before| afftheylare a long have not existed in our lifetimes before and they are a long

terfZlldebt cycle|and we've reached the part [Efthat cycle] term debt cycle and we've reached the part of that cycle where | goanically

where interest rates are at zero monetary policy Is a major interest rates are at zero monetary policy is a major driver Clustered

driver what this looks like in a world where we're going to what this looks like in a world where we're going to print a lot Chunk #1
[El print/a lot of money. He monetizfE] that/and so on there are of money. He monetized that and so on there are three stages

three stages really in monetary policy really in monetary policy and the cycle that we are in the whole

bre in the whole world cycle ‘ began in 1945.[.]So that's world cycle began in 1945,

number two and then number three as the major influence is So that's number two and then number three as the major

the rise of a great power to challenge the existing world influence is the rise of a great power to challenge the existing Singleton

leadership of the United States[..|§0those factors]are in world leadership of the United States

place. And were in place before we had So those factors are in place. And were in place before we had

[coronavirus |came along and is a not back afflit]has big the coronavirus the coronavirus came along and is a not back )

financial implications. But so | thilfithose| are the three and it has big financial implications. But so | think those are Semantically

factors and now when we look at monetary policy, Id like to the three factors and now when we look at monetary policy, I'd Clustered

get into what that means what e value of money)is and like to get into what that means what the value of money is Chunk #2

hilel thatjaffects the market. and the currencies that were and how that affects the market. and the currencies that were

Figure 3.6: Alg 1. Semantic Segmentation Example of one speaker turn input into our corefer-
ence resolution algorithm. On the left, the coreference tags generated from the AllenNLP [183]
coreference resolution [184] module are shown with six different references highlighted. Our algo-
rithm groups sentences with references into semantic chunks with a minimum limit of references
and words so that the semantic chunks are still meaningful. In Semantically Clustered Chunk #1
(blue), the first sentence includes three different references (1,2,3), of which two (2,3) are still
used in the second sentence, hence why it is included. The singleton contains no references and
is segmented out. In Semantically Clustered Chunk #2 (red), the first sentence contains two refer-
ences (4,5) of which one (4) is in the second sentence. Although there is a new reference (6), the
reference terminates within the second sentence so no further sentences are added.

same entity indicate the same concept is still being discussed. Sudden changes in speakers
can be correlated with topic boundaries [186] and this concept serves as a common segmen-
tation approach in NLP [125]. All iterative instances of the algorithm on each speaker turn

segment S; are therefore independent of each other.

Here we walk through a single speaker turn pass of Algorithm 1. Speaker turn §; contains
sentences s that were previously divided by ASR predicted punctuation. For each sentence s, we
first obtain the coreferenced entity c,,;, (1ine 13) that maximally spans the current sentence s
and future consecutive sentences s € S; (Lines 4:10), subject to constraints. This denotes the
start and end pointers (e, e ) of the current semantically similar chunk, P (herein referred to as
cluster, 1ine 13). Sentences contained by P’s span e, e, are assigned to P (1ines 19:20).
If sentence s contains another entity that spans further than P’s current end pointer, e s is updated

to the sequentially higher indexed sentence (1ines 21:23). When P’s span is exhausted and
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cannot be further extended, the algorithm begins a new cluster P. Sentences that contain no entities
are singleton clusters.

We restrict the entity span to at most m = 100 words and require each valid span to contain at
least p = 3 mentions (coreferences).* We also do not consider “I” and “me” entity references
since these references do not indicate a semantic change. Figure 3.6 demonstrates an instance of
the sentence entity spans procedure.

Coreferenced Semantic Segmentation Effectiveness on Long Summaries

Model Segmentation Strategy Heuristic Score

M3  Coreferenced Semantic 0.83
M1  Naive Fixed Length 0.61
M2  Naive Fixed Length 0.70
M3  Naive Fixed Length 0.68

Table 3.5: Automatic evaluation heuristic scores for various segmentation strategies on Long Sum-
maries compared to M3 using Coreferenced Semantic Segmentation.

To determine if semantic segmentation is effectively grouping information for M3, we evaluate
the core coreferenced semantic segmentation algorithm, Alg. 1 on Long Summaries. Specifically,
we use our heuristic score to only evaluate Long Summaries, as subsequent (Short, Medium Sum-
maries) evaluation using a previous longer summary as input would induce a circular dependency
dueto Sentence Transformer’susage in Algorithm 2 and the heuristic itself. Because Short,
Medium Summaries use Sentence Transformer to determine which input passage segments
(that would ultimately become a circular reference transcript) to semantically include for summa-
rization, their outputs would likely score artificially high due to the heuristic’s intrinsic incorpora-
tion of Sentence Transformer.

We find that M3 with semantic segmentation obtains a heuristic score of 0.83, a 0.13 improve-
ment over the best naively segmented model, M2, suggesting Alg. 1 is effective and facilitates
increased summarization performance. The marked improvement is important as mediocre initial

summarization (Long Summaries) would lead to poor downstream hierarchical summaries (Short,

“We empirically observed that entities below these requirements had low relevance to the underlying concept.
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Medium Summaries).

Summarization Model. We opt to reuse the paraphrasing M3 instance of PEGASUS. The im-
plementation of M3 was taken from huggingface. co, using checkpoint Tuner/007. We also
make the key observation that multiple recurrent forward passes of M3 (independent of Short,
Medium, Long heirarchical summarizations) removes speaker disfluencies and other speech ar-
tifacts of low importance.

The tradeoff for increased robustness towards speech noise and artifacts is also inherently found
in M3’s paraphrasing nature; M3 struggles to reason out semantically different ideas and suffers
substantially from contextual errors (Table 3.3, M3). However, when ASR transcripts are prepro-
cessed with Algorithm 1, our framework is able to generate not only cohesive and semantically
logical summaries, but also achieve practical accuracy.

Hierarchical Concept Clustering and Merging. The next challenge is to determine which of
the previous level’s summaries to concatenate for further abstract summarization (Algorithm 2).
Recall that semantically similar summaries must be joined or the model output can be factually
incorrect (Table 3.3, M3) as abstractive summarization requires a high degree of semantic under-
standing of the underlying input passage. As a means to compare summary content similarity, we
first use Sentence Transformer [173] to individually embed summaries (still contained in
their own speaker turns S) s € S, into vectors in a semantic space. By transforming the text
segments into vector representations, we can now quantitatively compare their similarities via co-
sine distance. Summaries within each speaker turn S; are then merged through usage of a pairwise
cosine distance matrix for hierarchical (agglomerative) clustering. Merges are done within speaker
turns to enforce a proximity constraint of only merging local summaries due to the long lengths of
ASR transcripts.

Next, identified summary clusters are sequentially concatenated and concatenated summaries
containing 5 or fewer words are stemmed. We observed that summaries which are not merged and
contain few words are very frequently speech artifacts that contribute no value.

Note that the final level of Medium to Short summaries contain far fewer summaries than ASR

64



Transcript to Long Summary and Long Summary to Medium Summary due to previous merges.
We remove the proximity constraint from Medium to Short and allow agglomerative clustering is

across all summaries instead of within speaker turns.

Algorithm 2: Hierarchical Concept Clustering and Merging

Input: List of summaries (sentences) s € S; € S in speaker turn §; for all speaker turns S,
Embedding Sentence Transformer Model M, cut_of f =5 determining
the smallest concatenated summary allowable

Loy < list();

for S; € Sdo

E «— M.embed(s € S;) # embed all summaries within current speaker turn;

D « create_pairwise_cosine_distance(E, E);

labels «— agglomerative_clustering(D);

cluster « [s € S;].group_concatenate(labels);

cluster fijterea < [s > cut_off € §;];

B Lout-append([Clusrerfiltered]);

return L,,;

X NN U R W N =

o

3.7 Hierarchical Summarization System Evaluation

We performed user studies to evaluate the following:

1. Human assessment of the quality of Short Summaries.
2. The system’s ability to help users recover from errors in summaries.

3. The amount of time users saved by using our system when used in an unconstrained setting

with their own browsing styles and comprehension goals.

Additionally, we present qualitative findings on how and when people would use the system to

find interesting information in spoken dialog.

3.7.1 User Study Methodology

We recruited 10 recent university graduates from diverse professions (5 women, average age

= 26 ) for our study. Each study lasted 1.2 to 2 hours and averaged 1.5 hours; subjects were paid
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$20 per hour for their time. To begin, participants were provided with a scenario where a dialog
summarization tool would be potentially useful: imagine you get an email from a friend or col-
league about an exciting interview on YouTube about “Diversity and Inclusion in the Workplace.”
It’s 23 minutes long, you're not sure if you want to commit to watching the whole thing, but you
want to know if there’s anything new or interesting in it. We’re trying to help people explore audio
clips to find key takeaways. They were also informed that the summaries were generated by an Al
and might be imperfect.

Participants were then given a link to the interface with the audio for "Diversity and Inclusion"
loaded in. During the warm-up, we explained the different UI components, Short, Medium, and
Long levels of summarization, the original transcript, and the media button to play and scan the
corresponding original audio section. Figure 3.1 is an example of what the user would see. To
familiarize users with the system, we instructed them to read the first Short Summary, its corre-
sponding Medium Summary, Long Summary, and ASR transcript segment, as well as to play the
audio segment.

After the warm-up, participants were asked to perform three tasks:

1. Short Summary Quality Assessment: assess Short Summary quality for two au-
dio files ("Diversity and Inclusion" and one of their choice). Here participants were asked to
think aloud so we could understand how participants built an intuition and what their inter-
pretation of the system was like. We asked participants to rate each Short Summary for two
things: 1) grammatical correctness and 2) semantic comprehensibility. Users answered "yes"
or "no" to each question. For semantic comprehensibility, we ask them whether they were
able to understand the Short Summary and if it matched the corresponding audio segment’s
content. Users were able to check for semantic meaning by comparing against Medium,

Long Summaries, original ASR transcripts, and audio.

2. Short Summary Error Recovery: if participants were confused on a Short Sum-
mary’s meaning, they were asked if 1) they could regain comprehension of the Short Sum-

mary’s meaning and 2) what system features they used to recover the meaning. Participants
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were allowed to spend as much time as they needed to rate all the Short Summaries for the

two audio files and were encouraged to think aloud as much as possible.

3. Practical Usage Assessment: use the system as they would in an every day situ-
ation. Participants were asked to choose the audio file that interested them most from the 5
remaining audio files in Table 3.1 and to use the system to find interesting information in that
dialog quickly. They used the system without any restrictions and without thinking aloud.

We timed participants’ usage and observed their browsing strategies.

We concluded the study with a semi-structured interview about their experience using the sys-

tem.

3.7.2 User System Evaluation

Short Summary Accuracy. During the study participants rated a total of 556 Short Summaries
from the test dataset (Table 3.1). The overall average accuracy across all users and recordings was
71.4% (see Table 3.6). The overall accuracy includes both grammatical correctness (84.9%) and
semantic comprehensibility (75.9%). Overall accuracy is a measure of how many Short Summaries

had any kind of error (either grammatical or semantic).

Criteria Accuracy

Grammatical Correctness 84.9+5.1%
Semantic Comprehensibility | 75.9 + 4.8%
Overall Accuracy 71.4 +4.9%

Table 3.6: Average Short Summary accuracy and standard deviations.

An overall accuracy of 71.4% means that many Short Summaries can be read and understood
without any issues. The system’s grammatical correctness is reasonably high (84.9%), but the
system’s semantic comprehensibility is lower (75.9%). Generally, grammatical errors are not
detrimental to user experience because most grammatical errors do not distort the meaning of

the sentence. However, poor semantics often requires users to investigate further to comprehend
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the meaning [187]. In this study, to fully comprehend every Short Summary, users would need to
investigate semantic errors for 1 in 4 Short Summaries.

Because of the current state of machine summarization, we were not expecting the Short Sum-
maries to be perfect. However, with 71% accuracy, we are encouraged that a usable and valuable
system can be built in presence of errors. The subsequent evaluations are focused on whether the
the system can help users achieve their goals despite these errors.

Short Summary Error Recovery When a participant encounters a confusing Short Summary
during the Short Summary Quality Assessment task, we evaluate whether the user can
recover regain holistic text comprehension by using the interface. In total, there were 140 Short
Summaries with unclear meaning, and users recovered from 92.9% of them. This recovery rate is
high — the interface allows them to recover from all but 7.1% of them. This indicates that although
Short Summaries contain errors, the system can still allow users to have full comprehensions with

some extra effort — the post-recovery success rate is nearly perfect: 98.2%.

Required Hierarchical Traversal Level | Fraction (%) Used

Medium Summary 11.5%
Long Summary 19.2%
ASR Transcript Segment 40.8%
Audio Segment 20.8%
Querying Neighboring Segments 6.9%

Table 3.7: Distribution of the hierarchical levels users explored in order to recover from an inac-
curate Short Summary.

The hierarchical summarization features of the interface were designed to help users recover
from errors quickly and easily. We wanted to know to what degree participants used these features
during recovery. We found that participants used all the hierarchical summarization features to
some degree. Participants had two main styles of using the summarization: either they traversed
down the hierarchy in order (from most summarized to least summarized forms of the semantic
chunk or skipped to their preferred source of information. Table 3.7 shows the breakdown of how
often each feature was used. Participants used Medium Summaries a small amount (in 11.5% of

recoveries) and used Long Summaries more (in nearly 20% of recoveries). However, participants
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used the ASR Transcript Segment the most (for 40.8% of recoveries.) This behavior is explained
by users noting how Medium, Long Summaries were either too similar or contained the same
semantic errors as Short Summaries. As a result, users defaulted to reading the ASR Transcript
Segment more often.

There are some instances where the transcript and summaries are insufficient for error recovery.
In 20.8% of recoveries, users chose to go back to the audio segment. Although audio takes more
time to listen to, the audio contains information that the transcript does not - it contains emphasis
and tone of voice (as well as avoiding any errors in the transcript). In a small number of cases
(6.9%) users chose to read neighboring segments to recover from an error. This is almost always
because users needed more context that lay outside of the current semantic chunk to recover full
comprehension.

Lastly, some participants noted that some of these errors may not be possible to recover from
because the underlying audio content was difficult to understand or incoherent.

Time Savings. In the Practical Usage Assessment, when participants used the sys-
tem at their own pace (without thinking aloud or rating tasks), we found that on average, the time
participants spent was 27.1% of the original audio time to reach a level of understanding that they
were satisfied with (Table 3.8). The fastest user spent only 6.9% of the original audio time, and
the slowest spent 75.9% of the original audio time, but most spent between 20% and 30% of the
original audio time. We believe the system presents a sizable time savings. Although users do have
strategies for processing audio faster (such as listening at 1.25x speed or skipping the first minute
of the audio), these strategies are unlikely to provide dramatic speed ups and often lack the control
and freedom that our system provides.

How much time users spent varied with what level of detail they wanted to understand. The
two users with the highest time percentage (75.9% and 45.5%) were looking for details. The other
users took much less time and wanted a cursory understanding of the material (Table 3.8) such as
getting a broad gist of the conversation, wanting a few key takeways, or wanting only a specific

piece of information.

69



Participant  Self-Declared Style Browsing % of Audio Time

P Detailed 75.9%
P Cursory 12.1%
Ps Cursory 14.9%
P4 Cursory 20.7%
Ps Cursory 20.8%
Pg Cursory 6.9%
P Cursory 25.9%
Pg Moderately Detailed 24.7%
Py Cursory 24.3%
Pio Moderately Detailed 45.5%
Paverage - 27.2%

Table 3.8: Individual participant times using the system as percentage of original audio length
alongside intended browsing style.

3.7.3 User Qualitative Evaluation

. During the semi-structured exit interview, participants were asked about their experience
using the system, use cases where they would or would not consider using it in their life, and
potential improvements to the system.

While browsing for interesting nuggets of information, users sometimes found the Short Sum-
mary sufficient, but often leveraged hierarchical summarization features to dig further. In the
podcast discussing Teach For America during Covid, P; found this Short Summary to be inter-
esting on its own: “15 to 16 million children don’t have access to broadband internet.” Likewise,
in the podcast on Health, Pg found this Short Summary interesting without reading further: “You
can prevent systemic bias by hiring nurses who speak Spanish and are bilingual.” However, P;
selected Ray Dalio’s interview and found the first Short Summary intriguing (“There are three big
forces at work have have not existed before™) but had to read the transcript to discover what the
three forces were. Similarly, Pg selected Bill Ackman’s interview and was intrigued by the Short
Summary: “The uncertainty of the future can affect the model that analysts use to value securities.”
Py said: “I found this as a thesis statement and read more into it.” Although Short Summaries may

be sufficient, that is not always the case and as a result it is critical that Short Summaries provide
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good information scent to indicate to users when to use hierarchical features to investigate further.
Users reported they would consider using a tool like this for media they considered “conden-
sible.” They mentioned news, YouTube videos (particularly reviews), interviews, and podcasts as
media that could be condensed. Users also stated they would prefer to use the tool for topics they
were curious about, but “didn’t want to spend too much time on" (P7). One such use case was if
a friend suggested they listen to a long audio file and they “don’t wanna be rude” (P7). Another
use case presented was for situations when a given topic is familiar, but the presentation could give
background that could be condensed (P;). Finally, a third case users noted is when they wanted
specific information from an audio recording, such as "learning what a company does in interviews
with CEOs" (P1g). 6 out of 10 participants said they would not use the tool for detailed or technical
topics, particularly if they were responsible for learning the material at work or school. Addition-
ally, they would not use it for personal things they were deeply interested in because “I’d want to
read those in detail” (P,) or for fictional narratives where there is pleasure in enjoying the flow of
the story rather than extracting information. Clearly, this is not a tool for all use cases. Similar to
how people wish to skim text using a tool, our system can allow users to “skim’ audio.
Throughout the experiment users frequently relied on their own knowledge to guide them to-
wards exploring content in more detail. Ps works in the medical field and was intrigued by a
Short Summary in the Health dialog: “There was a spike in demand for specific types of nurses.”
Ps wanted to know what those specific types were. The Medium Summary did not contain that
information but the Long Summary did - ICU nurses and ED (emergency department) nurses were
the two specialties named. Pjo was familiar with “How I Built This” podcast and was specifically
interesting in understanding the “pain points with building the company.” He spent most of his
time in the middle of the interview because he knew from the structure of the podcast that the in-
formation would probably be there. P4 was already familiar with finance and with Bill Ackman’s
philosophies, but the tool was useful to him as he skimmed the Short Summary to see if there
would be anything new and interesting, given his background. For users with background knowl-

edge, tools which provides user control and freedom enable more efficient navigation in order to
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locate valuable information.

The hierarchical features were more useful for some dialog than for others. 8 of 10 users of the
Diversity dialog did not mention reading Medium, Long Summaries, and always went to the tran-
script. However, 5 of 5 readers of Ray Dalio dialog used the Medium Summaries. This is likely due
to the nature of the underlying audio and the quality of the summaries. Ray Dalio tends to speak
in structured and organized paragraphs creating longer but structured ASR transcript segments.
This created enough of a distinction between Short and Medium Summaries where Medium Sum-
maries contained a good balance of interesting information while retaining an attractive length.
Meanwhile, the Medium, Long Summaries of the Diversity dialog did not add enough information
causing users to read ASR transcript segments to obtain desired additional details. As these factors
are difficult to control for and user dependent, the solution of presenting summaries at multiple
levels of granularity was successful.

Short Summaries were imperfect, but users found strategies to recover understanding of the
underlying material. A common complaint about the tool was use of ambiguous pronouns in the
Short Summaries. For example, in the Chipotle interview the Short Summary says. “It’s hard to say
what he is like because he was an amazing visionary.” Here “he” refers to the CEO’s mentor - a head
chef at a famous restaurant, but users had to read the transcript to find this information. A related
complaint is that “the short summaries were disconnected from each other” (P7). Summarization
often removes segues and other transitional elements in order to surface meaning. However, this
provides a disjointed experience for users and requires them to “rewind a little bit” (P;) to recover
context or flow. When using the hierarchical summarization features to recover users found “Word
per word highlighting indicates where it was to quickly see the segment to read to resolve” (Pqg).
This type of consistency across the interface makes information easier to scan. In future work,
we could explore ways to make the Short Summaries flow better, such as resolving pronouns and

linking related information across the Short Summaries.
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3.8 Limitations and Future Work Direction

Users generally found the system useful, though there are several ways the underlying technol-

ogy could be improved to provide better summaries and to generalize to more types of dialog.

3.8.1 ASR Limitations

Although ASR works well for the two-person, studio-recorded interviews in this system, it
still has many limitations. ASR may incorrectly transcribe audio with speakers with accents or in
the presence of background noise, limiting user and context settings. Additionally, ASR makes
diarization errors when multiple speakers are present and interrupt one another, such as in a panel
discussion where participants argue or get excited. These diarization errors in turn limit the types

of conversations ASR works for.

3.8.2 Summarization Language Model Limitations

User Information Retention. The goal of this system is to help users navigate longform au-
dio and find interesting information quickly which creates user comprehension trade-offs. A more
difficult challenge would be to make a system that helps users find all interesting information. We
did not measure the precision of the system, but acknowledge that users missed interesting infor-
mation. In particular, we observe the summarization language model occasionally omits named
entities that can signal interest to readers. For 