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ABSTRACT
In computer systems design, computer architects can evaluate fea-
tures and techniques in terms of traditional design metrics like
power, performance, and area but not in terms of net benefit or cost
to the end user. For example, a security feature may come at a 10%
cost to performance, but is this worth the tradeoff? The problem
is that user-level features like security, privacy, and usability can
be converted into a monetary amount but traditional architecture
metrics (which lack the notion of user value) cannot. In this paper,
we make the first known attempt to bridge this gap: We conduct
two studies (one of which is incentive compatible) that elicit the
value of performance in terms of US$ to end users. Thus in this
work, we make the first known quantitative measurement of the
tradeoff between performance and user value, providing architects
with a novel design metric and filling a crucial gap in the end-to-end
quantitative evaluation of systems.

CCS CONCEPTS
• Security and privacy → Economics of security and privacy;
Security in hardware; Systems security; • Human-centered com-
puting → Empirical studies in HCI.
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1 INTRODUCTION
A quantitative approach to computer architecture and systems de-
sign has been a key factor in achieving meaningful improvements
for several decades. Computer architects and designers have been
tremendously successful at developing metrics to measure impor-
tant quantities such as performance, power consumption, die area,
and reliability, which have allowed systems designers to have a
clear conversation about pros and cons of competing approaches.
More recently, architects and designers are increasingly tasked with
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designing systems for user-facing requirements like responsiveness,
security, and privacy, which can be broadly classified as a quality re-
quirements [2, 8, 12, 27]. However, unlike traditional metrics, these
user-facing requirements are often not easily measurable, making it
difficult for architects to quantitatively determine which tradeoffs
are worth making.

For example, should a phone designer add biometric authen-
tication if it comes at the expense of storage space? How much
device responsiveness should be exchanged for an always-on secu-
rity feature? These types of questions are typically unanswerable
using traditional design metrics (like power or performance) be-
cause traditional design metrics are agnostic to how much various
design features are worth to users. Yet deciding these tradeoffs is a
necessary and consequential step of the design process. How can
systems designers and computer architects more rigorously balance
design requirements like power, performance, and die area against
indeterminate requirements like user preferences?

In this work, we make the first known attempt to introduce user
preferences as a quantifiable metric for design decision-making.
Specifically, we aim to put a price to users’ value of performance.
In other words, this work finds the “exchange rate” between per-
formance and user value, in terms of US$. By establishing this
“exchange rate”, we provide systems designers and architects with
a quantitative metric by which they can balance tradeoffs between
performance and other features which may “cost” performance
(such as security or usability features, among others). To illustrate,
suppose a systems architect must decide whether or not to include
an image processing accelerator in a system that, if included, would
come at the expense of cache sizes and decrease general system
performance by 10%. Is this worth the cost? Via our methodology,
an architect can put a monetary amount on the opportunity cost
(in terms of user satisfaction) of such a feature, and can compare
this to users’ value of the feature itself (perhaps derived via market
research studies). Our work makes this type of quantified decision-
making possible.

To find the worth of performance to users, this paper conducts
two complementary experiments. The first experiment asks partic-
ipants to run a program on their personal computing device and
perform simple everyday tasks while enduring throttled device
performance. Using a series of yes/no questions, we then elicit how
much each participant would have to be paid to accept a permanent
device performance loss of either 10%, 20%, or 30%. For performance
losses of 10%, 20%, and 30%, we find this amount to be $381 (N=21),
$457 (N=24), and $823 (N=22), respectively.

For the second experiment, we develop an incentive compatible
experimental protocol, meaning that participants are incentivized
to make decisions and answer questions according to their true
preferences. Specifically, participants are given choices between
computer performance and real-world money; participants who
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choose the money over performance must then endure throttled
device performance on their personal computing devices for up to
several days at a time. Instead of finding participants’ valuation of
a permanent device performance loss, this methodology finds the
participants’ valuation of a per day performance loss (which is a
necessary consequence of our choice in experimental design). Using
participants’ responses, we find that users would trade performance
losses of 10%, 20%, and 30% to their personal devices in exchange
for $2.27 per day (N=26), $4.07 per day (N=29), and $4.44 (N=30)
per day, respectively.

In addition to the above two methodologies, we also perform a
large-scale online survey of the same questions asked in the previ-
ous protocols, albeit with no hands-on throttled device interaction
and with no incentive compatibility. We do this to 1) observe a
larger sample size, and 2) compare with the other methodologies’
results to determine whether or not the hands-on interaction and
incentive compatibility is necessary for this type of experimenta-
tion. From our large online survey results, we find that participants
report that in order to accept a performance loss of 10%, 20%, or 30%,
they would need to be offered at least $11.15, $22.85, and $24.92
per day, respectively (N=306), or $499, $1214, $3723 in total, respec-
tively (N=306); these results are much higher than those obtained
via experimentation, suggesting that the effort of in situ experimen-
tation is necessary, and that this type of experimentation cannot
be replicated via a simple survey mechanism.

The rest of the paper is organized as follows: We provide justifi-
cation for our choice of experimental design in Section 2, namely
why we choose to measure participants’ willingness to accept per-
formance losses. We then describe our methodologies in Section 3,
and present results in Section 4. This is followed by a discussion
on some of the results in Section 5. Related work is reviewed in
Section 6. Finally, this paper concludes in Section 7.

2 WHY MEASURE THE COST OF
PERFORMANCE LOSSES?

In our efforts to quantify the value of performance, we chose to
measure participants’ willingness to accept (WTA) performance
losses on their personal devices1. Although perhaps not the most
obvious way to study this problem, we find it to be the most appro-
priate value to measure given the constraints: First and foremost,
to get an accurate measurement of user preferences, we felt it was
necessary to study users in their own environment and on their
own computing devices. This ruled out in-the-lab style experimen-
tation2. Given this constraint, the only direction by which we can
reliably adjust users’ devices’ performance is downward (after all, if
there was an easy way to permanently increase device performance,
many users would have done so already!).

1Willingness to accept (WTA)—a concept borrowed from the field of economics—is
the minimum amount that a person would have to be paid to accept some unfavorable
condition or outcome.
2The justification here is that testing participants in a tightly-controlled laboratory
environment would require experimentation on different devices (with different per-
formance specs) than what the participant might be used to; hence it would be in-
appropriate to measure participants’ value of performance against such a contrived
setting. For example, questions of “how much would you have to be paid to make
this device 10% slower” are meaningless unless participants already have a baseline
understanding of how fast or responsive a device is in the first place. Hence we chose
to study users only in their own environment and on their own personal devices.

Another reason for measuring users’ willingness to accept perfor-
mance losses is that it allows for systems and architectural features
to be evaluated and compared by their opportunity cost in terms of
both performance and user preference. To illustrate this point, con-
sider a systems architect who wants to include hardware support
for secure memory bounds checking. At the systems and architec-
tural level, the opportunity cost of such a feature is the performance
gain that could otherwise be achieved without the bounds checking,
while at the end user level, the opportunity cost is the additional
features that this extra performance could allow. By quantifying
the relationship between performance and end user value, we pro-
vide systems designers and architects a means by which they can
translate from the low-level domain of systems and devices to the
high-level domain of user value.

Finally, by measuring the cost of performance losses, we also
make it possible measure the in-the-field cost of security patches to
hardware vulnerabilities like Meltdown and Spectre (see Section 5
for more details).

2.1 How Do We Throttle Participants’ Devices?
Given the above constraints, we needed a method to remotely and
reliably throttle the performance of study participants’ personal
devices.We found that the best way to do this was by throttling CPU
frequency. On Windows devices, this is achieved via the powercfg
command line utility by adjusting the value of PROCTHROTTLEMAX,
which limits the systems’ CPU frequency relative to its maximum
(i.e. setting PROCTHROTTLEMAX to 50 on a 4.0 GHz device should
lower CPU frequency to 2.0 GHz). We limited experimentation to
participants using Windows 10 devices3.

Of course, our experiments’ validity hinges on whether or not
CPU frequency is a good enough dial by which we can adjust de-
vice performance (which is much more than a scalar value and
depends on a multitude of systems components and specs, as well
as usage). Put another way, it is unclear if an 𝑋% drop in CPU clock
speed will produce an 𝑋% loss of performance. To answer this ques-
tion, we benchmarked two Windows 10 devices—a laptop and a
desktop device4—with three device performance benchmark suites—
SPECspeed 2017 Integer, SPECrate 2017 Integer, and WebXPRT 3—
at various clock speeds. Results are show in Figure 1. All three
benchmarks suites show a highly linear relationship between CPU
frequency and benchmark score: Pearson correlation coefficients
are above 0.996 for all datasets except for the SPECrate 2017 Integer
benchmark on the i7-8550U laptop (which had a Pearson correlation
coefficient of 0.918). Based on these results, we find CPU frequency
to be a reasonable proxy for device performance, and find it rea-
sonable to assume that decreasing participants’ CPU frequencies
by 𝑋% will decrease performance by roughly 𝑋%. Given this, and

3Our reasons for this were that 1) Windows 10 comprises a majority of desktop and
laptop users, and 2) we could not find a reliable method for throttling CPU frequency
on MacOS devices. On Linux devices, throttling CPU frequency is easy but the share
of desktop and laptop Linux users remains small. We also considered experimenting
on mobile phones, but were not able to throttle device performance without asking
study participants to “jailbreak” their devices; we figured that potential participants
would be unwilling to do so.
4The laptop used for benchmarking was a Dell XPS 9370 laptop with an Intel Core i7-
8550U CPU and 16.0 GB of RAM while the desktop device was a custom build PC with
an Intel Core i7-8700 CPU with 16.0 GB of RAM and liquid cooling.
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Figure 1: Using two devices and three benchmarks, we find
that CPU frequency strongly correlates with performance
benchmark scores, making it a reasonable proxy for device
performance and an appropriate method for throttling per-
formance in our experiments.

given the need to reliably throttle participants’ devices remotely,
we choose to use CPU frequency throttling in our experiments.

3 METHODS
We now describe the methodologies used in our two experiments.
In all experiments, participants were recruited from Amazon’s Me-
chanical Turk platform and were required to be at least 18 years
old and working in the United States. All experimental protocols
were reviewed and approved by our IRB.

3.1 Experiment #1: Device Lifetime WTA
Our first experiment subjects participants to temporary perfor-
mance losses on their personal device and then elicits the device life-
time WTA, or the amount of money the participant would have to
be paid to permanently accept the performance loss on their device.
Device lifetime WTA is a measure of user resistance to permanent
performance losses (such as performance losses caused by security
patches to Spectre [14] and Meltdown [16]).

3.1.1 Experimental Protocol. Participants are provided with a pro-
gram and are instructed to run it on their personal Windows 10
computing device. A pop-up window appears on the participants’
screen which serves as the main interface for participation. After
first gaining consent from participants, the program informs par-
ticipants that it will test unspecified “features” on their devices by
making some temporary system modifications, but does not specif-
ically inform participants that their device’s performance will be
throttled during participation5. At this point, the program also tests
its ability to actually throttle CPU frequency. Participants whose

5This slight deception gives us further informed consent (as much as is possible)
to temporarily modify participants’ devices (necessary for throttling performance)
without specifically priming participants to think about or notice performance during
the subsequent phases of the experiment. This was cleared with our IRB.

devices cannot be slowed down by the desired amount are removed
from further participation.

The program then instructs participants to complete three sets
of highly similar tasks (henceforth referred to as “Task 1”, “Task 2”,
and “Task 3”). The three tasks consist of a series of subtasks chosen
as a best-effort approximation of typical device usage for typical
users and are nearly identical to one another (only the specific
queries requested in subtasks 2, 3, and 4 below change between
tasks). The subtasks are as follows:

(1) Open Microsoft Word and create a new document.
(2) Open a web browser and find the distance in miles between

two specific cities and add this number to the Word docu-
ment.

(3) Use the browser to find an image of a specific well-known
landmark and add this image to the Word document.

(4) Use the browser to find a video of a specific live music perfor-
mance on YouTube, and add the URL to the Word document.

(5) Export the Word document to a PDF and upload it to a web-
page at a provided URL.

(6) Close Microsoft Word and close the web browser.

We chose to give participants a prescriptive list of tasks (rather
than simply letting participants interact with a throttled device for
a fixed timespan) to ensure that the participants would actually
experience the performance slowdowns on their device, and to
ensure a consistent experience between participants. Our chosen
subtasks require participants to interact with their system in a
variety of ways (opening multiple programs, using a web browser,
typing, loading webpages, playing video content, etc.) in an effort
to put pressure on different systems components that might be
affected by frequency throttling.

Participants complete these three tasks back-to-back. Before
each task, the program informs participants that some unspecified
“features” will be applied for the duration of the task. Unbeknownst
to the participant, the program silently throttles performance dur-
ing either Task 2 or Task 3 (determined randomly with equal odds)
by capping CPU frequency by either 10%, 20%, or 30%. Device per-
formance is unthrottled during the other two tasks. To confirm that
we achieve the desired slowdown, the program takes samples of the
participant’s device’s CPU frequency during each of the three tasks
and reports the samples to us in a log file (we analyze frequency
samples offline and remove any participants whose devices are not
throttled by the targeted amount). After performing all three sets
of tasks, the program reveals to the participant that the unspecified
“features” were actually throttled device performance. The program
also reveals which task was throttled and by how much.

We now explain the reasons for designing our experimental pro-
tocol in this manner: First, we felt it to be necessary to expose
participants to throttled and unthrottled performance back-to-back
and under as similar of conditions as possible. This explains the
high degree of similarity between tasks, since it gives participants
the best chance at being able to fairly reflect on the differences
between throttled and unthrottled performance during the subse-
quent exit survey. However, it is reasonable to assume that after
completing Task 1, participants may “learn” the pattern of the tasks
and complete subsequent tasks in less time; to avoid the possibility
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of this effect influencing participants’ perceptions, we use Task 1—
which is never throttled—as a “warm up” task designed simply to
expose participants to the nature of the tasks (Task 1 also serves to
warm up the participant’s device itself, e.g. loading system caches).
Additionally, we were unsure whether the ordering of the throt-
tling (i.e. fast-then-slow vs. slow-then-fast) would have an effect on
participant experience, hence the need to randomly throttle either
Task 2 or 3. We also chose to not inform participants of the true
purpose of the experiment beforehand so that they could interact
with a throttled device without first priming them to form a mental
bias on what the experience might be like.

After the Task 3 is completed, the program restores the partici-
pant’s device to its pre-experiment state and guides the participant
through an exit survey. The exit survey is a series of yes/no ques-
tions designed to elicit the lowest amount a participant would have
to be paid to be willing to permanently accept the slowdown they
just experienced on their personal device. We find this minimum
dollar amount via a simple variation of exponential search: the
program first asks participants if they would accept an offer to
slow down their device by some percentage in exchange for $0.
If they accept, there is no lesser minimum and the willingness to
accept (WTA) is $0; otherwise the offer price is raised to $1 and
the question is asked again. If the participant declines again, the
offer price is doubled to $2, then to $4, and so on for each time the
participant declines the offer. If the participant declines the offer
15 times in a row (i.e. an offer of $16,384), we cap the participant’s
WTA as “greater than $16,384”6. Otherwise, there is an offer price
𝑝 at which the participant would accept the money for the per-
formance loss and a price 𝑝/2 at which the participant would not
accept the money for the performance loss, and hence the partici-
pant’s minimum WTA lies somewhere in between. The offer price
is then lowered to (𝑝 + 𝑝/2)/2, or halfway between a known ac-
cepted offer price and a known rejected offer price. Standard binary
search then commences, with each offer acceptance setting a new
upper bound on the WTA and each offer rejection setting a new
lower bound on the WTA. Binary search eventually converges on
the participant’s minimum WTA. Binary search stops when the
difference between the upper and lower bounds converges to $2,
and the WTA is returned as [(upper bound) − (lower bound)]/2.

After the WTA has been elicited, the program uploads the par-
ticipants’ responses to a server. Participants are then paid a flat
rate for their participation. The entire process for participants takes
about 20–30 minutes.

3.1.2 Replicating via Large-Scale Online Survey. We repeated the
above survey questions in a large-scale online survey. This was
motivated by a desire to 1) achieve a greater sample size, and 2)
determine whether or not a survey mechanism, without hands-on
experience with throttled performance, is an appropriate research
methodology for this line of research work. Participants in the sur-
vey did not download any program and did not complete any tasks
under throttled device performance, and were only asked to answer
the series of yes/no questions designed to elicit WTA. Unlike the

6We choose the cutoff point to be $16,384 since it is several times higher than a brand
new, high-end personal device. In addition, we add that due to our use of exponential
search, we must necessarily set some upper limit, or else the algorithm may never
terminate.

hands-on study participants (from which we elicit their WTA for
only a single slowdown percentage), we elicit survey participants’
WTA for slowdowns of 10%, 20%, and 30% in three separate series
of yes/no questions. Finally, to improve data quality from survey re-
sponses, we add an “attention check” survey question7 and remove
any participants who fail the attention check. To remove additional
low-quality responses, we also remove any responses where WTAs
for 10%, 20%, and 30% are non-monotonic8.

3.2 Experiment #2: Per Day WTA
A shortcoming of Experiment #1—andmost surveys, for thatmatter—
is that respondents face no consequences if they give low-quality or
thoughtless responses to questions. Although we try to minimize
this risk via so-called “attention check” questions, there is still little
incentive for participants to deeply reflect on how much perfor-
mance is worth to them. That is, both the hands-on study and the
online survey lack incentive compatibility, meaning that participants
are not incentivized to respond according to their true preferences.
Thus for our second experiment, we designed and implemented
an incentive compatible methodology where participants are of-
fered the choice to throttle their personal device’s performance for
several days at a time in exchange for money.

Unlike Experiment #1, which elicits device lifetime WTA, our
second experiment elicits the per dayWTA, or the amount of money
a participant would have to be paid to accept the experienced per-
formance loss on a day-by-day basis. This measurement is more
appropriate when determining the cost of performance losses that
are temporary or reversible (e.g. optional security features like dis-
abling hyperthreading to prevent speculation attacks). Finding the
per day WTA (as opposed to device lifetime WTA) was also a neces-
sary consequence of using an incentive compatible methodology9.

3.2.1 Experimental Protocol. Participants are provided with a pro-
gram and are instructed to run it on their personal Windows 10
computing device. A pop-up window appears on the participants’
screen which serves as the main interface for participation. The pro-
gram gains consent from the participant to participate and asks 1)
if the program they are currently using is their primary computing
device, and 2) the average number of hours each week that they
use the current device. Participants who either are not using their
primary device or who do not use their device for at least 10 hours
a week are removed the study; we do this to ensure that poten-
tial participants would face actual consequences if their device’s
performance were to be throttled. Next, participants are asked to
consent to having their device’s clock speed monitored through-
out participation and are asked to consent to using the device at
least three-quarters of their average weekly hours as previously
reported (also to ensure that participants face actual consequences

7Essentially a question that asks “If you are paying attention, please select the third
response below”
8For example, suppose a participant states they would accept a 10% slowdown $100
but also a 20% slowdown for $10. This is illogical and demonstrates a carelessness
or thoughtlessness that warrants removal. To prevent participants from accidentally
giving such low-quality responses, we give survey participants the opportunity to
re-do the device lifetime WTA questions if they so choose.
9Finding the per dayWTA in an incentive compatible manner allows the experiment to
conclude within a fixed timespan; finding device lifetime WTA in an incentive compat-
ible manner would entail that the experiment last for the entirety of the participant’s
device’s lifetime!
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if the device is slowed down). At this point, the program collects
the participants’ device’s current and maximum CPU frequency so
that we can ensure that the subsequent performance throttling is
successfully achieved.

Next, participants are given the opportunity to accept some
dollar amount 𝑋 ∈ [$0..$10] in exchange for a performance loss
of 𝑁 ∈ {10%, 20%, 30%} for 24 hours. If the participant declines the
offer, they are paid a small baseline compensation amount and are
removed from further participation.

However, if the participant accepts the offer, the program throt-
tles their device’s max frequency by the agreed upon amount for
24 hours. The program then goes to sleep. After 24 hours have
elapsed, the program wakes up and again offers participants the
chance to either restore full performance or accept another $𝑋 in
exchange for yet another 24 hours of throttled performance. This
process continues until either the participant eventually declines to
accept the money, or until the experiment times out10. At this point,
performance is fully restored and participants are compensated
their accrued earnings plus the baseline participation amount. This
concludes the experimental protocol.

3.2.2 Filtering Out Invalid Results. We take several measures to
ensure the validity of the data we collect in the above protocol.
First, we must remove participants who decline the offer for any
reason that is not strictly related to the offer price. For example, a
participant may decline the offer because they do not trust us to
safely throttle performance, or perhaps they share their device with
others users whomay not want to participate in a longitudinal study.
To do this, we ask participants in an exit survey why they declined
their offer and filter out all participants who report declining for
any reason other than the offer amount not being high enough.
This ensures that the remaining participants make decisions purely
based on the monetary value of the offer itself and not for any
extraneous reasons.

We also take special care to remove from consideration any
participants who may try to “cheat” the experiment. For example,
a cheating participant may accept the slowdown for the money but
then later attempt to restore their device’s performance manually.
To detect any such cheaters, our program periodically audits device
CPU frequency to ensure that the throttled CPU frequency has
not been tampered with. Specifically, our program measures device
CPU frequency the first time it is run as well as each additional
day (immediately before prompting the participant to answer the
WTA question). Even if such cheating goes undetected, we also ask
participants if they cheated during the exit survey and offer amnesty
(meaning we promise to issue payments even if they did)11.

Participants might also try to cheat by installing the program
on a spare device in an attempt to avoid enduring throttled perfor-
mance. To mitigate this, we compare the timestamps from the above
audit logs to participants’ self-reported typical usage (in terms of
hours per week, as collected during the enrollment period) to detect

10We used a cutoff of 7 days for the 10% and 20% slowdowns and 14 days for the 30%
slowdown.
11No cheating was self-reported, but we did detect a few cases of cheating by looking
at the audits, and removed these participants’ data from consideration.

cheating12. Participants with anomalous timestamps that do not
match expected usages are removed from consideration.

After these variousmeasures have been employed, we reasonably
conclude that the responses from remaining participants represent
an accurate sample of participants’ value of performance.

3.2.3 Replicating via Large-Scale Online Survey. As with the pre-
vious experiment, we replicate above experiment in a large-scale
online survey. The motivation is again to achieve a greater sample
size and determine whether or not hands-on experience is necessary
for this line of research. Survey participants do not download any
program and do not make any choices with real-world impact (i.e.
there is no incentive compatibility). Instead, survey participants are
merely asked if they would accept a dollar amount 𝑋 ∈ [$0..$20]
in exchange for a performance loss of 𝑁 ∈ {10%, 20%, 30%} for
24 hours13. To improve results, we also use an “attention check”
question to filter out participants who give thoughtless responses
to survey questions.

4 RESULTS
We now present the results from both sets of experiments. We
reserve extended discussion and commentary for Section 5.

4.1 Experiment #1 Results
Experiment #2 was conducted for slowdowns of 10%, 20%, and 30%,
for both the incentive compatible study (N=21, N=24, and N=22,
respectively) and the online survey (N=306). Results from both
experiments are plotted as histograms in Figure 2.

In all cases, we find that WTA approximates a power law dis-
tribution. That is, the majority of responses are grouped towards
the lefthand side of the histogram (indicating a WTA of hundreds
of dollars or less) while remaining responses follow a long-tailed
decaying distribution. At the very end of the tail is a “bump” at
the $16,384 mark, which was the maximum response possible (for
reasons discussed in Section 3.1). To prevent this bump (caused by
our own imposed limit) from influencing summary statistics, we
choose to characterize the distributions by their median value.

From our simulation study, we find that median WTA for a
performance loss of 10%, 20%, or 30% is $381, $457, and $853, re-
spectively. From the online survey, we find that median WTA for a
performance loss of 10%, 20%, and 30% is $499, $1,214, and $3,723,
respectively.

We observe two trends in the data: First, we observe that, in
both the study and the survey, the median WTA increases with the
degree of slowdown. That is, participants would require to be paid
more money in order to accept increasingly larger losses to device
performance. This is an intuitive and expected result.

Second, we observe that the median WTAs collected from the
study were across the board lower than the median WTAs collected
from the online-only survey. Although the results are close for

12For example, consider a participant who reports that they use their device for 60
hours per week, but audit timestamps are collected only once every few days. Such a
participant is clearly not using their device for 60 hours a week, raising suspicions
that the program may have been installed on a spare device.
13We chose to use a larger range in the large-scale survey ($0 to $20) than the incentive
compatible study ($0 to $10). We did this to capture a wider sample range and mitigate
the potentially noisier data caused by the lack of incentive compatibility or the lack of
hands-on experience.
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(a) Simulation study results. The median WTA for a permanent device perfor-
mance loss of 10%, 20%, and 30% is $381, $457, and $853, respectively.
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(b) Online survey results. ThemedianWTA for a permanent device performance
loss of 10%, 20%, and 30% is $499, $1,214, and $3,723, respectively.

Figure 2: Results from Experiment #1. We plot histograms of the data collected using the exponential yes/no elicitation
mechanism (described in Section 3.1) for both the hands-on simulation study and the online survey. All distributions exhibit a
sharp exponential decay followed by a bump at the >$15K mark. Although this may give the data the appearance of a “bathtub”
curve, this is simply an artifact of limiting responses to be no more that $16,384 (for reasons discussed in Section 3.1).

the 10% slowdown ($381 versus $499), the results become greatly
disparate by the 30% slowdown ($853 versus $3,723). Why might
this be? Our hypothesis is that in the hands-on study, where partici-
pants actually experienced throttled performance on their personal
device, participants were better calibrated to put a price on how
much the loss in performance is actually worth. Indeed, the very
reason we chose to conduct the study in the first place was be-
cause we doubted that online survey participants would be able to
accurately put a price to the cost of performance losses without ex-
periencing performance losses firsthand. For example, is a 30% loss
to performance a mild annoyance, or a device death sentence? Only
the study participants would be able to reasonably answer such
questions. Thus a plausible explanation for the gap in the study
and survey WTAs is that, after experiencing throttling firsthand,
the study participants realized that the performance throttling was
not as bad as they may have expected it to be.

4.2 Experiment #2 Results
Experiment #2 was conducted for slowdowns of 10%, 20%, and 30%,
for both the incentive compatible study (N=26, N=29, and N=30,
respectively) and the online survey (N=306). In both cases, we split
participants into two categories: the “accept” group, who accept
the throttled performance for the duration of their participation,
and the “decline ” group, who do not. The “decline” group includes
participants who immediately reject the offer, as well and partic-
ipants who may initially accept their offer only to later reject it
before the participation period ends. The “accept” group values
the amount performance lost less than the amount offered to them
(since they accepted the offer), while the “decline” group values the
performance loss more than the amount offered to them. Results
are plotted in Figure 3.

To summarize the data and find the per dayWTA, we use logistic
regression to find the dollar amount at which it becomes more likely
than not that a participant will accept their given offer. To do this,
we first model the “decline” group as a 0 and the “accept” group
as a 1. We then use the STAN modeling framework to fit a logistic

curve to the data which models the probability of a participant
accepting an offer given the offer price $𝑥 . To summarize the data,
we find the offer price 𝑥 at which

𝑝 (outcome = “accept”|offer = $𝑥) ≥ 0.5

i.e. the point at which it is more likely than not that a participant
will accept a given offer price, which we call the threshold value.
From the incentive compatible study, we find the threshold values
to be $2.27 per day, $4.07 per day, and $4.44 per day for slowdowns
of 10%, 20%, and 30%, respectively. At the 95% confidence level, the
threshold values are between $1.54 and $3.02 for a 10% slowdown,
between $3.39 and $4.74 for a 20% slowdown, and between $3.40
and $5.50 for a 30% slowdown. From the online survey, we find the
threshold values to be $11.15 per day, $22.85 per day, and $24.92 per
day, respectively. At the 95% confidence level, the threshold values
are between $7.66 and $15.38 for a 10% slowdown, between $14.69
and $41.40 for a 20% slowdown, and between $17.31 and $39.70 for
a 30% slowdown. These curves are plotted in Figure 3.

From the data, several trends emerge. First, we find that as the of-
fer price increases, so does the likelihood of a participant accepting
their offer. This is an intuitive and expected result.

Second, in the experience-based study—where participants inter-
act with throttled device performance for several days at a time—we
find that collected WTAs are once again lower than the results ob-
tained via the online survey. Like with Experiment #1, a likely
explanation is that the hands-on experience with a throttled device
calibrates participants to accurately price the cost of performance
losses, whereas survey participants are given no such calibration.

Third, we observe that the logistic curves are not as evenly
spaced as perhaps expected: In both the study and survey data,
the threshold values for the 20% performance loss are much closer
to the threshold values for 30% performance losses than for 10%
performance losses. While perhaps due to sampling issues, the
explanation may also be that users view the harms of performance
losses non-linearly. However, we also point out that this trend was
not observed in Experiment #1. More experimentation is needed to
definitively explain this observation.
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(a) Incentive compatible study results. At offer prices of $2.27 per day, $4.07
per day, and $4.44 per day, it becomes more likely than not that a participant
will accept a 10%, 20%, and 30% performance loss, respectively.
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(b) Non-incentive compatible online survey results. At offer prices of $11.15 per
day, $22.85 per day, and $24.92 per day, it becomes more likely than not that a
participant will accept a 10%, 20%, and 30% performance loss, respectively.

Figure 3: Results from Experiment #2, which finds participants’ willingness to accept per day performance losses in an incentive
compatible manner. Each marker (i.e. green circle, blue square, and black diamond) represents a unique response to our offer
to throttle device performance by 𝑵 ∈ {10%, 20%, 30%} in exchange for $X per day.

Finally, we observe that the survey data is far noisier than the
study data: In Figure 3a, the fitted logistic curves exhibit a fairly
sharp rise from “decline” to “accept” and fairly tight confidence
bounds (a couple dollars or less), whereas the survey data in Fig-
ure 3b exhibits a very slow rise and confidences bounds of tens of
dollars or more. This is in spite of the survey having roughly ten
times the amount of data! Once again, the likely explanation is that
the lack of hands-on experience and incentive compatibility comes
at a cost to precision in addition to accuracy.

5 DISCUSSION AND APPLICATIONS
We now discuss some of the implications and applications of this
work.

Pricing Patches and Rebates: In the many industries (such
as automotive and food, among others) there are well-established
precedents, norms, and regulations for issuing product recalls and
rebates when products are found to be defective or unsafe. At
present, very few such precedents, norms, or regulations exist in
the domain of computer systems. One recent exception was the so-
called “Batterygate” affair, where Apple was found to have throttled
older iPhones (allegedly to incite users into buying new phones) [21]
and, after a class action lawsuit, agreed to pay consumers roughly
$25 per affected device [1]. Court documents show that this set-
tlement was reached by supposedly analyzing the resale market;
however, to our knowledge, the settlement did not consider or study
the impact of performance losses on actual users. In fact, our re-
sults suggest that $25 worth far less than even minor performance
losses14. By experimentally measuring user’s value of performance,
we open the door to more equitably determining such rebates.

Quantifying the cost of patches becomes especially important
given the rise of hardware vulnerabilities like Spectre [14] and
Meltdown [16], which when patched cause significant losses to per-
formance. It is not unreasonable to consider such critical security
flaws (especially Meltdown) to be product defects, and if the trends

14We point out that our experiments were conducted on desktop and laptop users
rather than phone users, but we believe the argument here still stands.

continue, consumers may demand to have performance losses re-
couped in the form of rebates. Our work provides a quantitative
basis for determining the harm done to users when their devices
lose performance.

Implications for Security: One of the reasons why longstand-
ing yet fixable security issues like memory safety, Spectre v-1, and
Rowhammer [13] persist is at least partially because security—
which users cannot quantify or evaluate—comes at the expense
of performance—which users can quantify and and evaluate—and
product vendors are reluctant to trade performance for security if it
makes their products appear less valuable in the marketplace [10].
In terms borrowed from economics, this is a marketplace failure due
to information asymmetry—users do not fully understand the prod-
ucts they purchase and product vendors hence sell to consumers’
perceived needs rather than their actual needs [3], preventing the
adoption of security features unless the overheads are razor-thin.

Our results suggest that perhaps there is more overhead for se-
curity than previously thought. We point to two observations: First,
during the incentive compatible study, all but one of the partici-
pants who accepted their offer participated for the full duration of
the experiment. This indicates that, after accepting the first offer,
participants’ experience with throttled performance was, in gen-
eral, not worse than expected. Second, the WTAs as found in the
hands-on simulation study and incentive compatible study were
both lower than the counterpart WTAs as found by the online sur-
veys. Combined, this suggests that participants’ high resistance
to performance losses is more psychological than based on actual
needs. While our results are for end users only (and not for server-
class devices where perhaps customer information asymmetry is
lower and the need for performance greater), the takeaway is that
user resistance to performance losses due to patches and security
updates may be artificially holding back the deployment of security.

Balancing Security Tradeoffs: As previously mentioned, our
experiments provide the first known effort to find the “exchange
rate” between performance and user satisfaction. We now demon-
strate how this exchange rate can help systems designers and archi-
tects quantitatively balance competing demands for security and
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performance: Suppose that a product contains a security vulner-
ability that, due to ransomware, costs users an average of $1000
per year, and that the average device lifespan is two years. Now
suppose that architects develop a patch for the vulnerability, but
that the patch incurs a 30% performance overhead. Is this a worth-
while tradeoff? Our results suggest no: Users require at least $4.43
per day to accept a 30% performance loss, or $3241.20 across a two-
year span, which is a higher than the expected $2000 losses due to
ransomware over the same two-year span. Now, suppose that archi-
tects improve the patch to incur only a 10% performance overhead.
According to our results, such a defense “costs” users an average
of $2.27 per day, or $1657.10 over a two year span, which is lower
than the expected loss to ransomware; therefore, this new defense
provides more protection than it costs, in terms of user value. Thus
by finding the exchange rate between performance and user sat-
isfaction, we provide architects with a novel user-centered metric
that goes beyond traditional metrics like power, performance, area,
and reliability.

Are Surveys a Useful Method for Architecture Research?
A secondary research goal of this work was to answer, are surveys
a worthwhile method for user-centered architecture research? Our
findings suggest not. In both experiments, the hands-on studies
yielded much lower WTAs than the counterpart online surveys.
This supports our belief that users are not sufficiently knowledge-
able or experienced with device performance to be able to make
decisions that accurately reflect their true preferences. Unfortu-
nately, this means that user-focused architecture research requires
experimentation rather than relying on simple and easy-to-deploy
surveys. Our work provides a template for future researchers on
how to design and build such experiments.

Cross-Validating the Experiments: Another observation we
make is that the results of the two sets of experiments may appear
to be somewhat incongruous: Users would accept at 10% perfor-
mance loss for $381 but also $2.27 per day, putting the “break even”
point between the two results at roughly half a year15. If partic-
ipants responded rationally in both cases, we might expect this
“break even” point to be closer to device lifetime, which is almost
certainly longer than half a year. What might this be? We offer two
possible explanations: First, the simulation study is not incentive
compatible, allowing for the possibility that the study participants
in Experiment #1 did not answer the WTA question with as much
thought and attention as it may have deserved. Another likely ex-
planation is simply that humans are not perfectly rational when
reasoning about small amounts (i.e. per day WTAs) vs. long-term
events (i.e. device lifetime performance losses).

6 RELATEDWORK
User-Centered Design: In the architecture and systems communi-
ties, the end user is often seen as being many layers of abstraction
removed from the hardware, and thus the end user oftentimes is
not considered during the hardware and systems design process.
Our work and other similar lines of research attempt to cut through
these layers of abstraction by providing user-centered metrics to
better aid user-focused system design. Several user studies have

15I.e. after half a year, the value of receiving a daily $2.27 payment exceeds a flat rate
payment of $381.

leveraged dynamic voltage and frequency scaling (DVFS) to help
balance the competing demands of energy efficiency and user satis-
faction [18, 24–26]. Individualized quality of service (QoS) metrics
have also been proposed as a means towards achieving this bal-
ance [29–31]. Other work identifies the components and design
configurations that yield higher user satisfaction [9, 28].

User-centered metrics for improving user satisfaction have not
been confined to academia: Intel’s Project Athena has introduced
metrics for its EVO line of laptops called Key Experience Indicators
(KEIs) that quantify elements of the user experience, such as wake
time, responsiveness, and charging times [27].

Incentive Compatible Mechanisms:While the above work on
user-centered design is thematically similar to our own, the method-
ologies do not employ incentive compatible study designs. Ourwork
aims to raise the bar for user studies for hardware design by in-
troducing incentive compatible methodologies and mechanisms.
We found inspiration from prior incentive compatible studies [5, 6]
which use incentive compatible mechanisms like BDM lotteries [4],
best-worst scaling (BWS) [17], and the mechanism used in our own
experiments, the single discrete binary choice mechanism [7].

Pricing Performance:Measuring the monetary value of per-
formance has been attempted before but from the perspective of
businesses rather than end users. Prior studies have found that
increases to latency hurt e-commerce revenue [15, 23], largely be-
cause keeping users engagedwith services requires low latency [20].
The value of latency has also been studied in financial markets and
high-frequency trading [19, 22]. To our knowledge, our work is the
first of its kind to put a price to end user’s value of performance.

7 CONCLUSION
We are in the midst of a revolution in computer architecture and
computer hardware design [11]. The huge demand for vertically
integrated products along with the rise of open source hardware
has pushed hardware companies to rapidly innovate to create prod-
ucts that must meet high demands of integration, performance,
energy efficiency, and cost. In the push to meet the changing design
requirements, we introduce a new metric—willingness to accept
performance losses—that defines the “exchange rate” between user
satisfaction and system performance. This new metric lets systems
designers and architects to quantitatively consider the dollar cost,
from the users’ perspective, of performance-costing features when
designing future systems.

To aid in this new paradigm, we present the first work on hard-
ware behavioral economics. Two methodologies are used to elicit
users’ willingness to accept performance losses. Our first experi-
ment finds that users would accept a permanent performance loss
of 10%, 20% and 30% on their personal device in exchange for $381,
$457, and $823, respectively, while a larger-scale online-only survey
finds the same results to be $499, $1214, and $3723, respectively.
Our second experiment finds that users would accept, per day, a
performance loss of 10%, 20% and 30% on their personal device in
exchange for $2.27, $4.07, and $4.43 per day, respectively, while a
larger-scale survey finds the same results to be $11.15, $22.85, and
$24.92 per day, respectively.
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A APPENDIX A: DEVICE LIFETIME WTA USER
STUDY INSTRUMENT

A.1 Abstract
This artifact is the program used for Experiment #1 in the paper.
As described in Section 3.1, it guides the user through a series of
tasks and throttles performance during either Task 2 or Task 3

A.2 Artifact check-list (meta-information)
• Run-time environment: Program must be run on Windows 10
devices.

• Hardware: In order to view frequency throttling, the test device
needs to have DVFS (dynamic voltage and frequency scaling) en-
abled.

• Run-time state: Device’s frequency may be throttled during pro-
gram execution.

• Publicly available?: Yes
• Code licenses (if publicly available)?: Creative Commons Attri-
bution 4.0 International

• Archived (provide DOI)?: 10.5281/zenodo.7808928

A.2.1 How to access. Accessible at https://zenodo.org/record/7808928.

A.3 Installation
Extract Experiment.zip and run the program run.exe to run. A
windowwill appear and guide the user through a series of questions
and tasks. All changes made to the test device are reversed after
completing participation.

A.4 Evaluation and expected results
During either Task 2 or Task 3, device CPU frequency will be
capped by the percentage specified in Files/cfg.txt. This is not
guaranteed to happen on all devices.

A.5 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

B APPENDIX B: PER DAYWTA USER STUDY
INSTRUMENT

B.1 Abstract
This artifact is the program used for Experiment #2 in the paper. As
described in Section 3.2, it gives users an offer between performance
and money.

B.2 Artifact check-list (meta-information)
• Run-time environment: Program must be run on Windows 10
devices.

• Hardware: In order to view frequency throttling, the test device
needs to have DVFS (dynamic voltage and frequency scaling) en-
abled.

• Run-time state: Device’s frequency may be throttled during pro-
gram execution.

• Publicly available?: Yes
• Code licenses (if publicly available)?: Creative Commons Attri-
bution 4.0 International

• Archived (provide DOI)?: 10.5281/zenodo.7808924

B.2.1 How to access. Accessible at https://zenodo.org/record/7808924.

B.3 Installation
Extract Experiment.zip and run the program run.exe to run. A
windowwill appear and guide the user through a series of questions
and then give the offer between performance and money (the actual
offer was only valid during the study period, which has passed).
All changes made to the test device are reversed after completing
participation.

B.4 Evaluation and expected results
If the offer is accepted, the test device will may have its CPU fre-
quency decreased by the percentage specified in Files/scfg.txt.
This is not guaranteed to happen on all devices. The specific offer
price given is specified in Files/ocfg.txt.

B.5 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

C APPENDIX C: SURVEY INSTRUMENT
C.1 Abstract
This artifact is the web-based survey used in this work. It is a single
html web form.

C.2 Artifact check-list (meta-information)
• Publicly available?: Yes
• Code licenses (if publicly available)?: Creative Commons Attri-
bution 4.0 International

• Archived (provide DOI)?: 10.5281/zenodo.7809024

C.2.1 How to access. Accessible at https://zenodo.org/record/7809024.

C.3 Installation
Open in any web browser to view.

C.4 Evaluation and expected results
No evlaution needed.

C.5 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://zenodo.org/record/7808928
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://zenodo.org/record/7808924
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://zenodo.org/record/7809024
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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