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Abstract
Current research has explored how Generative AI can support the
brainstorming process for content creators, but a gap remains in
exploring support-tools for the pre-writing process. Specifically,
our research is focused on supporting users in finding topics at
the right level of specificity for their audience. This process is
called topic scoping. Topic scoping is a cognitively demanding task,
requiring users to actively recall subtopics in a given domain. This
manual approach also reduces the diversity of subtopics that a user
is able to explore. We propose using Large Language Models (LLMs)
to support the process of topic scoping by iteratively generating
subtopics at increasing levels of specificity: dynamically creating
topic hierarchies.We tested three different prompting strategies and
found that increasing the amount of context included in the prompt
improves subtopic generation by 20 percentage points. Finally, we
discuss applications of this research in education, content creation,
and product management.

CCS Concepts
• Human-centered computing→ Collaborative content cre-
ation.

Keywords
Content Creation, Generative AI, Topic Scoping, Writing-Support
Tools, Human-AI Collaboration

1 Introduction
Generative AI has changed the way that content creators brain-
storm ideas and structure content [22], [13]. But using models like
ChatGPT to directly generate content often results in bland and
inauthentic results [4]. As a result, many have instead focused on
leveraging the ability of Generative AI in the formative stages of
content creation [18]. Recent work has explored the effectiveness
of AI in the brainstorming process, but not much research has been
done to explore the prewriting process [13]. Before a writer begins
the process of outlining, they must determine a topic of the right
scope to fit the venue and medium that they will publishing their
work on. They must consider the constraints such as character-
count when publishing on Twitter and the length of their video
when publishing on TikTok or Instagram reels. This process of
finding a topic at the appropriate level of specificity is called topic
scoping. Topic scoping is used by educators when creating lesson
plans, journalists when finding angles on current events, and re-
searchers when determining specific projects to pursue as part of a
grant.

The main challenge of topic scoping is iteratively breaking a
broad domain, like Computer Science, into smaller and smaller
subtopics to help the user pick a more specific subject area. For

example, when picking a topic to teachwithin User Interface Design,
a teacher might decompose UI into Usability Heuristics, and then
break it down further into Visual Information Design. Through the
process of iterative topic scoping, we can generate topic hierarchies–
information trees where each node is a subtopic under the root
and each level of the tree represents an increasing level of subtopic
specificity. The Dewey Decimal System for book classication in
libraries and the Taxonomy of Life that classify organisms by their
Kingdom, Phyllum, Class etc. are examples of topic hierarchies that
have been established and exist in the world. But managing the
creation of topic hierarchies remains a non-trivial task. Currently,
the number established topic hierarchies are limited and static–the
content often becoming outdated when they are not maintained.
The maintenance of topic hierarchies is time and labor intensive
task.

We explore how Large Language Models (LLMs) are able to
dynamically elicit topic hierarchies to support the process of topic
scoping. On their own, LLMs struggle with generating fine grain
subtopics in more specific domains. Like users, as topics get more
niche, machines struggle to generate subtopics that are unique,
related, and specific to the given topic. We test three different
prompting strategies on five different levels of topic specificity–
with an emphasis on generating subtopics at the most specific level.
The three conditions that we explored were

(1) Current Topic: “List 5 subtopics in Natural Language Process-
ing.”

(2) Root + Current Topic: “In Computer Science, list 5 subtopics
in Natural Language Processing.”

(3) Full Path + Current Topic: “In Computer Science and Artificial
Intelligence, list 5 subtopics in Natural Language Processing ”

We used two annotators to evaluate the subtopics generated from
the three different prompting techniques and measure the appropri-
ateness of the generated subtopics on the relatedness, repetitiveness,
and specificity.

The Full Path + Current Topic prompting technique improved
subtopic generation by 21 percentage points. This finding is in-
line with previous findings that show that in-context learning im-
proves language model generations [6]. This paper demonstrates
that LLMs can assist in the topic scoping process, helping create a
structured exploration of possible subtopics within a given domain
and proposes future work around designing an interactive system
to support users in the process of topic scoping.

2 Related Work
LLM-support in topic scoping and the creation of topic hierarchies
extends research in the following domains: Approaches in Extract-
ing and Structuring Information and LLMs on Various Knowledge
Tasks.
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Figure 1: Topic hierarchy from Wikipedia’s “Category: Computer science” with certain missing subtopics being filled in from
college level curriculum. This Topic hierarchy is used as a test suite to evaluate the three different prompting strategies to
generate subtopics in Level 2, Level 3, Level 4, and Level 5.

2.1 Approaches in Extracting and Structuring
Information

Topic hierarchies help facilitate the process of topic scoping by
structuring knowledge into a tree-like structure. Topic hierarchies
fit into a broader domain of knowledge structuring. Like knowledge
graphs that seek to unify information across disparate sources [8],
to streamline the process of knowledge retrieval [25], topic scoping
seeks to add structure and organization to existing information. Fur-
thermore, knowledge graphs have been used to support knowledge
retrieval and brainstorming for different user centered systems [9].
Sun et. al. uses information propagation to add multimodal compo-
nents to knowledge graphs for recommendation systems to support
user-item interaction [20]. Ait-Mlouk et. al. used a support vector
machine (SVM) for intent classification to query a knowledge base
to support domain-specific question and answering [1].

Broadly, the idea of topic scoping is closely related to textmining–
transforming unstructured knowledge into a structured format
to find patterns and to make new discoveries [21]. Text mining
has been explored within the context of education to support on-
line learning [7]. Mansur et. al. used natural language processing
techniques like SVM and K-means for text classification to group
educational resources together [14]. Similarly, Crossley et. al. in-
corporated student demographic information as features in their
automatic essay evaluation system to train a regression model [5].
Jin et. al. used the Blei’s latent Dirichlet Allocation (LDA) to classify
financial news articles and to obtain each article’s topic distribution
to train a linear regression model to make movement forecasts on
the foreign currency market [10] [3].

Finally, the process of topic scoping is related to research in topic
discovery and topic retrieval. Work in topic discovery includes
characterizing the different topics within Twitter threads using
a partially supervised learning model [17], revealing the implicit
knowledge present in news streams using a multilayer clustering
system to support similar topic exploration [16], and using fuzzy
latent semantic analysis (FLSA) to eliminate topic redundancies in
a medical corpora [11].

Previous research in constructing knowledge graphs, text min-
ing, and topic retrieval have all used a combination natural language
processing techniques and classical machine learning algorithms.

Our research focuses on using language models to explore their ca-
pabilities in generating topic hierarchies and supporting the process
of topic scoping.

2.2 LLMs on Various Knowledge-Based Tasks
Whilemany previous approachs leverage classical machine learn-

ing and natural language processing techniques to extract infor-
mation from existing corpora, current research has also focused
on leveraging LLMs to support various knowledge-based tasks.
Wang et. al. has explored how LLMs can support finding conceptual
relations between topics and connecting tangible scenes and expe-
riences with abstract words [23]. Additionally, current work has
also been done to support the process of using LLMs to support the
clarification of an abstract concept into a semantically-related ob-
ject [12], in sensemaking for complex topics by leveraging LLMs to
support multilevel abstractions [19], and in retrieval-based knowl-
edge tasks [24]. These research areas demonstrate the integration
of LLMs to support various knowledge-based tasks, leveraging the
ability of LLMs to generate diverse and creative connections be-
tween abstract and concrete topics. The topic of topic scoping is
related to these works as it uses an LLM to support the systematic
retrieval of information from the model itself.

3 Methodology
We explore the capabilities of LLMs to incrementally generate topic
hierarchies through three different prompting strategies. We gen-
erate subtopics for up to 5 different levels of specificity, using a
subset of Wikipedia’s “Category of Computer Science” page as a
test suite of topics. We used human annotators to evaluate the ap-
propriateness of the generated subtopics for each of the prompting
strategies.

3.1 5-Level Topic Classification System
To standardize the categorization of generated subtopics, we

created a 5-level topic hierarchy to classify the level of specificity
for a generated topic. Table 1 illustrates the 5-Level Topic Hier-
archy with corresponding descriptions and examples. The table
shows that Level 1 is the broadest level and contains topics re-
lated to broad domains of study, like Computer Science. The next
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level, Level 2, contains more specific subtopics that explore gen-
eral concepts within Computer Science, like Data Structures. Each
level’s specificity incrementally increases with Level 5 topics being
the most specific and focused on specific implementations–like
Dijkstra’s algorithm as a specific implementation of Shortest Path
Algorithms (Level 4 topic). We choose to set the depth of the table to
be 5 because preliminary findings have shown that users struggled
the most with manually brainstorming topics at Level 5.

Level Definition Example in
Computer
Science

Level 1 Topics related to domains areas
of study

Computer Sci-
ence

Level 2 Subtopics that explore general
topics

Data Struc-
tures

Level 3 Subtopics that are general con-
cepts

Algorithms

Level 4 Subtopics exploring different
use cases of general concepts

Shortest Path
Algorithms

Level 5 Subtopics that focus on specific
implementations

Dijkstra’s algo-
rithm

Table 1: The corresponding level descriptions in the 5-Level
topic classification system.

3.2 Wikipedia’s Topic Hierarchy
After defining the 5-Level classification system,we usedWikipedia’s

“Category of Computer Science” page as a reference to create test
suite of topics to standardize the evaluation process for the different
prompting strategies. Wikipedia’s “Category of Computer Science”
page is structured as a nested series of expandable subtopic lists
where users are able to incrementally traverse through the different
levels. To address any holes in Wikipedia’s “Category of Computer
Science” page, we also referenced online computer science syllabi
to supplement any missing pieces of information.

To generate the test suite, we focused on topics in Computer
Science (Level 1) as proof of concept. We choose to focus Data
Structures, Artificial Intelligence, Databases, and Operating Sys-
tems as the four main Level 2 areas. We chose to study these areas
because these are common courses in a computer science curricu-
lum. Because we were interested in improving generations at Level
5 topic area, we choose to a total of 20 different subtopics. Figure
1 illustrates the complete test suite that we used to evaluate each
prompting strategy. In total we tested 29 different topics in Com-
puter Science. For each topic, we had an LLM generate 5 different
subtopics because havingmultiple options to review is an important
step of divergent brainstorming. As a result, a total of 145 generated
subtopics were evaluated for each prompting strategy.

3.3 Prompting Strategies
We tested three different prompting techniques to help incre-

mentally elicit topic hierarchies following the 5-Levels Topic Clas-
sification System. We specifically used OpenAI’s GPT-4 API [15] as
the LLM for this task and tested each prompting strategy on the

Wikipedia test suite of Computer Science concepts. For all prompt-
ing strategies, we explicitly asked GPT-4 to generate 5 subtopics.
The three prompting strategies are illustrated in Table 1. The Cur-
rent Topic prompting strategy only contains the current topic when
generating subtopics. The Root + Current Topic prompting strategy
contains both the Level 1 topic, or root, and the current topic. Fi-
nally, the Full Path + Current Topic prompting strategy includes the
entire chain of parent topics, leading up and including the current
topic in the prompt.

3.4 Evaluation Criteria
The first author and an independent expert were tasked with

annotating the generated subtopics for each prompting strategy.
Both annotators were experts in computer science. We provided
the evaluation rubric below to each annotator, along with detailed
directions with how to annotate the generated subtopics. Annota-
tions were done separately. Each annotator labeled 145 generated
subtopics for each of the 3 different prompting strategies. We paid
$16 an hour for 4 hours of work.

The evaluation criteria given to annotators cover issues of repet-
itiveness, specificity, and relatedness to the inputted topic:

(1) Repetitive: the generated subtopic repeats the same input
topic;

(2) Too specific: the generated subtopic is too specific for the
desired level;

(3) Too general: the generated subtopic is broader than the
desired level;

(4) Tangential: the generated subtopic is at the correct level of
specificity but is not directly related to the input topic;

(5) Unrelated: the generated subtopic is unrelated to the root
level topic.

4 Results
The two annotators had a substantial inter-rater agreement on their
assessment over three strategies, an average Cohen-Kappa of 0.61
across all annotation assignments. As a result we averaged the ac-
curacy across the two annotators because of the high agreement.
The Full Path + Current Topic yielded the highest average accuracy
of 77%. Followed by Root + Current Topic with an accuracy of 70%,
and then Current Topic with an accuracy of 58%. These results are
demonstrated in Figure 2. These results show that by including the
full path of parent topics helped GPT-4 generate more concrete
and specific subtopics. Including Root + Current Topic helped more
than providing no additional information to the base prompt, Cur-
rent Topic. This demonstrates that by providing more context in
the prompt helps GPT-4 with generating specifically scoped and
concrete subtopics.

We performed an analysis on the generated subtopics and found
that the biggest problem was Too General errors, followed by
Too Specific errors. Rarely were generated subtopics Tangential
or Repetitive. For the Current Topic prompting strategy, 27% of
the errors were due to the generated subtopics being Too General,
while the Root + Current Topic and the Full Path + Current Topic
yielded 14% and 10% improperly scoped topics due to Too General
errors. While Too General errors were seen as the largest source of
error across all three prompting strategies, Too Specific errors also
accounted for the second largest error category, averaging about 9%
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Prompting Strategy Base Prompt Level 4 Sample Prompt

Current Topic “List 5 subtopics of {curr_topic}” “List 5 subtopics of shortest path algorithms.”
Root + Current Topic “In {level_1}, list 5 subtopics of {curr_topic}” “In computer science, list 5 subtopics of shortest path algorithms.”
Full Path + Current Topic “In {level_1, ..., level_n-1}, list 5 subtopics

of {curr_topic}”
“In computer science, data structures, and graph algorithms, list
5 subtopics of Shortest path algorithms.”

Table 2: Three different prompting strategies that were used to elicit topic hierarchies from LLMs. The Table illustrates the
name of the prompting strategy, the base prompt, and an example prompt using a Level 4 topic of shortest path algorithms.

Improperly Scoped Topics
Too General Too specific Unrelated Tangential Repetitive

Current Topic 27% 8% 4% 2% 1%
Root + Current Topic 14% 9% 3% 3% 0%
Full Path + Current Topic 9% 9% 0% 2% 0%

Table 3: Distribution of error category across each prompting strategy for all generated subtopics.

Figure 2: Bar chart demonstrating the percentage of properly
scoped subtopics across all levels for each prompting strategy.

of the errors for all prompting approaches. While prompting strat-
egy reduced many of the Too General errors, the number of Too
Specific errors remained consistent across all prompting strategies.
Table 3 contains the distribution of error type across all 3 different
prompting strategies.

We also analyzed the specific levels that each type of error was
occurring, as seen in Table 4. We found that that most errors oc-
curred at Level 5. Too General errors were the most frequent error
type at Level 5. This demonstrates that LLMs struggle to elicit spe-
cific information at that depth. Because LLMs operate on generating
the next most probably word, it is possible that the more specific the
subtopic, the less probable it is. As a result, LLMs will revert back to
general topics when a certain level of specificity is reached because
the generating a general topic might have a higher likelihood than
generating a specific subtopic.

The Full Path + Current Topic prompting strategy reduced the
errors in Level 5. But errors generated in Level 2, Level 3, and Level
4 were not reduced by the Full Path + Current Topic prompting

Level 2 Level 3 Level 4 Level 5
Current Topic 1% 4% 2% 34%
Root + Current Topic 1% 3% 4% 21%
Full Path + Current Topic 1% 3% 5% 12%

Table 4: Distributions of errors across each level for each
prompting strategy.

strategy and remained largely similar across all prompting tech-
niques. At Level 2 and Level 3, Too Specific was one of the most
common errors generated. The reason that Too Specific errors oc-
curred at the broader levels of specificity is probably due to LLMs
struggling to incrementally generate subtopics. Specific examples
of these errors are listed in the following sections.

4.1 Too General Error Examples
An example of a generated Level 5 subtopic being too General

is for the topic of “Minimum Spanning Trees” and the generated
subtopic “Randomized Algorithms” as a subtopic. “Minimum Span-
ning Trees” are graphs that connect all vertices with the minimum
possible total edge weight while “Randomized Algorithms” is any
algorithm that uses any degree of randomness in its logic. “Ran-
domized Algorithms” are too general because they are not a specific
implementation of minimum spanning trees, instead they are just
a subset of types of algorithms. An appropriate subtopic of “Min-
imum Spanning Trees” would be “Kruskal’s Algorithm” because
that is a specific algorithm that is used for the purpose of finding
minimum spanning trees.

Less frequently, Too General errors occur at the Level 3 area
due to overlaps between the topic and the generated subtopic. For
example, “Robotics” was generated as a subtopic of “Artificial Intel-
ligence,” a field that involves creating machines to emulate human
intelligence. While there is an intersection between robots and AI
techniques, the broad domain of robotics does not require robots
to emulate human intelligence in the same way subtopics in “Arti-
ficial Intelligence” do. Wikipedia classifies Robotics as a subtopic
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under Computer Engineering and not a subtopic under Artificial
Intelligence. As a result, the generated subtopic of “Robotics” under
“Artificial Intelligence” is too specific.

4.2 Too Specific Error Examples in Level 3
The Level 2 topic of “Artificial Intelligence” and the generated

subtopic of “Neural Networks” is another example of the generated
subtopics being Too Specific at the Level 3 area. Neural Networks
are a specific structure that are used in machine learning and should
be classified as a Level 4 topic which covers topics that explore
different examples. To correct this example, the sequence of topics
should go from “Artificial Intelligence” to “Machine Learning” and
then to “Neural Networks.” This sequence of topics first covers the
general field of howmachines can emulate human behaviors, before
getting more specific into how machines can learn like humans,
and finally how to use a technique to model how the human brain
learns in computers.

5 Discussion
Building off previous research that use classical machine learning
methods to extract topic hierarchies from unstructured data, we
explored the effectiveness of LLMs in eliciting topic hierarchies and
supporting the topic scoping processing: moving from abstract con-
cepts to concrete examples. While LLMs are effective in generating
a diverse set of subtopics, they still need assistance in structuring
the topics into a topic hierarchy. We developed a 5-levels topic clas-
sification structure and used Wikipedia’s “Category of Computer
Science” page as a test suite of topics for each of the 5-levels. We
explored 3 different prompting techniques to elicit topic hierarchies
from LLMs and found that by including the entire sequence of
parent topics helped reduce issues of improperly scoped topics.

5.1 Applications
There are many areas where dynamically generating topic hi-

erarchies are beneficial. For example: educators can leverage the
process of topic scoping to assist in curriculum development, con-
tent creators can use dynamically generated topic hierarchies to
explore specific niches within larger themes, and product managers
can use topic scoping to break down abstract goals into smaller,
more concrete subtasks.

This work can be applied to the field of education to help educa-
tors with curriculum development. Traditionally, the curriculum
design process requires the educator to conduct extensive planning
and research based on the previous curricula and the specific needs
of the students [2]. Through topic scoping, educators can better
design a more audience-centric curriculum that fits their specific
student demographics. The process of topic scoping and recreating
knowledge hierarchies could help educators decide which topics
to cover over the course of the semester that align with the grade
level of their class.

Additionally, topic scoping can be used for content creators when
brainstorming the types of topics they should cover. Topic scoping
can help creators narrow down broad interests like reading into
more specific ideas. For examples, Max is a content creator on
Tiktok for book and reading content. He wants to explore what
videos he should film for the upcoming month, he can use topic
scoping to find different types of books to explore. Books can be

broken down by genres like Romance and Fiction, these genres can
then be explored by setting, time period, and author. Max wants to
explore Contemporary Fiction, from there he can further narrow
down this topic into Translated, Contemporary Fiction, and even
further into Japanese-Translated, Contemporary Fiction. Here Max
is ready to start brainstorming his list of top 5 Japanese-Translated,
Contemporary Fiction books to share with his Tiktok followers.
Just like that, topic scoping helped Max find a niche within a larger
reading community.

More broadly, the process of breaking an abstract goal into a
series of concrete tasks and sub-goals can be applied to project and
product managers as they track the development of a project by
the smaller subgoals towards a more abstract goal. For example,
Jenna is a product manager that is in charge of developing a new
feature for a e-commerce website to improve traffic. The broad goal
of feature development to improve traffic is abstract, so Jenna might
break down that goal into smaller sub-goals like understanding
current user traffic data on the site and even more specific goals like
doing user studies and A/B tests. The applications of topic scoping
are demonstrated in the process of iteratively, narrowing down a
goal into specific and concrete tasks. By creating a topic hierarchy,
Jenna is able to track the overall progress of the project and work in
parallel with her teammates by each tackling one sub-goal category.

5.2 Limitations
While including the all parent topic yielded 78% of properly

scoped subtopics, the main issue that caused improper subtopic
generations were due to scope. Generated subtopics errors were
mostly likely to be either Too General or Too Specific, demonstrat-
ing that more research can be done to improve the scoping issue.
One approach is to formalize more fine-grained definitions for each
level in the 5-levels classification system and including the defini-
tions in in the prompt to improve Level 5 generations. Additionally,
more work can be done to explore specific prompting techniques to
reduce the amount of errors generated at Levels 2 and 3 since the
current prompting strategies don’t reduce the errors at the broader
levels.

While there might be concerns around GPT-4 already being
trained on Wikipedia’s “Category of Computer Science” topics,
our research isn’t focused on novel topic generation instead we
are exploring whether LLMs can incrementally generate topics
at an increasing level of specificity. As a result, having a model
trained on this data should not significantly impact performance.
Additionally, our findings show that even if the model was trained
on Wikipedia’s “Category of Computer Science” topics, GPT-4 still
struggles to generate specific and concrete subtopics at Level 5.
This demonstrates that despite possibly training on this data, the
model still struggles with replicating the hierarchical structure.

Finally, this work focuses on generating subtopics in Computer
Science as a proof of concept. Future work can explore how these
strategies can be generalized to other domains like Biology, Chem-
istry, and Physics. Additionally, an interactive, user-driven interface
can be developed to support users in the process of topic scoping.

6 Conclusion
We found that it is possible to generate topic hierarchies from
LLMs by incrementally generating subtopics at increasing levels
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of specificity. This finding allows for future work to be done on
dynamically generating, user-directed topic hierarchies to support
a range of tasks like curriculum development for educators, content
creation for creators, and product management tools.
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