GRAPH THEORY – LECTURE 1 INTRODUCTION TO GRAPH MODELS

ABSTRACT. Chapter 1 introduces some basic terminology. $\S1.1$ is concerned with the existence and construction of a graph with a given degree sequence. $\S1.2$ presents some families of graphs to which frequent reference occurs throughout the course. $\S1.4$ introduces the notion of distance, which is fundamental to many applications. $\S1.5$ introduces paths, trees, and cycles, which are critical concepts to much of the theory.

OUTLINE

- 1.1 Graphs and Digraphs
- 1.2 Common Families of Graphs
- 1.4 Walks and Distance
- 1.5 Paths, Cycles, and Trees

1. Graphs and Digraphs

terminology for graphical objects

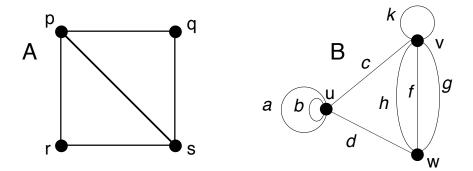


Figure 1.1: Simple graph A; graph B.

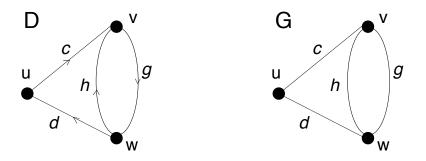


Figure 1.3: **Digraph** D; its **underlying graph** G.

Degree

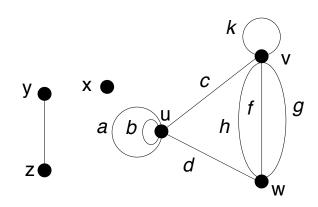


Figure 1.9: A graph with *degree sequence* 6, 6, 4, 1, 1, 0.

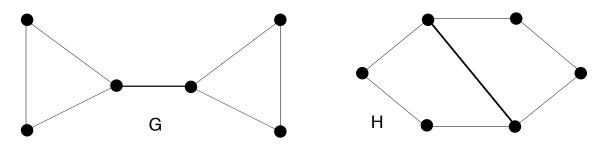


Figure 1.10: Both degree sequences are $\langle 3, 3, 2, 2, 2, 2 \rangle$.

Proposition 1.1. A non-trivial simple graph G must have at least onepair of vertices whose degrees are equal.Proof. pigeonhole principle

Theorem 1.2 (*Euler's Degree-Sum Thm*). The sum of the degrees of the vertices of a graph is twice the number of edges.

Corollary 1.3. In a graph, the number of vertices having odd degree is an even number.

Corollary 1.4. The degree sequence of a graph is a finite, non-increasing sequence of nonnegative integers whose sum is even.

GENERAL GRAPH WITH GIVEN DEGREE SEQUENCE

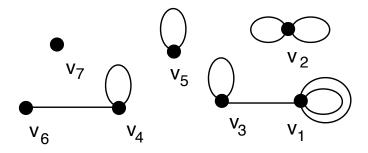


Figure 1.11: General graph with deg seq (5, 4, 3, 3, 2, 1, 0).

SIMPLE GRAPH WITH GIVEN DEGREE SEQUENCE

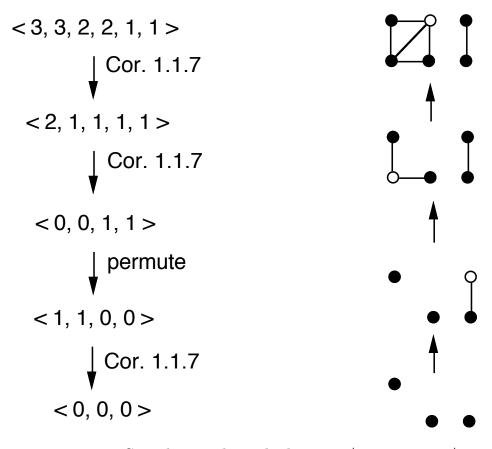


Figure 1.13: Simple graph with deg seq (3, 3, 2, 2, 1, 1).

HAVEL-HAKIMI THEOREM

Theorem 1.6. Let $\langle d_1, d_2, \ldots, d_n \rangle$ be a graphic sequence, with

 $d_1 \ge d_2 \ge \ldots \ge d_n$ Then there is a simple graph with vertex-set $\{v_1, \ldots, v_n\}$ s.t. $deg(v_i) = d_i \quad for \ i = 1, 2, \ldots, n$ with v_1 adjacent to vertices v_2, \ldots, v_{d_1+1} .

Proof. Among all simple graphs with vertex-set

 $V = \{v_1, v_2, \dots, v_n\}$ and $deg(v_i) = d_i : i = 1, 2, \dots, n$ let G be a graph for which the number

 $r = |N_G(v_1) \cap \{v_2, \dots, v_{d_1+1}\}|$

is maximum. If $r = d_1$, then the conclusion follows.

Alternatively, if $r < d_1$, then there is a vertex

 $v_s: 2 \leq s \leq d_1 + 1$ such that v_1 is not adjacent to v_s , and \exists vertex

 $v_t: t > d_1 + 1$ such that v_1 is adjacent to v_t (since $deg(v_1) = d_1$). Moreover, since $deg(v_s) \geq deg(v_t)$, \exists vertex v_k such that v_k is adj to v_s but not to v_t , as on the left of Fig 1.14. Let \widetilde{G} be the graph obtained from G by replacing edges v_1v_t and v_sv_k with edges v_1v_s and v_tv_k , as on the right of Fig 1.14, so all degrees are all preserved.

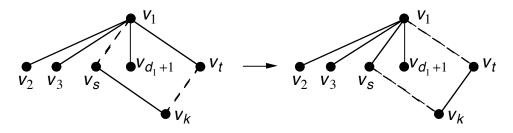


Figure 1.14: Switching adjacencies while preserving all degrees.

Thus, $|N_{\widetilde{G}}(v_1) \cap \{v_2, \ldots, v_{d_1+1}\}| = r+1$, which contradicts the choice of graph G.

Corollary 1.7 (Havel (1955) and Hakimi (1961)). A sequence $\langle d_1, d_2, \ldots, d_n \rangle$ of nonneg ints, such that $d_1 \geq d_2 \geq \ldots \geq d_n$, is graphic if and only if the sequence

$$\langle d_2 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n \rangle$$

is graphic. (See Exercises for proof.)

Remark 1.1. Cor 1.7 yields a recursive algorithm that decides whether a non-increasing sequence is graphic.

ALGORITHM: RECURSIVE GRAPHICSEQUENCE($\langle d_1, d_2, \dots, d_n \rangle$) Input: a non-increasing sequence $\langle d_1, d_2, \dots, d_n \rangle$. Output: TRUE if the sequence is graphic; FALSE if it is not. If $d_1 = 0$ Return TRUE Else If $d_n < 0$ Return FALSE Else Let $\langle a_1, a_2, \dots, a_{n-1} \rangle$ be a non-incr permutation of $\langle d_2 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n \rangle$. Return GraphicSequence($\langle a_1, a_2, \dots, a_{n-1} \rangle$)

2. Families of Graphs

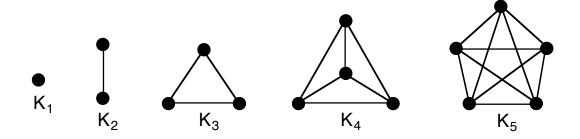


Figure 2.1: The first five *complete graphs*.

Figure 2.2: Two *bipartite graphs*.

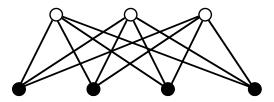


Figure 2.4: The *complete bipartite graph* $K_{3,4}$.

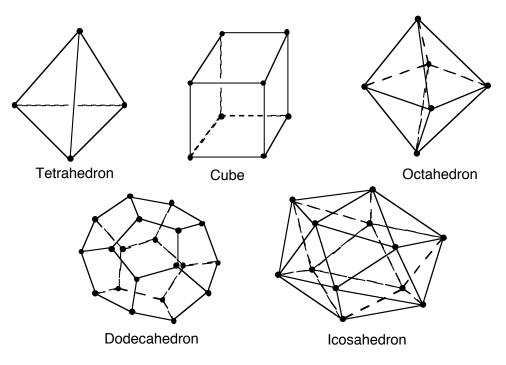


Figure 2.5: The five *platonic graphs*.

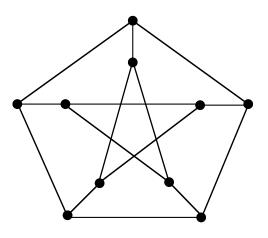


Figure 2.6: The **Petersen graph**.

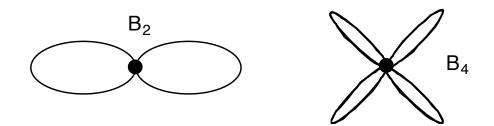


Figure 2.8: **Bouquets** B_2 and B_4 .

Figure 2.9: The *Dipoles* D_3 and D_4 .

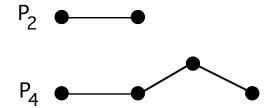


Figure 2.10: **Path graphs** P_2 and P_4 .

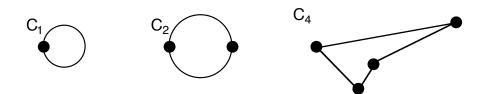


Figure 2.11: **Cycle graphs** C_1 , C_2 , and C_4 .

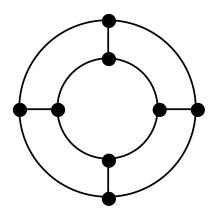


Figure 2.12: Circular ladder graph CL_4 .

CIRCULANT GRAPHS

Def 2.1. To the group of integers

$$\mathbb{Z}_n = \{0, 1, \dots, n-1\}$$

under addition modulo n and a set

$$S \subseteq \{1, \dots, n-1\}$$

we associate the *circulant graph*

circ(n:S)

whose vertex set is \mathbb{Z}_n , such that two vertices i and j are adjacent if and only if there is a number $s \in S$ such that $i + s = j \mod n$ or $j + s = i \mod n$. In this regard, the elements of the set S are called **connections**.

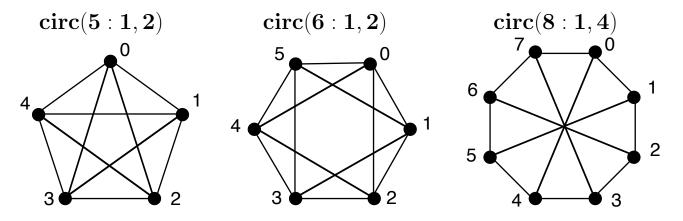


Figure 2.13: Three circulant graphs.

INTERSECTION AND INTERVAL GRAPHS

Def 2.2. A simple graph G with vertex set

$$V_G = \{v_1, v_2, \dots, v_n\}$$

is an *intersection graph* if there exists a family of sets

$$\mathcal{F} = \{S_1, S_2, \dots, S_n\}$$

s. t. vertex v_i is adjacent to v_j if and only $i \neq j$ and $S_i \cap S_j \neq \emptyset$.

Def 2.3. A simple graph G is an *interval graph* if it is an intersection graph corresponding to a family of intervals on the real line.

Example 2.1. The graph G in Figure 2.14 is an interval graph for the following family of intervals:

$$a \leftrightarrow (1,3)$$
 $b \leftrightarrow (2,6)$ $c \leftrightarrow (5,8)$ $d \leftrightarrow (4,7)$

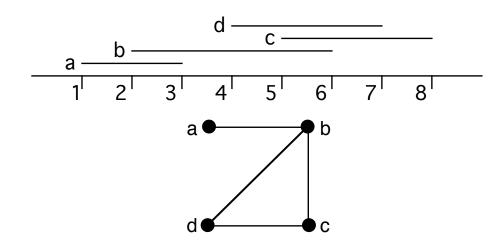


Figure 2.14: An interval graph.

14

LINE GRAPHS

Line graphs are a special case of intersection graphs.

Def 2.4. The *line graph* L(G) of a graph G has a vertex for each edge of G, and two vertices in L(G) are adjacent if and only if the corresponding edges in G have a vertex in common.

Thus, the line graph L(G) is the intersection graph corresponding to the endpoint sets of the edges of G.

Example 2.2. Figure 2.15 shows a graph G and its line graph L(G).

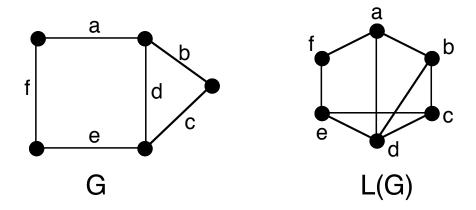


Figure 2.15: A graph and its line graph.

4. WALKS AND DISTANCE

Def 4.1. A *walk* from v_0 to v_n is an alternating sequence

 $W = \langle v_0, e_1, v_1, e_2, ..., v_{n-1}, e_n, v_n \rangle$ of vertices and edges, such that

 $endpts(e_i) = \{v_{i-1}, v_i\}, \text{ for } i = 1, ..., n$

In a simple graph, there is only one edge between two consecutive vertices of a walk, so one could abbreviate the walk as

$$W = \langle v_0, v_1, \ldots, v_n \rangle$$

In a general graph, one might abbreviate as

$$W = \langle v_0, e_1, e_2, ..., e_n, v_n \rangle$$

Def 4.2. The *length* of a walk or directed walk is the number of edge-steps in the walk sequence.

Def 4.3. A walk of length zero, i.e., with one vertex and no edges, is called a *trivial walk*.

Def 4.4. A *closed walk* (or *closed directed walk*) is a nontrivial walk (or directed walk) that begins and ends at the same vertex. An *open walk* (or *open directed walk*) begins and ends at different vertices.

Def 4.5. The *distance* d(s,t) from a vertex s to a vertex t in a graph G is the length of a shortest s-t walk if one exists; otherwise, $d(s,t) = \infty$.

ECCENTRICITY, DIAMETER, AND RADIUS

Def 4.6. The *eccentricity* of a vertex v, denoted ecc(v), is the distance from v to a vertex farthest from v. That is,

$$ecc(v) = \max_{x \in V_G} \{ d(v, x) \}$$

Def 4.7. The *diameter* of a graph is the max of its eccentricities, or, equivalently, the max distance between two vertices. i.e.,

$$diam(G) = \max_{x \in V_G} \{ecc(x)\} = \max_{x,y \in V_G} \{d(x,y)\}$$

Def 4.8. The *radius* of a graph G, denoted rad(G), is the min of the vertex eccentricities. That is,

$$rad(G) = \min_{x \in V_G} \{ecc(x)\}$$

Def 4.9. A *central vertex* v of a graph G is a vertex with min eccentricity. Thus, ecc(v) = rad(G).

Example 4.7. The graph of Fig 4.7 below has diameter 4, achieved by the vertex pairs u, v and u, w. Vertices x and y have eccentricity 2 and all other vertices have greater eccentricity. Thus, the graph has radius 2 and central vertices x and y.

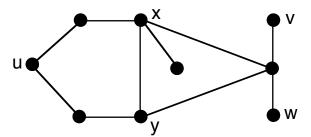


Figure 4.7: A graph with diameter 4 and radius 2.

CONNECTEDNESS

Def 4.10. Vertex v is *reachable from* vertex u if there is a walk from u to v.

Def 4.11. A graph is *connected* if for every pair of vertices u and v, there is a walk from u to v.

Def 4.12. A digraph is *connected* if its underlying graph is connected.

Example 4.8. The non-connected graph in Figure 4.8 is made up of connected pieces called *components*. See §2.3.

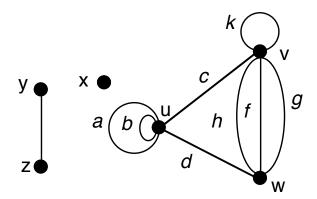


Figure 4.8: Non-connected graph with three components.

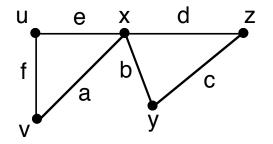
5. PATHS, CYCLES, AND TREES

Def 5.1. A *trail* is a walk with no repeated edges.

Def 5.2. A *path* is a trail with no repeated vertices (except possibly the initial and final vertices).

Def 5.3. A walk, trail, or path is *trivial* if it has only one vertex and no edges.

Example 5.1. In Fig 5.1, $W = \langle v, a, e, f, a, d, z \rangle$ is the edge sequence of a walk but not a trail, because edge *a* is repeated, and $T = \langle v, a, b, c, d, e, u \rangle$ is a trail but not a path, because vertex *x* is repeated.



W = <v, a, e, f, a, d, z> T = <v, a, b, c, d, e, u>

Figure 5.1: Walk W is not a trail; trail T is not a path.

CYCLES

Def 5.4. A nontrivial closed path is called a *cycle*. It is called an *odd cycle* or an *even cycle*, depending on the parity of its length.

Def 5.5. An *acyclic graph* is a graph that has no cycles.

EULERIAN GRAPHS

Def 5.6. An *eulerian trail* in a graph is a trail that contains every edge of that graph.

Def 5.7. An *eulerian tour* is a closed eulerian trail.

Def 5.8. An *eulerian graph* is a graph that has an eulerian tour.

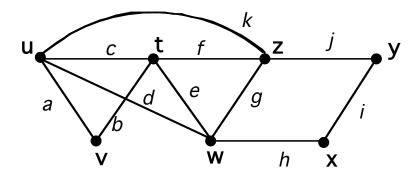


Figure 5.6: An eulerian graph.

20

HAMILTONIAN GRAPHS

Def 5.9. A cycle that includes every vertex of a graph is call a *hamilton-ian cycle*.

Def 5.10. A *hamiltonian graph* is a graph that has a hamiltonian cycle. (§6.3 elaborates on hamiltonian graphs).

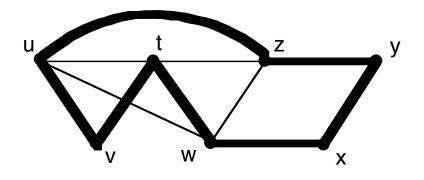


Figure 5.3: An hamiltonian graph.

Girth

Def 5.11. The *girth* of a graph with at least one cycle is the length of a shortest cycle. The girth of an acyclic graph is undefined.

Example 5.2. The girth of the graph in Figure 5.7 is 3 since there is a 3-cycle but no 2-cycle or 1-cycle.

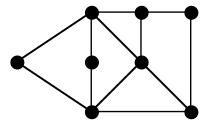


Figure 5.7: A graph with girth 3.

22

TREES

Def 5.12. A *tree* is a connected graph that has no cycles.

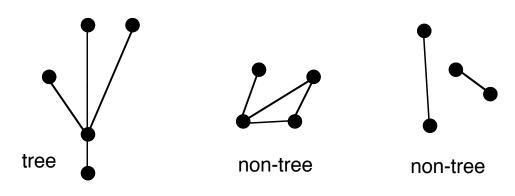


Figure 5.8: A tree and two non-trees.

Theorem 5.4. A graph G is bipartite iff it has no odd cycles.

Proof. Nec (\Rightarrow) : Suppose G is bipartite. Since traversing each edge in a walk switches sides of the bipartition, it requires an even number of steps for a walk to return to the side from which it started. Thus, a cycle must have even length.

Suff (\Leftarrow) : Let G be a graph with $n \ge 2$ vertices and no odd cycles. W.l.o.g., assume that G is connected. Pick any vertex u of G, and define a partition (X, Y) of V as follows:

$$X = \{x \mid d(u, x) \text{ is even}\}; Y = \{y \mid d(u, y) \text{ is odd}\}$$

Suppose two vertices v and w in one of the sets are joined by an edge e. Let P_1 be a shortest u-v path, and let P_2 be a shortest u-w path. By definition of the sets X and Y, the lengths of these paths are both even or both odd. Starting from vertex u, let x be the last vertex common to both paths (see Fig 5.9).

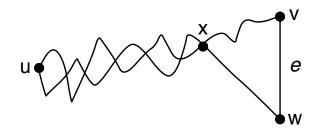


Figure 5.9: Figure for suff part of Thm 5.4 proof.

Since P_1 and P_2 are both shortest paths, their $u \to x$ sections have equal length. Thus, the lengths of the $x \to v$ section of P_1 and the $x \to w$ section of P_2 are either both even or both odd. But then the concatenation of those two sections with the edge e forms an odd cycle, contradicting the hypothesis. Hence, (X, Y) is a bipartition of G.

7. SUPPLEMENTARY EXERCISES

Exercise 1 A 20-vertex graph has 62 edges. Every vertex has degree 3 or 7. How many vertices have degree 3?

Exercise 8 How many edges are in the hypercube graph Q_4 ?

Exercise 11 In the circulant graph circ(24 : 1, 5), what vertices are at distance 2 from vertex 3?

Def 7.1. The *edge-complement* of a simple graph G is the simple graph \overline{G} on the same vertex set such that two vertices of \overline{G} are adjacent if and only if they are *not* adjacent in G.

Exercise 20 Let G be a simple bipartite graph with at least 5 vertices. Prove that \overline{G} is not bipartite. (See §2.4.)