
GRAPH THEORY – LECTURE 1
INTRODUCTION TO GRAPH MODELS

Abstract. Chapter 1 introduces some basic terminology. §1.1 is concerned with the existence and
construction of a graph with a given degree sequence. §1.2 presents some families of graphs to which
frequent reference occurs throughout the course. §1.4 introduces the notion of distance, which is fun-
damental to many applications. §1.5 introduces paths, trees, and cycles, which are critical concepts to
much of the theory.
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1. Graphs and Digraphs

terminology for graphical objects
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Figure 1.1: Simple graph A; graph B.

u

w

c

d

h
g

vD

u

w

c

d

h
g

vG

Figure 1.3: Digraph D; its underlying graph G.
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Degree
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Figure 1.9: A graph with degree sequence 6, 6, 4, 1, 1, 0.
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Figure 1.10: Both degree sequences are 〈3, 3, 2, 2, 2, 2〉.
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Proposition 1.1. A non-trivial simple graph G must have at least one
pair of vertices whose degrees are equal.

Proof. pigeonhole principle �

Theorem 1.2 (Euler’s Degree-Sum Thm). The sum of the degrees
of the vertices of a graph is twice the number of edges.

Corollary 1.3. In a graph, the number of vertices having odd degree is
an even number.

Corollary 1.4. The degree sequence of a graph is a finite, non-increasing
sequence of nonnegative integers whose sum is even.
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General Graph with Given Degree Sequence

v13v6v 4v

v 2
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Figure 1.11: General graph with deg seq 〈5, 4, 3, 3, 2, 1, 0〉.

Simple Graph with Given Degree Sequence

< 3, 3, 2, 2, 1, 1 >
Cor. 1.1.7

< 2, 1, 1, 1, 1 >
Cor. 1.1.7

< 0, 0, 1, 1 >
permute

< 1, 1, 0, 0 >

Cor. 1.1.7

< 0, 0, 0 >

Figure 1.13: Simple graph with deg seq 〈3, 3, 2, 2, 1, 1〉.
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Havel-Hakimi Theorem

Theorem 1.6. Let 〈d1, d2, . . . , dn〉 be a graphic sequence, with

d1 ≥ d2 ≥ . . . ≥ dn

Then there is a simple graph with vertex-set {v1, . . . , vn} s.t.

deg(vi) = di for i = 1, 2, . . . , n

with v1 adjacent to vertices v2, . . . , vd1+1.

Proof. Among all simple graphs with vertex-set

V = {v1, v2, . . . , vn} and deg(vi) = di : i = 1, 2, . . . , n

let G be a graph for which the number

r = |NG(v1) ∩ {v2, . . . , vd1+1}|
is maximum. If r = d1, then the conclusion follows.

Alternatively, if r < d1, then there is a vertex

vs : 2 ≤ s ≤ d1 + 1

such that v1 is not adjacent to vs, and ∃ vertex

vt : t > d1 + 1

such that v1 is adjacent to vt (since deg(v1) = d1).
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Moreover, since deg(vs) ≥ deg(vt), ∃ vertex vk such that vk is adj to vs

but not to vt, as on the left of Fig 1.14. Let G̃ be the graph obtained from
G by replacing edges v1vt and vsvk with edges v1vs and vtvk, as on the right
of Fig 1.14, so all degrees are all preserved.

vd1 +1

v1

v2 v3 vs
vk

vt vd1 +1

v1

v2 v3 vs
vk

vt

Figure 1.14: Switching adjacencies while preserving all degrees.

Thus, |NG̃(v1) ∩ {v2, . . . , vd1+1}| = r + 1, which contradicts the choice of
graph G. �

Corollary 1.7 (Havel (1955) and Hakimi (1961)). A sequence 〈d1, d2, . . . , dn〉
of nonneg ints, such that d1 ≥ d2 ≥ . . . ≥ dn, is graphic if and only if
the sequence 〈

d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn

〉
is graphic. (See Exercises for proof.)
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Remark 1.1. Cor 1.7 yields a recursive algorithm that decides whether a
non-increasing sequence is graphic.

Algorithm: Recursive GraphicSequence(〈d1, d2, . . . , dn〉)
Input: a non-increasing sequence 〈d1, d2, . . . , dn〉.
Output: TRUE if the sequence is graphic; FALSE if it is not.

If d1 = 0
Return TRUE

Else
If dn < 0

Return FALSE
Else

Let 〈a1, a2, . . . , an−1〉 be a non-incr permutation
of 〈d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn〉.

Return GraphicSequence(〈a1, a2, . . . , an−1〉)
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2. Families of Graphs

  K1
  K2   K3   K4   K5

Figure 2.1: The first five complete graphs.

Figure 2.2: Two bipartite graphs.

Figure 2.4: The complete bipartite graph K3,4.
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Tetrahedron Cube Octahedron

Dodecahedron Icosahedron

Figure 2.5: The five platonic graphs.

Figure 2.6: The Petersen graph.
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  B4
  B2

Figure 2.8: Bouquets B2 and B4.

D3 4D

Figure 2.9: The Dipoles D3 and D4.

P2

P4

Figure 2.10: Path graphs P2 and P4.
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  C1   C2   C4

Figure 2.11: Cycle graphs C1, C2, and C4.

Figure 2.12: Circular ladder graph CL4.
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Circulant Graphs

Def 2.1. To the group of integers

Zn = {0, 1, . . . , n− 1}
under addition modulo n and a set

S ⊆ {1, . . . , n− 1}
we associate the circulant graph

circ(n : S)

whose vertex set is Zn, such that two vertices i and j are adjacent if and
only if there is a number s ∈ S such that i + s = j mod n or j + s = i
mod n. In this regard, the elements of the set S are called connections.

circ(5 : 1,2) circ(6 : 1,2) circ(8 : 1,4)
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Figure 2.13: Three circulant graphs.
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Intersection and Interval Graphs

Def 2.2. A simple graph G with vertex set

VG = {v1, v2, . . . , vn}
is an intersection graph if there exists a family of sets

F = {S1, S2, . . . , Sn}
s. t. vertex vi is adjacent to vj if and only i 6= j and Si ∩ Sj 6= ∅.

Def 2.3. A simple graph G is an interval graph if it is an intersection
graph corresponding to a family of intervals on the real line.

Example 2.1. The graph G in Figure 2.14 is an interval graph for the
following family of intervals:

a↔ (1, 3) b↔ (2, 6) c↔ (5, 8) d↔ (4, 7)

a b

cd

1 2 3 4 5 6 7 8
a b cd

Figure 2.14: An interval graph.
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Line Graphs

Line graphs are a special case of intersection graphs.

Def 2.4. The line graph L(G) of a graph G has a vertex for each edge
of G, and two vertices in L(G) are adjacent if and only if the corresponding
edges in G have a vertex in common.

Thus, the line graph L(G) is the intersection graph corresponding to the
endpoint sets of the edges of G.

Example 2.2. Figure 2.15 shows a graph G and its line graph L(G).
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Figure 2.15: A graph and its line graph.
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4. Walks and Distance

Def 4.1. A walk from v0 to vn is an alternating sequence

W = 〈v0, e1, v1, e2, ..., vn−1, en, vn〉
of vertices and edges, such that

endpts(ei) = {vi−1, vi}, for i = 1, ..., n

In a simple graph, there is only one edge beween two consecutive vertices of
a walk, so one could abbreviate the walk as

W = 〈v0, v1, . . . , vn〉
In a general graph, one might abbreviate as

W = 〈v0, e1, e2, ..., en, vn〉

Def 4.2. The length of a walk or directed walk is the number of edge-steps
in the walk sequence.

Def 4.3. A walk of length zero, i.e., with one vertex and no edges, is called
a trivial walk.

Def 4.4. A closed walk (or closed directed walk ) is a nontrivial walk
(or directed walk) that begins and ends at the same vertex. An open walk
(or open directed walk ) begins and ends at different vertices.

Def 4.5. The distance d(s, t) from a vertex s to a vertex t in a graph G
is the length of a shortest s-t walk if one exists; otherwise, d(s, t) =∞.
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Eccentricity, Diameter, and Radius

Def 4.6. The eccentricity of a vertex v, denoted ecc(v), is the distance
from v to a vertex farthest from v. That is,

ecc(v) = max
x∈VG

{d(v, x)}

Def 4.7. The diameter of a graph is the max of its eccentricities, or,
equivalently, the max distance between two vertices. i.e.,

diam(G) = max
x∈VG

{ecc(x)} = max
x,y∈VG

{d(x, y)}

Def 4.8. The radius of a graph G, denoted rad(G), is the min of the
vertex eccentricities. That is,

rad(G) = min
x∈VG

{ecc(x)}

Def 4.9. A central vertex v of a graph G is a vertex with min eccentricity.
Thus, ecc(v) = rad(G).

Example 4.7. The graph of Fig 4.7 below has diameter 4, achieved by the
vertex pairs u, v and u, w. Vertices x and y have eccentricity 2 and all other
vertices have greater eccentricity. Thus, the graph has radius 2 and central
vertices x and y.
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v

w
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y

Figure 4.7: A graph with diameter 4 and radius 2.
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Connectedness

Def 4.10. Vertex v is reachable from vertex u if there is a walk from u
to v.

Def 4.11. A graph is connected if for every pair of vertices u and v, there
is a walk from u to v.

Def 4.12. A digraph is connected if its underlying graph is connected.

Example 4.8. The non-connected graph in Figure 4.8 is made up of con-
nected pieces called components. See §2.3.
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Figure 4.8: Non-connected graph with three components.
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5. Paths, Cycles, and Trees

Def 5.1. A trail is a walk with no repeated edges.

Def 5.2. A path is a trail with no repeated vertices (except possibly the
initial and final vertices).

Def 5.3. A walk, trail, or path is trivial if it has only one vertex and no
edges.

Example 5.1. In Fig 5.1, W = 〈v, a, e, f, a, d, z〉 is the edge sequence of a
walk but not a trail, because edge a is repeated, and T = 〈v, a, b, c, d, e, u〉
is a trail but not a path, because vertex x is repeated.
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W = <v, a, e, f, a, d, z> 
T = <v, a, b, c, d, e, u>

Figure 5.1: Walk W is not a trail; trail T is not a path.
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Cycles

Def 5.4. A nontrivial closed path is called a cycle. It is called an odd
cycle or an even cycle, depending on the parity of its length.

Def 5.5. An acyclic graph is a graph that has no cycles.

Eulerian Graphs

Def 5.6. An eulerian trail in a graph is a trail that contains every edge
of that graph.

Def 5.7. An eulerian tour is a closed eulerian trail.

Def 5.8. An eulerian graph is a graph that has an eulerian tour.
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Figure 5.6: An eulerian graph.
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Hamiltonian Graphs

Def 5.9. A cycle that includes every vertex of a graph is call a hamilton-
ian cycle.

Def 5.10. A hamiltonian graph is a graph that has a hamiltonian cycle.
(§6.3 elaborates on hamiltonian graphs).
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v w x

yzt

Figure 5.3: An hamiltonian graph.
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Girth

Def 5.11. The girth of a graph with at least one cycle is the length of a
shortest cycle. The girth of an acyclic graph is undefined.

Example 5.2. The girth of the graph in Figure 5.7 is 3 since there is a
3-cycle but no 2-cycle or 1-cycle.

Figure 5.7: A graph with girth 3.
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Trees

Def 5.12. A tree is a connected graph that has no cycles.

tree non-tree non-tree

Figure 5.8: A tree and two non-trees.
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Theorem 5.4. A graph G is bipartite iff it has no odd cycles.

Proof. Nec (⇒): Suppose G is bipartite. Since traversing each edge in a
walk switches sides of the bipartition, it requires an even number of steps for
a walk to return to the side from which it started. Thus, a cycle must have
even length.

Suff (⇐): Let G be a graph with n ≥ 2 vertices and no odd cycles. W.l.o.g.,
assume that G is connected. Pick any vertex u of G, and define a partition
(X, Y ) of V as follows:

X = {x | d(u, x) is even}; Y = {y | d(u, y) is odd}

Suppose two vertices v and w in one of the sets are joined by an edge e. Let
P1 be a shortest u-v path, and let P2 be a shortest u-w path. By definition
of the sets X and Y , the lengths of these paths are both even or both odd.
Starting from vertex u, let x be the last vertex common to both paths (see
Fig 5.9).

u

x v

w

e

Figure 5.9: Figure for suff part of Thm 5.4 proof.

Since P1 and P2 are both shortest paths, their u → x sections have equal
length. Thus, the lengths of the x→ v section of P1 and the x→ w section
of P2 are either both even or both odd. But then the concatenation of those
two sections with the edge e forms an odd cycle, contradicting the hypothesis.
Hence, (X, Y ) is a bipartition of G. �
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7. Supplementary Exercises

Exercise 1 A 20-vertex graph has 62 edges. Every vertex has degree 3
or 7. How many vertices have degree 3?

Exercise 8 How many edges are in the hypercube graph Q4?

Exercise 11 In the circulant graph circ(24 : 1, 5), what vertices are at
distance 2 from vertex 3?

Def 7.1. The edge-complement of a simple graph G is the simple graph
G on the same vertex set such that two vertices of G are adjacent if and only
if they are not adjacent in G.

Exercise 20 Let G be a simple bipartite graph with at least 5 vertices.
Prove that G is not bipartite. (See §2.4.)


