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Auto-associative memory

* Purpose of auto-associative memory M is to remember "patterns”

e Say pattern x is remembered by M if, upon prompting M with
X+ 0
for "small" corruption 6, the memory M returns x:
M(x+6) =x

* Question: How many patterns can be remembered?




Hopfield network

* Regard pattern as a particular setting of d neurons
x € {—1,1}¢

* Hopfield network: "biologically plausible" associative memory where
M (x) is limiting state of discrete-time dynamics

T T
x=x(1)->x(2) > > x(c0)
with update rule T: {—1,1}¢ = {—1,1}¢ defined by a neural net
T(x) = sign|Wx]

Theorem: Can remember ~d/log d random patterns with d neurons

* |dea: Dynamics = "thresholded" gradient iteration on x = —ExTWx



Related problem (but more relevant)

* Associative memory M: mechanism for remembering associations
(x,y) € {-1,1}4 x {—1,1}¢

(For simplicity, assume input and output dimensions are the same)

* Say association (x,y) is remembered if, upon prompting M with
X+ 0
for "small" corruption §, the memory M returns y

* In fact, let's just consider 6 = 0

* Are there any "biologically plausible"” solutions?



Intuition from elementary linear algebra

» Neural network starts with a linear map x = Wx on R

* If keys are linearly independent, and W has full-rank, then keys map

to linearly independent "values”

* If keys are right singular vectors of W, and values are left singular

vectors of W (scaled by corresponding singular value), then W
correctly maps each key to desired value!




One-step Hopfield network

* Assume "keys" x@, . x are drawn independently and u.a.r. from

{—1,1}4, but allow "values" vV, ..., v to be arbitrary

* One-step Hopfield network:

n
M(X) — Sign[W.X'], W = 2 y(i)x(i)-r
=1

* Question: How large can n be?

* Answer:n~d/logd



Analysis of one-step Hopfield network

1. One-step Hopfield network:

- n

M (x) = sign Z(x,x(i))y(i)

Li=1

2. Inside sign for M(x(l))j:

n
1 i '
dy; + E:(xm,x(o) y
=2

3.

We have M(x(l))j = y]@ iff

n
— 2(36(1), x(i)> yj(l)yj(i) <d
i=2
LHS is sum of (n — 1)d
independent Rademacher r.v.'s

Probability that LHS is < d is

Zl—exp(—

d2
2(n — 1)d>

6. Apply union bound



One-step modern Hopfield network

* Krotov and Hopfield (2021) suggest that the following one-step
mechanism (proposed and analyzed by Demircigil et al, 2017) is also

"biologically plausible":
- N

M(x) = sign 2 exp(<x, x(i)>) y(i)

Li=1

* Again, let's assume "keys" x . x™ are drawn independently and
u.a.r. from {—1,1}%, but allow "values" y'", ..., v to be arbitrary

* Question: How large can n be?
* Answer: n ~ exp(Q(d))



Analysis of one-step modern Hopfield network

1. With probability at least

1 — (g) e—ezd’

foralli # k,
(x(i),x(k)) < ed

2. Inside sign for M(x(l))j:

(D) x D) y_(i)

€ J

R

o~
[
p—

J k
Let a; = e(x(l),x(‘))/zzzl e(x(l),x( ))

We have M(x(l))j = y}l) iff

n

1 .
aq > — z aiy]'( )y](l)
=2

RHSis at most 1 — a4

So suffices to have a; > 1/2, i.e,,
1

L+ Do)

> 1/2



Connection to transformers

* One-step modern Hopfield network, again:
T (2¢,c(D))

M (x) = sign Z ° or0)

n
=1 ]=1e

* Inside the sign is the attention mechanism!
* Query: x
e Keys: xV, ..., x(™

* Values:

* Correct operation for n key/value pairs with dimension d = ©(logn)
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