Word embedding models

Daniel Hsu

COMS 6998-7 Spring 2025

Latent semantic indexing

Latent semantic indexing

(Deerwester, Dumais, Furnas, Landauer, Harshman, 1990)

• <u>Term-document matrix</u> $A \in \{0,1\}^{V \times N}$ (simplified) $A_{i,j} = 1\{\text{term } i \text{ appears in document } j\}$

documents

terms

	document 1	document 2	document 3	
aardvark	1	1	1	
abacus	0	0	1	
abalone	0	1	0	
•••				

- Latent Semantic Indexing (LSI): low-rank SVD factorization $A \approx BC$
 - Terms represented by rows of B, documents represented by columns of C

Problems LSI is intended to address

• Old ideas:

- document = bag-of-words
- word = meaning is derived from what documents use it

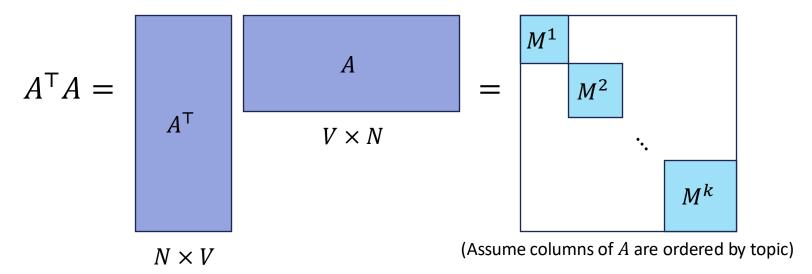
• Problems:

- Synonymy: some documents about "cars" only use "automobile"
- Polysemy: documents about both water sports and internet use "surfing"

Probabilistic analysis of LSI

(Papadimitriou, Raghavan, Tamaki, Vempala, 2000)

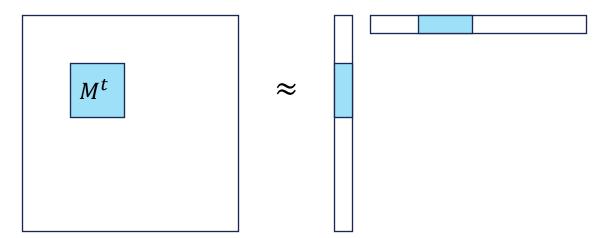
- Modeling assumptions for analysis:
 - documents are **clustered** by topic (k = number of topics)
 - terms used by topic t documents are **disjoint** from terms used by topic t' documents



• Eigendecomposition of $A^{\mathsf{T}}A$ is determined by eigendecompositions of the blocks M^1, M^2, \dots, M^k

Using spectral graph theory

- Within cluster t: if documents are sufficiently "well-connected", then $\lambda_1(M^t)\gg \lambda_2(M^t)$
 - Top eigenvector: positive constant on documents in cluster t
 - Additional assumptions ensure well-connectedness is likely!



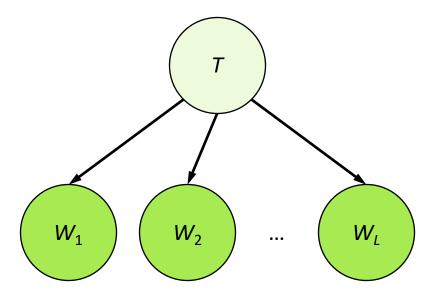
• <u>Conclusion</u>: top k eigenvectors of A^TA are \approx characteristic vectors for the k clusters

Speed-up using random projection

- Document representation obtained by projecting to k-dimensional subspace of \mathbb{R}^V (so document is represented by k coefficients)
- Suggested speed-up:
 - Step 1: project documents to random ℓ -dimensional subspace of \mathbb{R}^V : $R^\top A \in \mathbb{R}^{\ell \times N}$
 - Step 2: apply LSI to $R^T A$
- Main result: If $\ell \gg k + \log N$, then best rank-2k approximation to $RR^{\top}A$ is about as good as best rank-k approximation to A
- <u>Modern version of this</u>: "sketch-and-solve methods" from randomized numerical linear algebra

Latent "bag-of-words" model

John Rupert Firth: "You shall know a word by the company it keeps!"



T = topic of a length-L document (hidden variable) $W_1, W_2, ..., W_L = \text{the } L \text{ words of the document}$

Assume: $W_1, W_2, ..., W_L$ conditionally independent given T

$$P(w_1, w_2) = \sum_{t=1}^{k} P(w_1|t)P(t)P(w_2|t)$$
$$= (UDU^{\mathsf{T}})_{w_1, w_2}$$

where

$$U_{w,t} = P(w|t), \qquad D_{t,t} = P(t)$$

Super-simplified analysis

- Each document has L=2 words
 - A is term-document matrix based on first word
 - $ilde{A}$ is term-document matrix based on second word
- Look at $V \times V$ matrix $A\tilde{A}^{\top}$

$$\mathbb{E}\big[A\tilde{A}^{\top}\big] \propto RDR^{\top}$$

